Кометная метеоритика





Скачать 428.34 Kb.
НазваниеКометная метеоритика
страница4/4
Дата публикации10.07.2013
Размер428.34 Kb.
ТипДокументы
100-bal.ru > Астрономия > Документы
1   2   3   4

Рис. 2. Фрагмент земного фульгурита.
Первая полезная ошибка. Для подтверждения фульгуритной природы тектитов, автор сделал попытку обнаружить в них петрологические признаки (следы) прохождения электрических разрядов через родоначальную породу. В осадочных породах лидер молнии формирует в грунте полый канал (фульгуритную трубку). В канале образуется электропроводная плазма, способствующая прохождению в грунт очень больших токов. Так как в грунте обычно отсутствуют концентрации электропроводных масс, то молниепроводные каналы начинают ветвиться и распределять токи по возможно большему объему породы в направлении наименьшего электрического сопротивления.

Перетекание электрических зарядов от стенок плазменных шнуров молнии в грунт описывает механизм лавинно-стримерного пробоя [21]. При повышении электрического потенциала электроны, находящиеся в узлах кристаллических решеток, срываются со своих мест и образуют так называемые электронные лавины. Одновременно с электронными лавинами начинают развиваться стримеры — узкие светящиеся нити высокотемпературной плазмы. Головка стримера ионизирует вещество, что обеспечивает прохождение по плазменному каналу больших токов. Скорость головки стримера может достигать 100 км/с, при этом в веществе генерируется ударная волна.

Непосредственно от плазмы через стенки каналов внутрь породы устремляются электронные лавины и многочисленные ветвящиеся стримеры. Максимальный тепловой поток действует на стенки каналов, как непосредственно от плазмы, путем лучеиспускания, конвекции и кондукции, так и от прохождения электронных лавин, стримеров и ударной волны. Испытав столь мощное тепловое, механическое и электрическое воздействие, вещество стенки не только плавится, но и вскипает. При этом происходит селективное испарение вещества, и первичный состав породы сильно изменяется. Давление в канале возрастает, и высокотемпературный расплав устремляется в обратную сторону, к входному отверстию, после чего извергается в окружающую среду. Так образуются тектиты, имеющие аэродинамические формы.

Образовавшиеся в веществе стримерные каналы, благодаря высокому ударному давлению практически мгновенно должны заполняется высокотемпературным расплавом со стороны главного молниепроводного канала. После завершения процесса расплав застывает, при этом его тело должно быть пронизано стекловидными нитями. И вроде бы такие нити, в основном их осколки, наблюдаются в дробленом материале тектитов и субтектитов. Эти образования были названы стримергласами.

Вторая полезная ошибка. Вначале они были обнаружены в ионессите-алевролите (см. выше). По просьбе автора их состав был определен
А.В. Моховым (ИГЕМ РАН) на сканирующем микроскопе с энергодисперсионной приставкой. Оказалось, что стримергласы состоят из чистого SiO2. Тогда сразу возникла идея, если ионесситы произошли из орбитального попутчика Тунгусского метеорита (см. выше), то стримергласы должны присутствовать в грунте района Тунгусской катастрофы, и благодаря своей весьма специфичной морфологии будут легко узнаваемы среди частичек грунта. В первых же пробах грунта, полученных от исследователей Тунгусской катастрофы Г.А. Сальниковой и В.А. Ромейко (московская группа) отчетливо наблюдались стекловидные иголочки, которые были приняты за стримергласы, причем их плотность возрастала по мере приближения к эпицентру катастрофы, доходя в районе Южного болота до 1800 шт./см2 на предметном стекле микроскопа [22]. Отсюда появилась идея использовать стримергласы в качестве кометных маркеров, для выявления в почвах следов выпадения кометной пыли. Однако, как показали дальнейшие исследования, выяснилось, что большая часть найденных в грунте стекловидных обломков иголочек не имеет никакого отношения к стримергласам. Оказалось, что грунтовые иголочки представляли собой продукты минерализации растительных останков, и что интересно, их состав полностью соответствовал составу стримергласов, т.е чистое SiO2.

Однако коллеги постоянно высказывали сомнения по поводу их кометной природы. И тогда была предпринята попытка начать более тщательные исследования стримергласов, выделенных из нестеклованных кометных метеоритов - алевролите (Краснотуранское падение) и битумном образце (Болоховское падение). Выделенные стримергласы также представляли собой стекловидные палочки, но все же по окраске, размерам и характеру поверхности имели ряд отличий от их земных «подделок». Для выявления более полной номенклатуры было принято решение о выделении стримергласов из субтектитов, подвергшихся меньшему нагреву, где они должны были лучше сохраниться. Одновременно была усовершенствована методика дробления образцов, после чего выделение стримергласов из метеоритов уже не составляла особого труда.

Но, не смотря и на эти ошибки, основные выводы по использованию стримергласов, в качестве кометных маркеров остались в силе. Не стало меняться и их название. И что интересно, не начни автор поиски следов электрического пробоя в кометных стеклах, и не сделай при этом две последовательные ошибки, вряд ли ему открылось истинное лицо стримергласов – внеземных скелетов примитивных морских животных (рис 3). Таким образом, поверенный веками метод проб и ошибок, используемый для решения проблем, здесь вполне себя оправдал.

После того, как был твердо установлен внеземной органический генезис стримергласов, развернулась работа по их выявлению в других кометных метеоритах. Была просмотрена, практически вся имеющаяся у автора коллекция, а также вновь поступившие 3 образца природного стекла (канскит, шатурит и медведицкая находка). В процессе исследований было выявлено, что стримергласы присутствуют только в кометных стеклах, шлаках, пемзах классов (H)K, (H)Na и (H)Ca, т.е. в образцах с повышенным содержанием щелочных металлов, а это в свою очередь может означать, что эти объекты образовались по морской осадочной породе.




Рис. 3. Внеземные окаменелости – стримергласы, доставленные на Землю в составе кометных метеоритов и кометной пыли. Ширина снимка 0,7 мм.

Просмотру подвергался дробленый порошок образцов. При этом предпринимались меры, исключающие дополнительное его перетирание, т.е. образовавшаяся в процессе дробления пыль минуя ступу, напрямую попадала на предметное стекло микроскопа. Просмотр пыли велся на микроскопе с кратностью увеличения 160х и 320х. Съемки изображений проводились цифровым фотоаппаратом. Обработка снимков осуществлялась на компьютере с помощью программы «Фотошоп».

Стримергласы обнаруживаются не только при недавних падениях кометных обломков, но в древних слоях Земли, связанных с крупными импактными событиями. Так в переходном слое на границе мела и палеогена в разрезе Гамс (Вост. Альпы) были обнаружены стримергласы, появление которых могло быть связано с падением крупной кометы, погубившей динозавров [23].

Большой интерес представляет поиск стримергласов в районе Тунгусской катастрофы, которая может стать настоящей Меккой для кометных палеонтологов (такие специалисты обязательно должны появиться). Дело в том, что на грунт выпало огромное количество кометной пыли, содержащей стримергласы. Небольшое количество их уже обнаружено [2]. Наибольшая концентрация стримергласов должна наблюдаться в отложениях водных потоков стекающих с открытых горных склонов. Но есть еще один, почти фантастический аспект. Известно, что три крупных обломка упали в Южное болото. Они, скорее всего, представляли собой смерзшиеся кометные породы, а, как известно смерзшийся грунт обладает высокой прочностью, что и позволило им не разрушиться до своего падения. А что если в этих обломках присутствовали замороженные морские животные, которые могли не погибнуть и расплодиться в Южном болоте? Так как кометы являются основными распространителями жизни во вселенной [2], то не исключено, что подобным образом на Земле внезапно, неизвестно откуда, появлялись и быстро размножались виды животных, не имеющих эволюционных предшественников. Ведь упавшие кометы могли родиться не только в Солнечной системе, но и во внесолнечных звездных мирах.

Заключение

Цель статьи - обеспечить исследователей необходимой информацией по обнаружению и идентификации выпавшего кометного вещества. К настоящему времени уже разработаны рекомендации по поиску выпавших кометных объектов [24], а наличие классификации кометных метеоритов позволит резко уменьшить выбраковку выпавших объектов.

Литература: 1. Дмитриев Е.В. Кометная метеоритика и природа комет // Околоземная астрономия - 2005: Сборник трудов конференции - Казань, 2006, с. 62-74. 2. Дмитриев Е.В. Внеземная жизнь найдена …. на Земле // Техника-молодежи, 2010, № 3, с. 48-52. 3. Дмитриев Е.В. Появление тектитов на Земле // Природа. 1998. N 4. С. 17-25. 4. Дмитриев Е.В. Выпадение тектитового дождя в Нижегородской области зимой 1996/1997 г.г. // Околоземная астрономия XXI века. – М.: ГЕОС, 2001. С. 322-330. 5. Дмитриев Е.В. Падение орбитального попутчика Тунгусского метеорита на юге Красноярского края 30 июня 1978 года // Тез. докл. Программа конф. «95 лет проблеме Тунгусского метеорита», 23-24 июня 2003 г, Москва (ГАИШ). 6. Зоткин И.Т. Аномальные сумерки, связанные с Тунгусским метеоритом. // Метеоритика, 1969,- вып. 29, -с. 171. 7. Дмитриев Е.В. Программа «Тектит»: положено начало находкам частиц Тунгусского метеорита // Юбилейная науч. конф. 95 лет Тунгусской проблеме 1908-2003г. М., ГАИШ, 24-15 июня 2003а г. Тез. докл. Изд-во Моск. ун-та, 2003а г. с. 35-38. 8. Колесников Е. М. Вещество Тунгусской кометы в торфе с места катастрофы // Межд. Конф. «100 лет Тунгусскому феномену: прошлое, настоящее, будущее. 26-28 июня, 2008, Москва. Тезисы докл. С. 47. 9. Бронштэн В.А. Тунгусский метеорит: история исследования. – М.: Сельянов А.Д., 2000. – 312 с. 10. Васильев Н.В. Меморандум // Тунгусский вестник. Томск, 1999. С. 7-16. 11. Юсупов С.Ш., Салихов Д.Н., Гареев Э.З., Бурдаков А.В., Перминов Г.А. Метеорит «Стерлитамак». – Уфа, 2002.
105 с. 12. Яловец И.. Что упало и пропало? // Труд-7, 14.02.02. 13. Гаврилова Ю. Загадка болоховского метеорита // «Слобода» (г. Тула) , 3-10 октября 2002.
14. Изох Э.П., Ле Дых Ан. Тектиты Вьетнама. Гипотеза кометной транспортировки // Метеоритика, 1983, вып.42. С. 158-169. 15. Изох Э.П. Петрохимия пород мишени, импактитов и тектитов астроблемы Жаманшин // Космическое вещество и Земля. – Новосибирск: Недра, 1988, с. 159-203. 16. Мелош Г. Образование ударных кратеров: геологический процесс: Пер. с англ. – М.: Мир, 1994. – 336 с.
17. Чао Е. Петрографические и химические свойства тектитов // Тектиты. Под ред. Дж. О`Кифа. М. Мир. 1968. С. 78-134. 18. Голенецкий С.П., Степанчук В.В. Кометное вещество на Земле // Метеоритные и метеорные исследования Новосибирск: Наука, 1983. С. 99-122. 19. Glass B.P. Silicate spherules from Tunguska impact area/ - Science, 1969, 164, 3879. 20. Дмитриев Е.В. Субтектиты и происхождение тектитов // Околоземная астрономия и проблемы изучения малых тел Солнечной системы. Тез. докл. Гор. Обнинск, 25-29 октября. 1999. С. 38-39. 21. Воробьев А.А., Воробьев Г.А. - Электрический пробой и разрушение в твердых диэлектриках. М.: Высшая школа. 1966. - 224 с. 22. Дмитриев Е.В. Болидный поток раскаленного аэрозоля - новый поражающий фактор, сопровождающий падение кометного обломка // Околоземная астрономия -2007. Нальчик: Изд. М.и В. Котляровы, 2008, с. 100-104. 23. Цельмович В.А., Грачев А.Ф., Корчагин О.А. Первая находка силикаглассов в переходном слое на границе мела и палеогена в разрезе Гамс (Вост. Альпы) // Межд. конф. 100 лет Тунгусскому феномену, 26-28 июня, Москва. Тезисы докладов. Москва, 2008. С. 221-222. 24. Дмитриев Е.В. Руководство по оперативному обнаружению выпавшего на Землю кометного вещества // Система <Планета Земля> (Нетрадиционные вопросы геологии). ХV1 научный семинар 2008 г.: Геологический факультет МГУ. Материалы. М. Книжный дом ЛИБРОКОМ, 2008, с. 484-493.
Дмитриев Е.В. Кометные метеориты: падения, находки, классификация, стримергласы // Монография: Система «Планета Земля». 300 лет со дня рождения М.В.Ломоносова. 1711 – 2011.. –М,: Книжный дом «ЛИБРОКОМ», 2010.


1   2   3   4



Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск