Операционные системы конспект лекций





НазваниеОперационные системы конспект лекций
страница9/30
Дата публикации19.02.2015
Размер3.33 Mb.
ТипКонспект
100-bal.ru > Информатика > Конспект
1   ...   5   6   7   8   9   10   11   12   ...   30

1.2.4Внешние устройства


Внешние устройства во многом определяют эксплуатационные характеристики как компьютера, так и вычислительной системы в целом. Размер экрана монитора, объем и производительность магнитных дисков, наличие печатающих устройств, модемов, и т.д. — характеристики компьютера на которые зачастую в первую очередь обращает внимание массовый пользователь. Значимость внешних устройств компьютера в вычислительной системе возрастала по мере развития сфер применения вычислительной техники. Если основным применением первых компьютеров было численное решение задач моделирования физических процессов, и для этих целей было достаточным иметь в компьютере высокопроизводительный (по меркам того времени) процессор, достаточный для решения задач данного класса объем оперативной памяти, простейшие устройства печати и ввода данных, внешнее запоминающее устройство для хранения исходных и промежуточных данных, то спектр внешних устройств современных компьютеров несоизмеримо шире, что соответствует разнообразию задач, решаемых средствами современных вычислительных систем (Рис. 33.).



  1. Внешние устройства.

Мы более подробно остановимся на характеристиках и особенностях использования внешних запоминающих устройств, как наиболее интенсивно используемых и значимых внешних устройствах вычислительных систем.

1.2.4.1Внешние запоминающие устройства


Внешние запоминающие устройства (ВЗУ) предназначены для организации хранения данных и программ. Обычно операции чтения или записи с ВЗУ происходят некоторыми порциями данных, которые называются записями. Данные, размещенные на ВЗУ, представляются в виде последовательности записей. Существует категория ВЗУ, называемые блочными устройствами, которые допускают выполнение обменов исключительно записями фиксированного размера — блоками. Примером блочных устройств могут служить различные типы магнитных дисков. Обычно размер блоков (физических блоков), обмен которыми может осуществляться с блочными устройствами, определяется аппаратно и может зависеть от конкретной модели и типа устройства. Альтернативой блочным ВЗУ являются устройства, аппаратно допускающие обмен записями произвольного размера. Примером таких устройств являются устройства хранения информации на магнитных лентах.

ВЗУ могут разделяться на две группы по возможностям доступа к хранящимся данным. Первая группа — устройства, аппаратно допускающие как операции чтения, так и операции записи. Примером устройств данной группы может служить жесткий диск. Вторая группа — устройства, позволяющие выполнять только операции чтения данных, например, в эту группу входят устройства CD-ROM (compact disk read-only memory), DVD-ROM (digital video/versatile disc read-only memory).

Внешние запоминающие устройства могут, также подразделяться на устройства прямого доступа и устройства последовательного доступа. Рассмотрим принципы организации и общие характеристики устройств, принадлежащих каждой из этих групп.

Устройства последовательного доступа — это устройства, при доступе к содержимому произвольной записи которых «просматриваются» все записи, предшествующие искомой. Рассмотрим в качестве примера ВЗУ последовательного доступа устройство хранения данных на магнитной ленте. На магнитной ленте каждая запись имеет специальные маркеры начала и конца. Также, на каждой ленте размещаются маркеры начала и конца ленты (Рис. 34.).



  1. Магнитная лента.

Каждая запись на ленте имеет свой логический номер. При возникновении запроса на чтение записи с номером i выполняется следующая последовательность действий:

  • устройство перематывает ленту до маркера начала ленты;

  • осуществляется последовательный поиск маркеров начала записей, после нахождения i-го маркера считается, что устройство «вышло» на начало искомой записи;

  • происходит чтение i-ой записи.

Устройство прямого доступа обеспечивает выполнение операций чтения/записи без считывания дополнительной информации. Примером устройств прямого доступа могут служить магнитные диски, или дисковые устройства.



  1. Принцип устройства магнитного диска.

Магнитные диски являются самыми распространенными устройствами внешней памяти современных компьютеров. Рассмотрим принципиальную схему организации магнитного диска (Рис. 35.). Устройство представляет собою вал, вращающийся с достаточно высокой постоянной скоростью. На валу закреплены диски, поверхности которых покрыты материалом, способным на основе магнитоэлектрических эффектов сохранять информацию. Количество дисков варьируется в зависимости от типа дискового устройства. Также в дисковом устройстве присутствует система головок чтения/записи. Количество головок соответствует количеству поверхностей дисков, и каждая головка может работать со своей фиксированной поверхностью. Все головки устройства составляют блок головок магнитного диска. Блок головок может перемещаться от края поверхностей к центру. Перемещение блока головок осуществляется дискретно, каждая позиция остановки блока головок над поверхностями (с учетом вращения дисков) образует цилиндр. Таким образом, каждое дисковое устройство характеризуется фиксированным количеством цилиндров, которые соответствуют позициям, на которых может размещаться блок головок.

Все цилиндры пронумерованы (0,1,....Nцилинд). Условные линии пересечения цилиндров с поверхностями образуют дорожки. Дорожки, относящиеся к одному цилиндру пронумерованы (0,1,....Nдорожки). Дорожки, принадлежащие одной поверхности, формируют концентрические круги. Все дорожки разделены на фиксированное для данного устройства число равных частей — секторов. Секторы каждой дорожки пронумерованы (0,1,....Nсектор). Начала всех одноименных секторов лежат в одной плоскости, проходящей через вал. При работе магнитного диска предусмотрена возможность индикации факта прохода блока головок через каждую точку начала сектора (это решается с использованием механических или оптических датчиков секторов), таким образом, блок головок всегда может «знать», над каким сектором он находится. В каждый момент времени в блоке головок может проходить обмен с одним из секторов. Рассмотрим пример выполнения операции обмена данными, размещенными в одном из секторов. Для задания координат конкретного сектора в устройство управления магнитным диском должны быть переданы:

  • номер цилиндра, в котором расположен данный сектор, — Nc;

  • номер дорожки, на которой размещается сектор, — Nt;

  • номер сектора — Ns.

После получения координат сектора (Nc, Nt, Ns) выполняется следующая последовательность действий:

  • шаговый двигатель перемещает блок головок в цилиндр Nc;

  • включается головка чтения/записи, соответствующая номеру дорожки Nt;

  • как только головка чтения/записи позиционируется над началом искомого сектора Ns, запускается выполнение операции чтения (или записи).

Таким образом, мы видим, что для выполнения операций обмена с магнитным диском не производится чтение какой-либо дополнительной информации с диска, т.е. обеспечивается «прямой доступ» к информации.

Производительность внешнего запоминающего устройства — время доступа к хранящейся информации — во многом определяется наличием и продолжительностью механических операций, которые необходимо провести при обмене. Так, время обмена с магнитным диском будет определяться в основном временем выдвижения блока головок в соответствующий цилиндр (это время перемещения блока головок из начального положения к цилиндру с максимальным номером), а также временем позиционирования головки в начало сектора, с которым будет осуществляться обмен (это время не больше времени полного оборота вала). При работе с магнитной лентой механическая составляющая обмена существенно больше, поэтому магнитные диски являются более высокопроизводительными устройствами и применяются для оперативного хранения обрабатываемых данных. Магнитные ленты используются для организации архивирования и долговременного хранения данных.

Следующее устройство, которое мы рассмотрим, — это магнитный барабан (Рис. 36.). В данном приборе также имеется электродвигатель, к оси которого прикреплен массивный барабан, поверхность которого покрыта электромагнитным слоем. Двигатель раскручивает барабан до достаточно высокой постоянной скорости. Помимо этого имеется фиксированная штанга, на которой расположены головки чтения-записи. Под каждой головкой логически можно выделить дорожку, которая называется треком. Так же, как и в диске, все дорожки разделены на сектора. Для адресации блока данных в этом случае используется только номер дорожки (Nтрека) и номер сектора (Nсектора). Для того, чтобы произвести операцию чтения или записи, устройство управления должно включить головку, соответствующей указанному номеру дорожки, а после этого происходит ожидание механического поворота цилиндра до выхода головки на начало искомого сектора. Таким образом, по сравнению с жесткими дисками, в этом устройстве отсутствует механическая составляющая выхода головки на нужный трек, поэтому данный тип устройств считается более высокоскоростным.



  1. Принцип устройства магнитного барабана.

Напоследок отметим, что магнитные барабаны на сегодняшний день являются в некотором роде экзотическими устройствами: они используются в основном лишь в больших специализированных высокопроизводительных компьютерах обычно для временного хранения данных из оперативной памяти.

И, наконец, отметим т.н. память на магнитных носителях (доменах). Под доменом понимается некоторая элементарная единица, способная сохранять свою намагниченность в течение длительного промежутка времени. Домен может быть намагничен одним из двух способов (отмеченные на Рис. 37. либо как «плюс-минус», либо как «минус-плюс»).



  1. Принцип устройства памяти на магнитных доменах.

Принцип работы устройства памяти на магнитных доменах основан на том, что под воздействием магнитно-электронных эффектов магнитные домены разгоняются вдоль своего трека до некоторой постоянной скорости. В остальном же принцип работы данного класса устройств ничем не отличается от работы магнитных барабанов. Соответственно, из-за того, что в данном устройстве нет механической составляющей, оно является еще более высокоскоростным по сравнению с предыдущими устройствами.

Для считывания или записи информации на данный носитель устройство управления включает необходимую головку, которая по таймеру синхронизируется с «приходом» начала искомого сектора, после чего происходит обмен с найденным сектором.

1.2.4.2Модели синхронизации при обмене с внешними устройствами


Важной характеристикой, во многом определяющей эффективность функционирования вычислительной системы, является модель синхронизации, поддерживаемая аппаратурой компьютера при взаимодействии центрального процессора с внешними устройствами.

Для иллюстрации рассмотрим пример. Пусть выполняемой в компьютере программе необходимо записать блок данных на магнитный диск. Что будет происходить в системе при обработке заказа на данный обмен? Возможны две модели реализации обмена, рассмотрим их.

Синхронная работа с ВУ. При синхронной организации обмена в момент обращения к внешнему устройству программа будет приостановлена до завершения обмена (Рис. 38.). Тем самым в системе возникали задержки, которые снижали эффективность функционирования ВС.



  1. Синхронная и асинхронная работа с ВУ.

Асинхронная работа с ВУ. При асинхронной организации работы внешних устройств последовательность событий, происходящих в системе, следующая:

  1. Для простоты изложения будем считать, что в системе прерываний компьютера имеется специальное внутреннее прерывание «обращение к системе», которое инициируется выполнением программой специальной команды. Программа инициирует прерывание «обращение к системе» и передает заказ на выполнение обмена, параметры заказа могут быть переданы через специальные регистры, стек и т.п. В операционной системе происходит обработка прерывания, при этом конкретному драйверу устройства передается заказ на выполнение обмена.

  2. После завершения обработки «обращения к системе» программа может продолжить свое выполнение, или может быть запущено выполнение другой программы.

  3. По завершении выполнения обмена происходит прерывание, после обработки которого программа, выполнявшая обмен, может продолжить свое выполнение.

Асинхронная схема обработки обращений к ВУ позволяет сглаживать дисбаланс в скорости выполнения машинных команд и скоростью доступа к ВУ.

В заключении отметим следующее. Представленная выше схема организации обмена является достаточно упрощенной. Она не затрагивает случаев синхронизации доступа к областям памяти, участвующим в обмене. Проблема состоит в том, что, например, записывая область данных на ВЗУ, после обработки заказа на обмен, но до завершения обмена программа может попытаться обновить содержимое области, что является некорректным. Поэтому в реальных системах для синхронизации работы с областями памяти, находящимися в обмене, используется возможность ее аппаратного закрытия на чтение и/или запись. То есть при попытке обмена с закрытой областью памяти произойдет прерывание. Это позволяет остановить выполнение программы до завершения обмена, если программа попытается выполнить некорректные операции с областью памяти, находящейся в обмене (попытка чтения при незавершенной операции чтения с ВУ или записи при незавершенной операции записи данной области на ВУ).

1.2.4.3Потоки данных. Организация управления внешними устройствами


При рассмотрении работы любого компьютера имеют место два потока информации. Первый поток — это управляющая информация, второй поток — это поток данных, над которыми осуществляется обработка в программе. Если рассматривать эти потоки информации в контексте организации работы ВЗУ, то можно выделить также поток управляющей информации, включающий в себя команды, обеспечивающие управление внешним устройством, а также поток данных, перемещающихся между данным ВЗУ и оперативной памятью. Рассмотрим теперь различные модели организации управления ВЗУ.

Простейшей моделью является непосредственное управление процессором внешними устройствами (Рис. 39.). Это означает, что центральный процессор фактически «интегрирован» со схемами управления внешними устройствами, имеет специальные команды управления ими, а также путем интерпретации последовательности команд управления осуществляет управление обменом. Т.е. процессор подает команды устройству на перемещение головок обмена, на включение той или иной головки, на ожидание и синхронизации прихода содержательной информации и пр. Помимо указанного потока команд через центральный процессор обрабатывает и поток данных: он считывает информацию, участвующую в обмене, со специальных регистров и переносит ее в оперативную память (либо же производит обратные манипуляции). Таким образом, и поток управления, и поток данных проходит через центральный процессор, что само по себе является трудоемкой задачей, к тому же эта модель подразумевает лишь синхронную реализацию.



  1. Непосредственное управление центральным процессором внешнего устройства.

Следующая модель предлагает синхронное управление внешними устройствами с использованием контроллеров внешних устройств (Рис. 40.). Данная модель появилась вслед за появлением внешних устройств, для которых имелись электронные схемы управления этими устройствами — контроллеры, — взявшие на себя часть работ центрального процессора по управлению обменами. В этом случае контроллер взаимодействует с центральным процессором блоками больших размеров, при этом контроллер может самостоятельно выполнять некоторые работы по непосредственному управлению ВЗУ (например, пытаться локализовать и исправить возможные ошибки, которые могут случиться при чтении или записи данных). Но исторически такой тип управления ВЗУ изначально был синхронным: процессор посылает устройству команды на обмен и ожидает, когда этот обмен завершится. Что касается потока данных, то ничего нового в данной модели не представлено: процессор по-прежнему считывает их со специальных регистров внешнего устройства и помещает их в оперативную память.



  1. Синхронное/асинхронное управление внешними устройствами с использованием контроллеров внешних устройств.

Вслед за предыдущим типом устройств появились устройства, позволяющие осуществлять асинхронное управление с использованием контроллеров ВЗУ (Рис. 40.). В этом случае центральный процессор подает команду на обмен и не дожидается, когда эту команду отработают контроллер и устройство, т.е. он может продолжить обработку каких-то задач. Но для осуществления указанной модели необходимо, чтобы в системе был реализован аппарат прерываний.

Затем исторически появились т.н. контроллеры прямого доступа к памяти (DMA — Direct Memory Access, Рис. 41.). Контроллеры данного типа исключили центральный процессор из обработки потока данных, взяв эту функцию на себя. В данной модели предполагается, что центральный процессор занимается лишь обработкой потоком управляющей информации, а данные перемещаются между ВЗУ и ОЗУ уже без его участия.



  1. Использование контроллера прямого доступа к памяти (DMA) или процессора (канала) ввода-вывода при обмене.

И, наконец, последняя модель основана на использовании процессора или канала ввода-вывода (Рис. 41.). В этом случае предполагается наличие специализированного компьютера, который имеет свой процессорный элемент, свою оперативную память, который функционирует под управлением своей ОС, и этот компьютер располагается логически между центральным процессором и внешними устройствами. В функции подобных процессоров или каналов входит высокоуровневое управление внешних устройств. В этом случае центральный процессор оперирует с внешними устройствами в форме высокоуровневых заказов на обмен. Соответственно, реализация непосредственного управления конкретным ВЗУ осуществляется в процессоре ввода-вывода (в частности, в нем может происходить многоуровневая фиксация ошибок, он может осуществлять аппаратное кэширование обменов, и пр.).
1   ...   5   6   7   8   9   10   11   12   ...   30

Похожие:

Операционные системы конспект лекций iconКонспект по курсу лекций Операционные системы Граур Светлана группа...
Основные блоки: 1)введение (историческое развитие вычислительных систем (ВС), определяемое появлением и развитием программного обеспечения...
Операционные системы конспект лекций iconКонспект лекций по курсу опд. Ф. 11. Операционные системы
Муниципальное общеобразовательное учреждение средняя общеобразовательная школа №23
Операционные системы конспект лекций iconКонспект лекций по дисциплине: «Операционные системы и среды»
«Системы баз данных», «Инструментальные средства разработки аппаратно-программных систем», «Микропроцессоры и микропроцессорные системы»,...
Операционные системы конспект лекций iconПаспорт программы учебной дисциплины «Операционные системы» Область применения
Рабочая программа учебной дисциплины «Операционные системы» является частью рабочей основной профессиональной образовательной программы...
Операционные системы конспект лекций iconРабочая учебная программа по дисциплине «Операционные системы» разработана...
Операционные системы [Текст]: рабочая учебная программа. Тюмень: гаоу впо то «тгамэуп». 2013. 17 с
Операционные системы конспект лекций iconСамостоятельная работа приобщает студентов к творчеству, поиску и...
Автор разработки: Торгашин Геннадий Владимирович, гобу спо во «Борисоглебский индустриальный техникум», преподаватель дисциплины...
Операционные системы конспект лекций iconКонспект лекций по курсу «операционные системы» Москва 2007 Лекция...
Существует три основных подхода к разработке ос и системного по с точки зрения инструментальных средств
Операционные системы конспект лекций iconВопросы для экзаменов по предмету операционные системы
Основные компоненты компьютерной системы, общая картина функционирования компьютерной системы
Операционные системы конспект лекций iconПрограмма дисциплины Операционные системы для специальности 090102....
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов специальности «090102 Компьютерная...
Операционные системы конспект лекций iconКурсовой проект по дисциплине «Системы программирования и операционные системы»
Резидентный обработчик прерываний от клавиатуры с подключением до системного обработчика
Операционные системы конспект лекций iconКонспект урока тема: «Графический интерфейс Windows». Цели урока
В настоящее время все операционные системы для персональных компьютеров обеспечивают взаимодействие с пользователем с помощью графического...
Операционные системы конспект лекций iconРабочая программа По дисциплине «Операционные системы»

Операционные системы конспект лекций iconКонспект лекций по курсу «Организация ЭВМ и систем» для студентов...

Операционные системы конспект лекций iconКонспект лекций по курсу «Организация ЭВМ и систем» для студентов...

Операционные системы конспект лекций iconКонспект лекций по курсу сд. Ф корпоративные информационные системы
Д. В. Колесов, Р. Д. Маш, И. Н. Беляев «Биология. Человек», Изд-во «Дрофа», Москва, 2010
Операционные системы конспект лекций iconРабочая программа учебной дисциплины
Операционные системы разработана на основе Федерального государственного образовательного стандарта среднего профессионального образования...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск