Реферат по физике на тему: «Естественная и искусственная радиоактивность»





НазваниеРеферат по физике на тему: «Естественная и искусственная радиоактивность»
страница4/5
Дата публикации24.04.2015
Размер0.54 Mb.
ТипРеферат
100-bal.ru > Журналистика > Реферат
1   2   3   4   5
Часть 3.

Воздействие малых доз радиации на живой организм.
Эта тема не является основной для моего реферата, так что про неё я скажу совсем немного.

Механизм излучения, поражающего биологические объекты, еще недостаточно изучен. Но ясно, что оно сводится к ионизации атомов и молекул и это приводит к изменению их химической активности. Наиболее чувствительны к излучениям ядра клеток, особенно клеток, которые быстро делятся. Поэтому в первую очередь излучения поражают костный мозг, из-за чего нарушается процесс образования крови. Далее наступает поражение клеток пищеварительного тракта и других органов.

Сильное влияние оказывает облучение на наследственность, поражая гены в хромосомах. В большинстве случаев это влияние является неблагоприятным.

Облучение живых организмов может оказывать и определенную пользу. Быстроразмножающиеся клетки в злокачественных (раковых) опухолях более чувствительны к облучению, чем нормальные. На этом основано подавление раковой опухоли γ-лучами радиоактивных препаратов, которые для этой цели более эффективны, чем рентгеновские лучи.

Воздействие излучений на живые организмы характеризуется дозой излучения. Поглощенной дозой излучения называется отношение поглощенной энергии Е ионизирующего излучения к массе m облучаемого вещества:
D=E/m (17)
В СИ поглощенную дозу излучения выражают в грэях (сокращенно: Гр). 1 Гр равен поглощенной дозе излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж.

Естественный фон радиации (космические лучи, радиоактивность окружающей среды и человеческого тела) составляет за год дозу излучения около 2-10-3 Гр на человека. Международная комиссия по радиационной защите установила для лиц, работающих с излучением, предельно допустимую за год дозу 0,05 Гр. Доза излучения в 3—10 Гр, полученная за короткое время, смертельна.

Существенный вклад в облучение человека вносит радон и продукты его распада. Именно он, вызывает особую тревогу у ученых. По мнению правительственных экспертов за счет радона и продуктов его распада люди получают 3/4 дозы от общего количества радиации, поступающей в процессе облучения естественными источниками радиации. Таким образом, отрицательное действие радона на здоровье людей значительно превосходит воздействие от радиации, выброшенной в окружающую среду атомными станциями.

Основным источником этого радиоактивного инертного газа является земная кора, в которой он образуется в результате естественного радиоактивного распада. Проникая через трещины и щели в фундаменте, полу и стенах, радон поступает в первые этажи зданий и подвальные помещения и в них задерживается и накапливается (радон в 7,5 раз тяжелее воздуха). Как следствие, концентрация радона в верхних этажах многоэтажных домов обычно ниже, чем на первом этаже.

Еще один источник радона в помещении - это сами строительные материалы (бетон, кирпич и т.д.), содержащие естественные радионуклиды. До 80% времени мы проводим в помещениях - дома или на работе. С одной стороны, здания защищают от излучений извне, но если в материалах, из которых они построены, содержатся природные радионуклиды, то из защитных сооружений здание превращается в источник опасности. Вот почему так важно приобретать стройматериалы, неопасные для здоровья. Особенно если речь идет о строительстве или отделке собственного жилья, которое призвано прослужить не одному поколению.

Основную часть дозы облучения от радона человек получает, находясь в закрытом, непроветриваемом помещении. Регулярное проветривание снижает концентрацию радона в несколько раз.

При длительном поступлении радона и его продуктов в организм человека многократно возрастает риск возникновения рака легких. Так Американское Агентство по охране окружающей среды считает, что радон занимает второе после курения место в ряде причин, вызывающих это заболевание.

Эффекты воздействия радиации на человека обычно делятся на две категории:

1) Соматические (телесные) - возникающие в организме человека, который подвергался облучению.

2) Генетические - связанные с повреждением генетического аппарата и проявляющиеся в следующем или последующих поколениях: это дети, внуки и более отдаленные потомки человека, подвергшегося облучению.
Таблица3. Радиационные эффекты облучения человека.

Соматические эффекты

Генетические эффекты

Лучевая болезнь

Генные мутации

Локальные лучевые поражения

Хромосомные аберрации

Лейкозы

Опухоли разных органов



Часть 4. Методы регистрации частиц.
Газоразрядный счетчик.

В связи с распространением автоматического контроля различных производственных процессов с применением источников радио­активных излучений широкое применение получил газоразрядный счетчик, регистрирующий эти излучения. Его работа основана на ионизирующем действии радиоактивного излучения.



Рис.9 Газоразрядный счетчик.

Газоразрядный счетчик представляет собой стеклянный или металлический баллон с двумя электродами — внешним (катод(2)) и внутренним (анод(1)). Катодом является или металлический баллон, или проводящий слой, нанесенный на внутреннюю поверхность стеклянного баллона. Анодом служит тонкая металлическая проволока, натянутая внутри баллона вдоль его оси.

Счетчик обычно наполнен специальной смесью газов под давлением 100 мм рт. ст.

Когда газ внутри счетчика не ионизирован ядерными частицами, несмотря на приложенное к нему напряжение, ток между его электродами не протекает. Как только газ внутри счетчика будет ионизирован попавшими в него ядерными частицами, в цепи счетчика появится электрический ток.

Источником ионизации газа могут быть γ-, α- и β-лучи, рентгеновское и ультрафиолетовое излучения. Для работы счетчика используется такой режим, при котором ток в цепи счетчика пропорционален числу ионизирующих частиц. Этот режим называется «областью Гейгера» и используется для работы газоразрядных счетчиков. Последовательно со счетчиком включается сопротивление порядка 1 — 10 Мом, являющееся нагрузкой, с зажимов которого снимаются импульсы напряжения. Частота следования импульсов пропорциональна числу частиц, вызывающих ионизацию.

Газоразрядный счетчик воспринимает ядерное излучение и превращает его в электрические импульсы. Эти импульсы попадают в регистрирующее устройство. Количество поступающих импульсов характеризует степень радиоактивности.

В практике применяют разнообразные типы счетчиков, которые реагируют на различные излучения. Они рассчитаны на разное рабочее напряжение, имеют различный срок службы, исчисляемый миллионами импульсов, а также разные размеры — длину и диаметр.

Счётчик Гейгера—Мюллера.

Это газоразрядный прибор для подсчёта числа попавших в него ионизирующих частиц. Представляет собой газонаполненный конденсатор, пробивающийся при пролёте ионизирующей частицы через объём газа.

Дополнительная электронная схема обеспечивает счётчик питанием (как правило, не менее 300 V), обеспечивает, при необходимости, гашение разряда и подсчитывает количество разрядов через счётчик.

Счётчики Гейгера разделяются на несамогасящиеся и самогасящиеся (не требующие внешней схемы прекращения разряда).

Чувствительность счётчика определяется составом газа, его объёмом и материалом (и толщиной) его стенок.

Широкое применение счетчика Гейгера — Мюллера объясняется высокой чувствительностью, возможностью регистрировать разного рода излучения, сравнительной простотой и дешевизной установки. Счетчик был изобретен в 1908 году Гейгером и усовершенствован Мюллером.



Рис.10 Счетчик Гейгера-Мюллера.

Цилиндрический счетчик Гейгера — Мюллера состоит из металлической трубки или металлизированной изнутри стеклянной трубки и тонкой металлической нити, натянутой по оси цилиндра. Нить служит анодом, трубка — катодом. Трубка заполняется разреженным газом, в большинстве случаев используют благородные газы аргон и неон. Между катодом и анодом создается напряжение порядка 1500 В.

Работа счетчика основана на ударной ионизации. γ-кванты, испускаемые радиоактивным изотопом, попадая на стенки счетчика, выбивают из него электроны. Электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на сопротивлении R образуется импульс напряжения, который подается в регистрирующее устройство. Чтобы счетчик смог регистрировать следующую попавшую в него частицу, лавинный заряд нужно погасить. Это происходит автоматически. В момент появления импульса тока на сопротивлении R возникает большое падение напряжения, поэтому напряжение между анодом и катодом резко уменьшается и настолько, что разряд прекращается, и счетчик снова готов к работе.

Важной характеристикой счетчика является его эффективность. Не все γ-фотоны, попавшие на счетчик, дадут вторичные электроны и будут зарегистрированы, так как акты взаимодействия γ-лучей с веществом сравнительно редки, и часть вторичных электронов поглощается в стенках прибора, не достигнув газового объема

Эффективность счетчика зависит от толщины стенок счетчика, их материала и энергии γ-излучения. Наибольшей эффективностью обладают счетчики, стенки которых сделаны из материала с большим атомным номером, так как при этом увеличивается образование вторичных электронов. Кроме того, стенки счетчика должны быть достаточно толстыми. Толщина стенки счетчика выбирается из условия ее равенства длине свободного пробега вторичных электронов в материале стенки. При большой толщине стенки вторичные электроны не пройдут в рабочий объем счетчика и возникновение импульса тока не произойдет. Так как гамма-излучение слабо взаимодействует с веществом, то обычно эффективность γ-счетчиков также мала и составляет всего 1-2 %. Другим недостатком счетчика Гейгера — Мюллера является то, что он не дает возможность идентифицировать частицы и определять их энергию.
Пузырьковая камера

Это трековый детектор элементарных заряженных частиц, в котором трек (след) частицы образует цепочка пузырьков пара вдоль траектории её движения. Изобретена А. Глэзером в 1952 г. (Нобелевская премия 1960 г.).

Принцип действия пузырьковой камеры напоминает принцип действия камеры Вильсона. В последней используется свойство перенасыщенного пара конденсироваться в мельчайшие капельки вдоль траектории заряженных частиц. В пузырьковой камере используется свойство чистой перегретой жидкости вскипать (образовывать пузырьки пара) вдоль пути пролёта заряженной частицы. Перегретая жидкость – это жидкость, нагретая до температуры большей температуры кипения для данных условий. Вскипание такой жидкости происходит при появлении центров парообразования, например, ионов. Таким образом, если в камере Вильсона заряженная частица инициирует на своём пути превращение пара в жидкость, то в пузырьковой камере, наоборот, заряженная частица вызывает превращение жидкости в пар.

Рис. 11 Пузырьковая камера.

Перегретое состояние достигается быстрым (5-20 мс) уменьшением внешнего давления. На несколько миллисекунд камера становится чувствительной и способна зарегистрировать заряженную частицу. После фотографирования треков давление поднимается до прежней величины, пузырьки “схлопываются” и камера вновь готова к работе. Цикл работы большой пузырьковой камеры 1 с (т. е. значительно меньше, чем у камеры Вильсона), что позволяет использовать её в экспериментах на импульсных ускорителях. Небольшие пузырьковые камеры могут работать в значительно более быстром режиме – 10-100 расширений в секунду. Моменты возникновения фазы чувствительности пузырьковой камеры синхронизуют с моментами попадания в камеру частиц от ускорителя.

Важным преимуществом пузырьковой камеры по сравнению с камерой Вильсона и диффузионной камерой является то, что в качестве рабочей среды в ней используется жидкость (жидкие водород, гелий, неон, ксенон, фреон, пропан и их смеси). Эти жидкости, являясь одновременно мишенью и детектирующей средой, обладают на 2-3 порядка большей плотностью, чем газы, что многократно увеличивает вероятность появления в них событий, достойных изучения, и позволяют целиком “уместить” в своём объёме треки высокоэнергичных частиц.

Пузырьковые камеры могут достигать очень больших размеров (до 40 м3). Их, как и камеры Вильсона, помещают в магнитное поле. Пространственное разрешение пузырьковых камер 0,1 мм.

Недостатком пузырьковой камеры является то, что её невозможно (в отличие от камеры Вильсона) быстро “включить” по сигналам внешних детекторов, осуществляющих предварительный отбор событий, так как жидкость слишком инерционна и не поддается очень быстрому (за время 1 мкс) расширению. Поэтому пузырьковые камеры, будучи синхронизованы с работой ускорителя, регистрируют все события, инициируемые в камере пучком частиц. Значительная часть этих событий не представляет интереса.

Камера Вильсона

Камера Вильсона – трековый детектор элементарных заряженных частиц, в котором трек (след) частицы образует цепочка мелких капелек жидкости вдоль траектории её движения. Изобретена Ч. Вильсоном в 1912 г. (Нобелевская премия 1927 г.).

Рис.12 Схема камеры Вильсона. Важным этапом в методике наблюдения следов частиц явилось создание камеры Вильсона (1912 г.). За это изобретение Ч. Вильсону в 1927 г. присуждена Нобелевская премия. В камере Вильсона треки заряженных частиц становятся видимыми благодаря конденсации перенасыщенного пара на ионах газа, образованных заряженной частицей.

На ионах образуются капли жидкости, которые вырастают до размеров достаточных для наблюдения (10-3-10-4 см) и фотографирования при хорошем освещении. Пространственное разрешение камеры Вильсона обычно 0,3 мм. Рабочей средой чаще всего является смесь паров воды и спирта под давлением 0,1-2 атмосферы (водяной пар конденсируется главным образом на отрицательных ионах, пары спирта – на положительных). Перенасыщение достигается быстрым уменьшением давления за счёт расширения рабочего объёма. Время чувствительности камеры, в течение которого перенасыщение остаётся достаточным для конденсации на ионах, а сам объём приемлемо прозрачным (не перегруженным капельками, в том числе и фоновыми), меняется от сотых долей секунды до нескольких секунд. После этого необходимо очистить рабочий объём камеры и восстановить её чувствительность. Таким образом, камера Вильсона работает в циклическом режиме. Полное время цикла обычно > 1 мин.

Возможности камеры Вильсона значительно возрастают при помещении её в магнитное поле. По искривлённой магнитным полем траектории заряженной частицы определяют знак её заряда и импульс. С помощью камеры Вильсона в 1932 г. К. Андерсон обнаружил в космических лучах позитрон.

Важным усовершенствованием, удостоенным в 1948 г. Нобелевской премии (П. Блэкетт), явилось создание управляемой камеры Вильсона. Специальные счётчики отбирают события, которые должны быть зарегистрированы камерой Вильсона, и “запускают” камеру лишь для наблюдения таких событий. Эффективность камеры Вильсона, работающей в таком режиме, многократно возрастает. “Управляемость” камеры Вильсона объясняется тем, что можно обеспечить очень высокую скорость расширения газовой среды и камера успевает отреагировать на запускающий сигнал внешних счётчиков.
1   2   3   4   5

Похожие:

Реферат по физике на тему: «Естественная и искусственная радиоактивность» iconРеферат по физике на тему: «Реактивное движение»
Заключение стр. 8
Реферат по физике на тему: «Естественная и искусственная радиоактивность» iconРеферат по физике на тему: «…» Ученика(цы) Родионовой Ирины Петровны
Название раздела
Реферат по физике на тему: «Естественная и искусственная радиоактивность» iconРеферат по физике на тему: «Российские физики лауреаты Нобелевской премии»
К сожалению, исторические сведения об открытии законов, введения новых понятий, часто оказываются за рамками учебника и учебного...
Реферат по физике на тему: «Естественная и искусственная радиоактивность» iconРеферат по физике на тему: «Световые явления»
Тем, кто не знаком с причинами их возникновения, эти световые явления кажутся необыкновенными и загадочными
Реферат по физике на тему: «Естественная и искусственная радиоактивность» iconРеферат по физике на тему: Двигатели внутреннего сгорания. Их преимущества и недостатки
Новые конструкторские решения, внедренные в двигатель внутреннего сгорания; Стр. 21
Реферат по физике на тему: «Естественная и искусственная радиоактивность» iconКонспект урока радиоактивность как свидетельство сложного строения...
Тема и номер урока в теме «Радиоактивность как свидетельство сложного строения атомов.» №53 п/п, а в теме «Строение атома и атомного...
Реферат по физике на тему: «Естественная и искусственная радиоактивность» iconРеферат по физике на тему: «Альберт Эйнштейн»
Альберт Эйнштейн – великий человек, жизнь и работу которого необходимо изучать. Его открытия актуальны на сегодняшний день
Реферат по физике на тему: «Естественная и искусственная радиоактивность» iconРеферат в работе проведен сравнительный анализ школьной программы...
Создание программы профильного уровня по физике (раздел «Электричество») с использованием современных информационных технологий при...
Реферат по физике на тему: «Естественная и искусственная радиоактивность» iconТемы семинарских занятий и тематических дискуссий семинарские занятия...
Семинар Естественная и гуманитарная культуры. Панорама современного естествознания
Реферат по физике на тему: «Естественная и искусственная радиоактивность» iconРеферат По физике На тему: «Влияние электромагнитного излучения на организм человека»
Влияние электромагнитных лучей, исходящих от сотовых телефонов, на организм человека
Реферат по физике на тему: «Естественная и искусственная радиоактивность» iconРеферат по физике на тему : «Аварии на атомных электростанциях»
Оттавы. В составе команды, занимавшейся экологической очисткой территории станции, работал будущий президент США джимми Картер, тогда...
Реферат по физике на тему: «Естественная и искусственная радиоактивность» iconРеферат по физике на тему «Производство, передача и использование электроэнергии»
Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником...
Реферат по физике на тему: «Естественная и искусственная радиоактивность» iconРеферат по физике на тему: “Атомное ядро”
Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства...
Реферат по физике на тему: «Естественная и искусственная радиоактивность» iconРеферат по физике на тему: невесомость работу
До начала исследования мне было известно лишь то, что невесомость – состояние, которое наблюдается в космосе, на космическом корабле,...
Реферат по физике на тему: «Естественная и искусственная радиоактивность» iconРеферат по физике на тему механика
При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют...
Реферат по физике на тему: «Естественная и искусственная радиоактивность» iconРеферат по физике на тему «Ядерное оружие»
Ому (оружия массового уничтожения). Человечество не уделяет должного внимания этой проблеме из-за неосведомленности и неосознанности...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск