История развития электродинамики Магнетизм





Скачать 245.39 Kb.
НазваниеИстория развития электродинамики Магнетизм
страница1/3
Дата публикации25.01.2015
Размер245.39 Kb.
ТипДокументы
100-bal.ru > Физика > Документы
  1   2   3
История развития электродинамики

Магнетизм

Когда точно были открыты постоянные магниты неизвестно, но уже в V веке н.э. магнетизм был известен. По крайней мере в это время уже знали, что подвешенные на веревке кусочки минерала магнетит, большие залежи которого были в древнем городе Магнесия, всегда ориентируются в одном и том же направлении. Собственно, и название “магнитизм” произошло от названия города Магнесия, который располагался на притоке реки Меандра. Этот город часто называют Магнесия на Меандре, потому что был еще один город с таким названием — Магнесия у Сипила. Сейчас Магнесия на Меандре называется Манисса и находится в Турции.

В Китае первый магнитный компас стали использовать во II веке до н.э. для указания направлении движения по пустыням, поэтому можно сказать, что магнетизм китайцы использовали уже тогда, хотя для Европы изобретение компаса произошло XII—XIII веках н.э. (по другим сведениям в IX веке).




Фалес Милетский

К этому времени магниты использовались, но не особо их изучали. Кроме того тогда уже знали о том, что янтарь способен притягивать кусочки шерсти, и это тоже относили к магнитным явлениям. К первым исследователям можно отнести, например, Фалеса Милетского (640/624 — 548/545 до н.э.). Он предположил, что у магнита есть “душа” и объявлял свойства магнита именно с помощью нее. Собственно, на этом его достижения в магнетизме и заканчивается.

Аверроэс



Арабский мыслитель Абу ал-Валид Мухаммад ибн Ахмад ибн Рушд, известный также под именем Аверроэс (1126 — 1198 гг), сделал интересное по тому времени предположение, что магнит искажал пространство вокруг него в соответствии с формой магнита.

В 1269 году Пьер Перегрин из Марикурта опубликовал рукопись “Трактат о магнитах”, в которой описал многие свойства магнита. По сути, эта рукопись изначально была просто письмом другу. Перегрин — это не фамилия, а прозвище, которое по современному можно перевести как пилигрим, паломник, странник, путешественник по святым местам. Тогда, во времена крестовых походов, такое прозвище было получить не трудно. Тем более, что Перегрин участвовал в военных действиях, а письмо-трактат писал в военном лагере Карла Анжуйского, осаждавшего город Лючеру.
Именно Перегрин открыл (или по крайней мере описал), что существуют полюса магнита, и написал, что два магнита должны притягиваться, или, как он выразился, “совокупляться”, разноименными полюсами. Также он говорил про отталкивание магнитов, если их поднести друг к другу одноименными полюсами. Еще он заметил, что если кусок магнитной руды разломить пополам, то каждый из обломков также имеет два полюса. Правда, слово “полюс” Перегрин не использовал, он говорил о местах магнита, где “магнитное действие”, особенно велико. Кроме того Перегрин с помощью магнитов

собирался делать вечный двигатель.




Уильям Гильберт

Но особенно много для развития магнетизма сделал Уильям Гильберт (1540 — 1603). Причем он был доктором медицины, но заинтересовался магнитами после прочтения “Трактата о магнитах” все того же Перегрина и позже опубликовал свою работу “О магните, магнитных телах и большом магните — Земле”, в которой точно классифицировал известные свойства магнита. Самый известный его эксперимент был поставлен с целью объяснить магнетизм Земли. Гильберт изготовил шар из магнитной

руды и исследовал, каким образом шар действует ни маленькую железную стрелку.
Он обнаружил сходство поведения этой стрелки с поведением стрелки инклинатора (компасной стрелки, вращающейся на горизонтальной оси) вблизи Земли и пришел к заключению, что Земля представляет собой гигантский магнит. Гильберт также высказал мысль, что «магнетическое действие выливается с каждой стороны» магнитного тела (понятие, отдаленно напоминающее силовые линии, который будут открыты Фарадеем в XIX веке). Он открыл, что при нагревании магнита выше некоторой температуры его магнитные свойства исчезают; впоследствии эта температура (588°С) была названа точкой Кюри, в честь Пьера Кюри. Гильберт открыл, что, когда приближают к одному полюсу магнита кусок железа, другой полюс начинает притягивать сильнее. Эта идея была запатентована через 250 лет после смерти Гильберта. Он же открыл и намагничиваемость если оно лежит вблизи магнита.

Гильберт многое сделал и открыл. Но Гильберт почти ничего не смог объяснить. Нет, объяснить он пытался, но получалось это довольно оригинально. Вот, например, как Гильберт объясняет тот факт, что при разрезании одного длинного магнита образуется много коротких, которые имеют первоначальное направление намагничивания и стремятся сохранить прежнее положение в пространстве. Он сравнивает магнит с веткой дерева:

«Пусть AB будет покрытый листвой сучок ивы… A – верхняя часть, B – нижняя, по направлению к корню. Разделили его в C. Я утверждаю, что конец A, снова вставленный в B с соблюдением правил прививки, прирастает к нему; точно так же, если B вставить в A, то они скрепляются друг с другом и дают ростки. Но если D вставить в A или C в B, то они вступают между собой в борьбу и никогда не срастаются, но один конец отмирает вследствие неподходящего и несоответствующего соединения, так как растительная сила, идущая одним путем, теперь оказывается стремящейся в противоположные стороны…»

Магнетизм он пытался объяснить с помощью все той же “души магнита”, про которую говорил Фалес.
И именно Гильберг первый разделил электричество от магнетизма, и именно после этого электричество и магнетизм стали изучать раздельно. Причем именно Гильберт ввел и само понятие “электричество”. Под электричеством он стал понимать притягивание куском янтаря шерсти. До него это явление считали разновидностью магнетизма. Он пытался установить, какие вещества похожи на янтарь по своим электрическим свойствам, а какие — нет. Вот первое в истории употребление слова «электрический»:

«Электрические тела – те, которые притягивают таким же образом, как янтарь» (Гильберт В. «О магните», глава «Объяснение некоторых слов»).

А само латинское слово “electricus” означает “Янтарный”. Он же показал, что притягивать шерсть и другие мелкие предметы могут также алмазы, сапфиры, горный хрусталь, стекло, сера, соль и т. д.
Электростатика

Итак, Гильберт отделил магниты от веществ, которые могли электризоваться и притягивать к себе мелкие частицы (например, янтарь и стекло). С этого и началось развитие электростатики, то есть науки о взаимодействии неподвижных заряженных частиц. Тогда еще не знали природу взаимодействия ни между магнитами, ни между заряженными телами. Гильберт высказал предположение, что тела, которые могут электризоваться, содержат некие “соки”, а при трении они разогреваются или еще каким-то образом возбуждаются, благодаря чему от наэлектризованных тел начинает исходить испарение, которое и притягивает окружающие предметы. То есть по сути, Гильберт высказал предположение, что наэлектризованные тела взаимодействуют не сами по себе, а через некоторый вид материи. Эта теория будет позже названа теорией близкодействия. В противоположность ей, существовала теория дальнодействия, согласно которой тела взаимодействуют непосредственно между собой. Активным сторонником теории дальнодействия был Ньютон, его теория всемирного тяготения была, казалось бы, веским аргументом пользу дальнодействия. Ньютон критиковал теорию Гильберта об «испарении» наэлектризованных тел:

«Пусть он объяснит мне, каким образом наэлектризованное тело при трении может испускать излучение, столь разреженное и неуловимое и одновременно столь мощное, что его испускание, не вызывая ощутимого уменьшения веса наэлектризованного тела и, расширяясь в сферу, диаметр которой превышает два фута, тем не менее, остается способным возбуждать и удерживать медную или золотую пластинку на расстоянии свыше фута от наэлектризованного тела?»

В будущем, до Фарадея и Максвелла, именно теория дальнодействия будет считаться верной, но попытки объяснить ее ни к чему не приведут. Однако, сразу после Гильберта многих заинтересовала его теория. Правда, опять же, никто не мог объяснить как именно

«испарения» действуют на тела.



Отто фон Герике

Первым заметил, что наэлектризованные тела не только могут притягиваться, но также и отталкиваться, Никколо Кабео (1585-1650). Позднее, в 1660 году, Отто фон Герике (1602 — 1686), немецкий физик, изготовил электрическую машину. Она представляла собой вращающийся на железной оси шар из серы. Если к вращающемуся шару прикладывать руку, то он электризовался и начинали проскакивать искры. Герике заметил, что

шар притягивает легкие тела, а коснувшись шара, они тут же отталкивались и не притягивались к нему до тех пор пока не коснутся какого-нибудь другого тела. Он также заметил, что наэлектризованный шар светится в темноте.



Шарль Франсуа Дюфе

После того как накопилось достаточно много фактов о заряженных телах, эти факты нужно было как-то объяснить. В 1733 году Шарль Франсуа Дюфе (1698 — 1739) выдвинул предположение о существовании двух родов электричества — стеклянного и смоляного. Он разделил вещества, способные электризоваться на два класса: материалы из первого класса давали «стеклянное» электричество ( этот род электричества

был так назван, потому что сюда попало стекло) , вещества второго класса давали «смоляное» электричество (сюда попал янтарь). Заряженные тела из разных классов притягивались, в то время как заряженные тела из одного класса отталкивались.





Питер ван Мушенбрук

Через 12 лет, в 1745 году после этой работы Дюфе в голландском городе Лейден Питер ван Мушенбрук (1692 — 1761) вместе со своим приятелем Кюнеусом (по другим сведениям — его ученик) изобрели первый в мире конденсатор, который получил свое название в честь города Лейден, — лейденская банка. Одновременно с Мушенбруком такую же конструкцию предложил немецкий ученый Клейст (1700 — 1748), поэтому лейденскую банку еще иногда называли банкой Клейста. Устройство лейденской банки было

довольно простое — это был стеклянный сосуд, обклеенный снаружи листовым оловом, это была внешняя обкладка. Чтобы создать вторую, внутреннюю, обкладку, банку либо заполняли водой, либо покрывали оловом внутреннюю поверхности банки. В качестве контакта для внутренней обкладки выступала проволока, воткнутая через горловину банки. В первых опытах у конденсатора не было внешней обкладки, а в ее качестве выступали руки экспериментатора. Именно после удара тока от такой лейденской банки без внешней обкладки Кюнеус и узнал, что конденсатор работает. Лейденские банки могли накапливать заряд до микрокулона (но в то время такого понятия как Кулон еще не существовало, а самому Кулону в тогда было 9 лет). Лейденская банка сыграла очень важную роль в развитии электричества и подтолкнула к дальнейшим исследованиям. Кстати, именно Мушенбрук первый соединил лейденские банки в батарею, чтобы увеличить их суммарную емкость.



Бенджамин Франклин

Практически сразу после изобретения конденсатора на сцену выходит Бенджамин Франклин, тот самый американский политик, который участвовал и в создании американской конституции. Он необычно много сделал для исследования электричества. Во-первых, он предложил свою теорию вместо теории Дюфе о двух родах электричества. Франклин выдвинул предположение, что электричество бывает только одного вида,

а разделение материалов на два класса объясняется избытком или недостатком этого самого одного электричества. И именно Франклин предложил обозначать заряженные тела знаками «+» или «-». Таким образом, получилось, что «стеклянное» электричество стало обозначаться плюсом, а смоляное — минусом. Если бы он обозначил их наоборот, то нам бы сейчас было бы легче в том смысле, что по договоренности ток течет от плюса к минусу (от места избытка “электричества” к месту, где его мало), по обозначениям Франклина получается, что электрон (о котором тогда, разумеется, еще и не догадывались) имеет отрицательный заряд, следовательно, они бегут от минуса к плюсу. Таким образом получается, что ток течет по направлению, обратному движению электронов, переносчику того самого тока. Про электроны Франклин тогда, естественно, не знал, но из-за такого обозначения теперь существует такая небольшая путаница с направлением тока и направлением движения переносчиков тока — электронов.

Он же ввел такие понятия как “батарея”, “конденсатор”, “проводник”, “заряд”, “разряд”. Кроме того Франклин активно изучал молнии и установил, что атмосферное электричество и статическое электричество, получаемое с помощью трения, является одним и тем же электричеством. Даже на бюсте Франклина скульптором А. Гудоном была нанесена надпись на латинском языке: “Он отнял молнию у небес и власть у тиранов”, сама фраза принадлежит другу и биографу Франклина — Анн Роберу Жаку Тюрго (1727 — 1781). Франклин же установил в 1752 году, что молния есть ни что иное как электрический разряд. Он также изобрел громоотвод и заземление. Он также первый начал использовать электрическую искру для взрыва пороха. И именно Франклин объяснил принцип действия лейденской банки и какую роль в ней играет диэлектрик (конечно, насколько это было возможно в то время). Но, чтобы быть честным, аналогии между искрой и молнией были еще у Ньютона, он писал, что ему электрические искры напоминают молнии.



Щарль Огюстен де Кулон

К этому моменту ученные старались не только описать и объяснить электричество, но и каким-то образом измерить заряды и силу их взаимодействия. В последнем преуспел Шарль Огюстен Кулон (1736 — 1806). Вы уже, наверное, поняли, что речь пойдет о законе, который носит его имя.

Свой закон он сформулировал в одном из семи мемуаров, которые выходили с 1785 по 1789 года. Напомню, что этот закон гласит:

«Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме направлена вдоль прямой, соединяющей заряды, прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.»





Генри Кавендиш

Вообще-то Кулона больше интересовали приборы, которыми он занимался, чем сама электростатика. Он хотел сделать как можно более точные крутильные весы, а заодно с их помощью измерял силу взаимодействия между зарядами. Он же ввел понятия магнитного момента и поляризации зарядов. То, что сила взаимодействия между зарядами пропорциональна 1/r2 установил еще в 1771 году английский физик Генри Кавендиш (1731 — 1810), но не опубликовал свое открытие и эксперимент, с помощью которого он делал такой вывод.



Джозеф Пристли



Правда, и Кулон, и Кавендиш лишь подтвердили предположение, которое было высказано Джозефом Пристли о том, что сила взаимодействия между зарядами обратно пропорциональна квадрату расстояния между ними. Пристли не был твердо уверен в своем предположении и основывал его на предположении, что заряды взаимодействуют так же, как и тела в законе притяжения. Но именно Кулон довел закон до логического конца, введя в него зависимость от величины заряда.

Еще интересно, что Кулон не принимал теорию Франклина о существовании только одного рода электричества, а придерживался теории Дюфе. Кулон представлял себе электричество в виде двух разных жидкостей, а взаимодействие между заряженными телами объяснял взаимодействиями частиц этих жидкостей.

Таким же образом Кулон представлял себе действие магнитов, объясняя их действие “магнитными жидкостями”. Но тогда, если в каждом теле текут две такие “магнитные жидкости” (так как у магнита два полюса), то получается, что их можно было бы разделить, но Кулон доказывал, что это невозможно, приводя в доказательство то, что у магнита нельзя получить только северный или только южный полюс, а если его разломить, то получим два магнита с двумя полюсами.
На этом пока прервемся, в следующей части поговорим про открытие гальванического электричества.

  1   2   3

Добавить документ в свой блог или на сайт

Похожие:

История развития электродинамики Магнетизм iconЭлектричество и магнетизм
Принята на заседании кафедры государственные и муниципальные финансы от 2012г
История развития электродинамики Магнетизм iconЭлектричество и магнетизм (физический практикум)
Принята на заседании кафедры государственные и муниципальные финансы от 2012г
История развития электродинамики Магнетизм iconКалендарно-тематическое планирование преподавания курса фундаментальные теории физики. 11 класс
Структура и содержание классической электродинамики. Опыты, основные понятия и идеи
История развития электродинамики Магнетизм iconРадиофизический факультет
Содержание дисциплины направлено на расширение знаний электродинамики плазменных процессов, обусловленных ионизационной нелинейностью...
История развития электродинамики Магнетизм iconТемы рефератов: Создание и история развития Ставропольского государственного...
Создание и история развития Ставропольского государственного аграрного университета
История развития электродинамики Магнетизм iconРеферат История развития компьютера
Рассматривая историю общественного развития, марксисты утверждают, что ’’ история есть ни что иное, как последовательная смена отдельных...
История развития электродинамики Магнетизм iconРадиофизический факультет
Дисциплина базируется на знаниях студентов, приобретенных в курсах общей физики, полупроводниковой электроники, электродинамики и...
История развития электродинамики Магнетизм iconИстория развития интегральных микросхем. Факторы прогресса технологии...
История развития техники микропроцессоров и микропроцессорной вычислительной техники
История развития электродинамики Магнетизм iconИстория развития интегральных микросхем. Факторы прогресса технологии...
История развития техники микропроцессоров и микропроцессорной вычислительной техники
История развития электродинамики Магнетизм iconРефератов по теме: «История развития легкой атлетики»
Тема Введение в легкую атлетику. История развития легкой атлетики. Классификация легкоатлетических упражнений
История развития электродинамики Магнетизм iconБлок 11. Магнетизм. Магнитное взаимодействие. Магнитное поле электрического тока
Открытый урок по физике в 8 классе. Учитель – Тарасова Лариса Васильевна. 15. 03. 12
История развития электродинамики Магнетизм iconТемы рефератов специализация «легкая атлетика». История развития...

История развития электродинамики Магнетизм iconИстория развития волейбола в России
Спрингфилде. Именно тогда, по предложению профессора Альфреда Хальстена игре было присвоено новое название «волейбол», что в переводе...
История развития электродинамики Магнетизм iconТемы вашего учебного проекта
В данном проекте рассмотрена история корпорации Apple, история происхождения названия, история развития корпорации
История развития электродинамики Магнетизм iconМагнитной радиоспектроскопии в биофизических и медико-биологических исследованиях
Диамагнетизм и парамагнетизм атомов и молекул. Ядерный магнетизм. Основы эпр-спектроскопии и ямр-спектроскопии
История развития электродинамики Магнетизм iconРеферат для сдачи кандидатского экзамена по философии права на тему:...
Сущность и история развития организации труда вахтовым методом


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск