«Цифровые устройства обработки информации: цифровая видеокамера»





Скачать 159.59 Kb.
Название«Цифровые устройства обработки информации: цифровая видеокамера»
Дата публикации02.09.2014
Размер159.59 Kb.
ТипУрок
100-bal.ru > Информатика > Урок
Тема урока: «Цифровые устройства обработки информации: цифровая видеокамера»

Цель урока:

создать условия для формирования у учащихся представления о видах и назначении цифровых устройств для обработки информации;

продолжить развивать навыки обработки информации с помощью различных устройств;

продолжить воспитывать бережное отношение к компьютерной технике, выполнение правил безопасного поведения в кабинете

ХОД УРОКА:

  1. Организационный момент.

  2. Повторение материала предыдущего урока:
    1) о каком устройстве мы говорили на прошлом уроке?

2) Какие основные элементы фотоаппарата вы можете назвать?

3) Каковы достоинства цифровых фотокамер?

4) Где хранятся изображения в фотоаппарате?

5) Как осуществляется передача изображений с фотоаппарата?

  1. Изучение нового материала.

К сегодняшнему уроку вы подготовили сообщения о цифровых видеокамерах – устройствах, которое намного расширяет возможности современных компьютеров. Знакомство с этим устройством мы проведем по тому же плану, что и знакомство с цифровым фотоаппаратом, т.е:

1 – основные элементы видеокамеры

2– достоинства цифровых видеокамер

3– устройства для записи информации в видеокамере

4 - передача информации с видеокамеры в компьютер

5– веб-камеры

Предоставим слово представителям групп.

(учащиеся делают сообщения, при необходимости сопровождают рассказ иллюстрациями)

Материал, который может быть предложен учащимся, находится в приложении 1.

  1. Практикум по переносу видео в компьютер

Так же как и на прошлом уроке, можно снимать фрагменты выступлений учащихся, их деятельность на уроке. На практике показать, как перенести видео (на крайний случай с фотоаппарата). Форма работы – индивидуальная.

  1. Монтаж видеофильма об изучении Цифровых устройств обработки информации

Работа с видеоредактором MoveMaker (фронтально):

  1. Загрузка Пуск-Все Программы – MoveMaker.

  2. Загрузить видео изображения – Запись видео -Импорт видео.

  3. Загрузить фото – Запись видео - Импорт изображений

  4. Расположить видеофрагменты и фотографии на панель раскадровки (перетаскиванием)

  5. Добавить переходы: Монтаж фильма – Просмотр видеопереходов – Выбрать видеопереход – перетащить его на панель раскадровки в область между кадрами.

  6. Добавит эффекты: Монтаж фильма – Просмотр эффектов – Выбрать эффект – перетащить его на панель раскадровки непосредственно на кадр. Для усиления эфеекта, его можно использовать несколько раз.

  7. Добавление тиров и надписей: Монтаж фильма – Создание названий и титров – Выбрать эффект титров или надписи – ввести текст, установить форматирование – нажать кнопку «Готово».

  8. Добавление музыки: Запись видео – импорт звука и музыки – перетащить фрагмент на панель раскадровки.

  9. Сохранение фильма в формате WMV – Завершение создания фильма – Сохранение фильма на компьютере- Подтверждать запросы мастера сохранения фильма.

Данный алгоритм выдать учащимся как памятку. Работу выполняем все вместе, учитель показывает все тоже самое на экране.

  1. Домашнее задание: На следующем уроке учащимися будет выполняться проект по созданию фильма. Для этого им предстоит продумать тематику проекта, какие фрагменты и фотографии они будут использовать. На уроке им предстоит отснять материал и смонтировать небольшой фильм. (Тематика разнообразна: Моя школа, Мой класс, Наш кабинет информатики, Наши учителя и т.д.) Работа предполагается в группах по 2-3 человека.

Приложение 1. Видеокамеры

Видеокамеры в первую очередь делятся на цифровые и аналоговые. Здесь я не буду рассматривать аналоговые камеры (VHS, S-VHS, VHS-C, Video-8, Hi-8) по вполне понятным причинам. Им место в комиссионке, или на верхней полке в кладовке (а вдруг когда-нибудь раритетом станет), но обработка аналогового видео рассмотрена будет обязательно, так как кассет, я думаю, у каждого найдется немало. Итак, современные бытовые видеокамеры различаются по виду носителя видеоинформации, по способу записи (кодировке) видеоинформации, по размеру и количеству матриц, ну и, само собой по оптике.

1.1.1. По виду носителя информации камеры делятся на:

- HDV-камеры: новейший и судя по всему основной в будущем формат. Размер кадра до 1920*1080. Представьте себе, каждый кадр – это 2-х мегапиксельная фотография, и вы поймете какое качество видео. Строго говоря, HDV – это формат записи, так как есть камеры HDD, работающие по формату HDV. Но я специально поставил этот формат в этот ряд, так как большинство существующих HDV-камер пишут на кассеты. Если деньги для вас не проблема, эти камеры для вас.

- DV-камеры: основной формат бытовых цифровых видеокамер. Размер кадра 720*576 (PAL) и 720*480 (NTSC). Качество записи во многом зависит от оптики и качества (и количества) матриц. DV-камеры делятся на собственно DV (mini-DV) – камеры и камеры Digital-8. Какую именно покупать, зависит от вас, с одной стороны mini-DV – камеры более распространенны, с другой, если до этого у вас была камера Video-8, есть смысл обратить внимание на камеры Digital-8, так как эти камеры свободно записывают на любые кассеты формата 8 (Video-8, Hi-8, Digital-8(могут, конечно, ругаться, мол, слабовата Video-8 для меня, но пишут на них запросто)), кроме того, записывая на кассеты лучшего качества (Hi-8, Digital-8), вы получите более продолжительную запись по сравнению с mini-DV.

- DVD-камеры. Я не отношусь к поклонникам данного вида камер. Качество записи у них ниже, чем у DV-камер, да и диска при наилучшем для них качестве хватает минут на 20. Но! Если вы не притязательны к качеству (тем более что на экране обыкновенного телевизора разница не так и заметна) и у вас нет желания заморачиваться с изготовлением фильма, последующей кодировкой в DVD-формат, вы вполне можете пользоваться DVD-камерой. Тем более что собрать полноценный DVD из полученных файлов на DVD 1,4 Гб (используемый в DVD-камерах), можно довольно быстро с помощью специализированных программ (например, CloneDVD и DVD-lab).

- Флэш-камеры. Запись производится на флэш-карточку в форматах MPEG4 и MPEG2. Продолжительность зависит от объема карточки, выбранного размера кадра и качества кодировки. MPEG2 предпочтительней, так как качество выше, но места занимает больше. Но ни тот, ни другой формат при обработке камерой видеоинформации для записи на карточку не смогут обеспечить качество, хоть немного приближенное к DV. Поэтому порекомендовать подобные камеры можно для подарка детям или для съемок в экстремальных условиях, так как неоспоримым преимуществом этих камер является компактность и отсутствие механических частей (исключение – трансфокатор).

- HDD-камеры. Запись производится на встроенный жесткий диск. Запись может производится во всех форматах от HDV до MPEG4 (зависит от модели). Возможно, как и флэш-камеры – это будущее бытовых видеокамер, но в отличие от последних HDD-камеры уже сейчас могут обеспечить великолепное качество HDV, либо до 20-ти часов записи неплохого качества MPEG2 на 30-ти Gb диск. Но посмотрим на это великолепие с другой стороны, запись 1 часа формата DV занимает на жестком диске 13-14 Gb, и, произведя нехитрые вычисления, скажите что проще переставить кассету или переписывать в компьютер видео через 2,3-3 часа записи (к хорошему качеству привыкаешь быстро).








+

-

HDV-камеры



- отличное качество видеозаписи

- высокая цена

DV(miniDV)-камеры



- де-факто основной стандарт домашней видеозаписи

- проблема выбора, в этом стандарте мирно уживаются дешевые «мыльницы» и полупрофессиональные модели

DV(Digital-8)-камеры




- запись и воспроизведение на любые кассеты формата 8

- более продолжительная запись на 1 кассету по сравнению с miniDV

- небольшая распространенность формата

DVD-камеры



- записал, достал диск из камеры, поставил в плеер

- невысокое качество записи

- небольшое время записи на диск

Флэш-камеры



- отсутствие механических частей (за исключением трансфокатора), как следствие более высокая надежность

- невысокое качество записи

HDD-камеры





- гораздо большее время записи по сравнению с кассетными аппаратами

- высокая скорость перезаписи информации на жесткий диск компьютера

- частое «скидывание» видео в компьютер

- в «полевых» условиях необходим ноутбук с достаточно большим жестким диском

- высокая цена

1.1.2. Любая цифровая видеокамера использует компрессию (сжатие) оцифрованного видео, потому что на данный момент просто не существует носителей способных выдержать некомпрессированное видео (одна минута несжатого видео PAL 720*576 без звука занимает примерно 1,5 Гб на жестком диске, нехитрые подсчеты позволяют увидеть, что на один час уже потребуется 90 Гб). И еще необходимо обработать этот огромный объем информации, даже простая перезапись 90 Гб потребует около пяти часов. Поэтому производителям видеокамер просто необходимо использовать компрессию оцифрованного видео. Современные видеокамеры используют следующие виды компрессии: DV, MPEG2, MPEG4 (DivX, XviD).

- DV – основной вид сжатия видео в современных цифровых видеокамерах, его используют HDV, miniDV, Digital8 и некоторые HDD-камеры. Высокое качество данного вида компрессии, я думаю, еще долго ведущим среди других форматов.

- MPEG2 – формат, используемый для записи DVD. Хотя и имеет несколько худшее качество записи по сравнению с DV, но в зависимости от битрейта (грубо говоря, количество байтов, выделяемых на одну секунду видео) используя данный вид компрессии можно получить видео достаточно высокого качества (вспомните лицензионные DVD).

- MPEG4 – честно говоря, производители цифровой аппаратуры (фото и видео) серьезно «подмочили» репутацию данного формата. Чтобы «выжать» из этого формата все возможное необходимо использовать достаточно мощный компьютер и потратить приличное количество времени. Поэтому и получается, что конечное видео в формате MPEG4 на видеокамерах и фотоаппаратах невысокого разрешения и невысокого (мягко говоря) качества. Что используется DivX или XviD не так уж важно, разницу (небольшую), опять же, можно увидеть лишь при обработке видео на компьютере.

1.1.3. Немаловажное, а скорее основное, влияние на конечный результат оказывает качество матрицы, используемой для оцифровки оптического сигнала, проходящего через линзу видеокамеры. Чем она больше, тем лучше. При выборе видеокамеры не поленитесь заглянуть в спецификацию и посмотреть количество эффективно используемых пикселей («точек» на матрице). Например, в спецификации к видеокамере Sony ХХХХХХХ написано, что при размере кадра 720*576 (0,4 Мегапикселей) для видео используется 2 Мегапикселей матрицы. Естественно это самым положительным образом сказывается на конечном результате, так как при любой кодировке (компрессии) жестко действует закон: чем лучше исходный материал, тем лучше результат, а чем больше света попадет на матрицу, тем меньше будет цифровых шумов, тем в более темное время можно будет использовать видеокамеру и т.д. Все вышесказанное в тройном размере относится к трехматричным камерам, кроме всего прочего система трех матриц позволяет существенно уменьшить цветовые шумы за счет того, что разделение света на цветовые составляющие RGB (обязательное условие для получения видеосигнала) производится не электроникой, а оптической призмой, затем каждая матрица обрабатывает свой цвет.

Косвенно о размере и качестве матрицы можно судить по встроенному в видеокамеру цифровому фотоаппарату, чем больше у него разрешение, тем лучше.

1.1.4. С оптикой видеокамеры все просто: чем больше, тем лучше. Чем больше диаметр объектива, тем больше света попадет на матрицу. Чем больше оптическое увеличение объектива…Впрочем, на этом стоит остановиться поподробнее. Первое что хочется сказать: НИКОГДА не смотрите на гордые надписи на боку видеокамеры (Х120, Х200, Х400 и т.д.). Смотреть нужно только на оптическое увеличение объектива (либо на камере (optical zoom), либо на самом объективе). Конечно, цифровое увеличение использовать можно, но не стоит забывать, что цифровое увеличение - это ограничение количества эффективно используемых пикселей матрицы (см.рисунок). А всего лишь 2-х кратное цифровое увеличение (например, при 10-ти кратном объективе, это будет 20-ти кратное общее увеличение) приведет к уменьшению эффективно используемых пикселей на матрице в 4 раза!

Ну и неплохо бы иметь оптический стабилизатор, так как в камерах с цифровым стабилизатором используется не вся площадь матрицы.

Веб-камеры

Веб-камеры – это недорогие сетевые стационарные устройства, передающие информацию, обычно видеозапись, по беспроводным или кросскоммутируемым каналам Internet и Ithernet. Основное назначение «комнатных» веб-камер заключается в использовании их для работы с видеопочтой и проведения телеконференций. Широкое применение такие камеры нашли в «беби-ситинге» - они отлично справляются с ролью видеонянь, передавая изображение предоставленного самому себе ребенка. «Уличные» антивандальные веб-камеры выполняют роль охранных видеонаблюдателей. Возможность захвата изображения в режиме видеокамеры или фотоаппарата - это дополнительные возможности веб-камер. Ожидать высокого качества от записываемых видеороликов или цифрового фото в данном случае не стоит. Потому что нет смысла оснащать веб-камеры качественной оптикой и дорогой электроникой - передача видеоданных в режиме реального времени требует невероятно высокой компрессии, неизбежно приводящей к потере качества изображения. Хотя получение шикарной картинки с помощью веб-камер принципиально невозможно, именно качество получаемого изображения является основной характеристикой, позволяющей субъективно сравнивать и выбирать камеры этого типа. Впрочем, на предпочтение также могут повлиять интересный дизайн, программная комплектация и различные опции вроде поддержки скинов и дополнительных коммуникационных интерфейсов. Все веб-камеры оснащены функцией детектора движения и аудиовходом, позволяющим передавать звуковую информацию, их также часто оборудуют разъёмами для подключения различных внешних датчиков и устройств вроде осветительных приборов и сигнализации. Мировая практика показывает, что основными производителя веб-камер становятся компании, изготавливающие компьютерную периферию (Genius, Logitech, SavitMicro) или сетевое оборудование (D-Link, SavitMicro), а не видео- или фототехнику, что еще раз подчеркивает различие применяемых технологий.










Форматы сжатия видео изображения

В качестве начального шага обработки изображения форматы сжатия MPEG 1 и MPEG 2 разбивают опорные кадры на несколько равных блоков, над которыми затем производится дискетное косинусное преобразование (DCT). По сравнению с MPEG 1, формат сжатия MPEG 2 обеспечивает лучшее разрешение изображения при более высокой скорости передачи видео данных за счет использования новых алгоритмов сжатия и удаления избыточной информации, а также кодирования выходного потока данных. Также формат сжатия MPEG 2 дает возможность выбора уровня сжатия за счет точности квантования. Для видео с разрешением 352х288 пикселей формат сжатия MPEG 1 обеспечивает скорость передачи 1,2 – 3 Мбит/с, а MPEG 2 – до 4 Мбит/с.

По сравнению с MPEG 1, формат сжатия MPEG 2 обладает следующими преимуществами:

Как и JPEG2000, формат сжатия MPEG 2 обеспечивает масштабируемость различных уровней качества изображения в одном видеопотоке.

В формате сжатия MPEG 2 точность векторов движения увеличена до 1/2 пикселя.

Пользователь может выбрать произвольную точность дискретного косинусного преобразования.

В формат сжатия MPEG 2 включены дополнительные режимы прогнозирования.

Формат сжатия MPEG 2 использовал снятый сейчас с производства видеосервер AXIS 250S компании AXIS Communications, 16-канальный видеонакопитель VR-716 компании JVC Professional, видеорегистраторы компании FAST Video Security и многие другие устройства системы видеонаблюдения.

Формат сжатия MPEG 4

MPEG4 использует технологию так называемого фрактального сжатия изображений. Фрактальное (контурно-основанное) сжатие подразумевает выделение из изображения контуров и текстур объектов. Контуры представляются в виде т.н. сплайнов (полиномиальных функций) и кодируются опорными точками. Текстуры могут быть представлены в качестве коэффициентов пространственного частотного преобразования (например, дискретного косинусного или вейвлет-преобразования).

Диапазон скоростей передачи данных, который поддерживает формат сжатия видео изображений MPEG 4, гораздо шире, чем в MPEG 1 и MPEG 2. Дальнейшие разработки специалистов направлены на полную замену методов обработки, используемых форматом MPEG 2. Формат сжатия видео изображений MPEG 4 поддерживает широкий набор стандартов и значений скорости передачи данных. MPEG 4 включает в себя методы прогрессивного и чересстрочного сканирования и поддерживает произвольные значения пространственного разрешения и скорости передачи данных в диапазоне от 5 кбит/с до 10 Мбит/с. В MPEG 4 усовершенствован алгоритм сжатия, качество и эффективность которого повышены при всех поддерживаемых значениях скорости передачи данных. Разработка компании JVC Professional – веб-камера VN-V25U, входящая в линию сетевых устройств V.Networks, использует для обработки видео изображений формат сжатия MPEG 4.

Видео форматы

Видео формат определяет структуру видео файла, то как хранится файл на носителе информации(CD, DVD, жестком диске или канале связи). Обычно разные форматы имеют различные расширения файла(*.avi, *. mpg, *.mov и др)

MPG - Видеофайл, в котором содержится видео, закодированное MPEG1 или MPEG2.

Как вы замечали, обычно MPEG-4 фильмы имеют расширение AVI. Формат AVI (Audio-Video Interleaved) был разработан корпорацией Microsoft для хранения и воспроизведения видеороликов. Представляет собой контейнер, в котором может быть что угодно, начиная от MPEG1 и заканчивая MPEG4. Он может содержать в себе потоки 4 типов - Video, Audio, MIDI, Text. Причем видеопоток может быть только один, тогда как аудио - несколько. В частности, AVI может содержать и только один поток - либо видео, либо аудио. Сам формат AVI не накладывает совершенно никаких ограничений на тип используемого кодека, ни для видео, ни для аудио - они могут быть любыми. Таким образом, в AVI файлах могут совершенно спокойно сочетаться любые видео- и аудиокодеки.

RealVideo формат, созданный компанией RealNetworks. RealVideo используется для живой телевизионной трансляции в Интернете. Например, телекомпания CNN одной из первых стала вещать в Сети. Обладает небольшим размером файла и самым низким качеством, зато вы, не особенно загружая свой канал связи, сможете посмотреть последний выпуск теленовостей на сайте выбранной вами телекомпании. Расширения RM, RA, RAM.

ASF - Потоковый формат от Microsoft.

WMV - Видеофайл, записанный в формате Windows Media.

DAT - Файл, скопированный с VCD(VideoCD)\SVCD диска. Содержит в себе MPEG1\2 видеопоток.

MOV - Формат Apple Quicktime.

Подключение к ПК или телевизору

Самый простой разъем - AV-выход RCA - попросту говоря "тюльпаны" - имеется в любой видеокамере, приспособлен для подключения к любой телевидеотехнике, и обеспечивает передачу аналогового видео с наибольшими потерями в качестве. Гораздо ценнее наличие в цифровых видеокамерах таких аналоговых входов - это позволяет оцифровывать Ваши архивы аналоговых записей, если у Вас прежде цифровой имелась аналоговая видеокамера. В "цифре" продлится срок их хранения, а также появится возможность редактирования их на компьютере. Видеокамеры форматов Hi8, Super VHS (-С), mini-DV (DV) и Digital8 оснащены S-video-разъемом, который, в отличие от RCA, передает раздельно сигналы цветности и яркости, что значительно уменьшает потери, заметно улучшает качество изображения. Наличие S-video-входа в цифровых моделях дает те же преимущества обладателям архивов записей Hi 8 или Super VHS. Встроенный инфракрасный передатчик LaserLink в видеокамерах Sony, с помощью приемного устройства IFT-R20, позволяет смотреть отснятый материал по телевизору, не подключаясь к нему проводами. Просто поставьте видеокамеру рядом с телевизором на расстоянии до 3 м и включайте 'PLAY'. Более усовершенствованный передатчик Super LaserLink, которым оснащаются все последние модели работает на большем расстоянии (до 7 м). Наличие в видеокамере монтажных разъемов позволяет осуществлять линейный монтаж, синхронизировав видеокамеру с видеомагнитофонами и монтажной декой. В таком случае на всех скомутированных между собой устройствах контролируются синхронно показания счетчика ленты и все основные режимы: воспроизведение, запись, стоп, пауза и перемотка. В видеокамерах Panasonic для этой цели служит разъем Control-M, в видеокамерах Sony - Control-L (LANC). Спецификации их несовместимы, поэтому рекомендуем уточнять соответствие интерфейса у видеомагнитофона и видеокамеры.

Разъем RS-232-C ("цифровой фотовыход")

- разъем для подключения видеокамеры к последовательному порту компьютера для передачи неподвижных кадров в цифровом виде и управления видеокамерой с ПК. В "навороченных" моделях вместо RS-232-C встроен еще более быстрый "фотовыход" - USB-интерфейс. Все видеокамеры mini-DV и Digital8 оснащены DV-выходом (i.LINK или IEEE 1394 или FireWire), обеспечивающим быструю передачу цифрового аудио/видеосигнала без потерь качества. Для этого Вам необходимо иметь другое устройство с поддержкой DV-формата - DV-видеомагнитофон или компьютер с DV-платой. Ценнее конечно же видеокамеры, имеющие, кроме выхода, также DV-вход. Некоторые фирмы производят одну и ту же модель в двух вариантах: т.н. "европейском" (без входов) и "азиатском" (с входами). Это объясняется высокими таможенными пошлинами в Европе на импорт цифровых видеомагнитофонов, к каковым справедливо можно отнести и видеокамеру с DV-входом. IEEE-1394, FireWire и i.LINK - это три названия одного и того же высокоскоростного цифрового последовательного интерфейса, который служит для передачи любых видов цифровой информации. IEEE-1394 (IEEE - Institute of Electrical and Electronics Engineers) Обозначение стандарта интерфейса, разработанного корпорацией Apple (под фирменным названием FireWire). Обозначение принято американским Институтом инженеров по электротехнике и радиоэлектронике (IEEE). Большинство видеокамер mini-DV и Digital8 оборудованы интерфейсом IEEE-1394, с помощью которого видеоинформация, представленная в цифровой форме, пересылается непосредственно на компьютер. Аппаратная часть включает в себя недорогой адаптер и четырехжильный или шестижильный кабель. Позволяет передавать данные со скоростью до 400 Мбит/с.

i.LINK

Цифровой вход/выход на базе стандарта IEEE 1394. Позволяет передавать отснятый видеоматериал на компьютер. Модели видеокамер с i.Link повышают гибкость работы за счет интерактивного монтажа, электронного хранения и рассылки изображений.

FireWire

Зарегистрированный товарный знак фирмы Apple, принимавшей активное участие в разработке стандарта. Название FireWire ("огненный провод") принадлежит фирме Apple и может использоваться только для описания ее изделий, а по отношению к таким устройствам на PC принято употреблять термин IEEE-1394, то есть непосредственно название стандарта;

Карта памяти

На этой карте Вы можете хранить в электронном виде фотографии, видеоролики, музыку. С ее помощью можно передавать изображение на компьютер.

Memory Stick

Карта памяти Memory Stick - фирменная разработка Sony - способна хранить одновременно записи изображения, речи, музыки, графики и текстовые файлы. Весом всего 4 грамма и по размеру не превосходящая пластинки жвачки, карта памяти надежна, имеет защиту от случайного стирания, 10-штырьковое соединение для большей надежности, частоту передачи данных - 20 МГц, скорость записи - 1,5 Мб/сек., скорость чтения - 2,45 Мб/сек. Вместимость цифровых стоп-кадров на карте емкостью 4 Мб (MSA-4A): в формате JPEG 640x480 режим SuperFine - 20 кадров, Fine - 40 кадров, Standard - 60 кадров; в формате JPEG 1152x864 режим SuperFine - 6 кадров, Fine - 12 кадров, Standard - 18 кадров. Вместимость MPEG Movies на карте емкостью 4 Мб (MSA-4A): в режиме Presentation (320x240) - 2,6 по 15 секунд; в режиме Video Mail (160x112) - 2,6 по 60 секунд.

SD Memory Card

SD-карта - карта памяти нового стандарта размером с почтовую марку позволяет хранить любые виды данных, включая разнообразные фото-, видео- и аудиоформаты. На данный момент доступны SD-карты емкостью 64, 32, 16 и 8 МB. До конца 2001 года в продажу поступят SD-карты емкостью до 256 МB. Одна SD-карта емкостью 64 Mb содержит примерно такое же количество музыки, как один CD-диск. Так как скорость передачи данных на SD-карту - 2 Мб/сек., перезапись с CD-диска займет всего 30 секунд. Поскольку SD Memory Card - это полупроводниковый носитель информации, вибрация не оказывает на нее никакого влияния, то есть здесь невозможен пропуск в звучании, встречающийся у вращающихся носителей типа CD или MD. Максимальное время звуковой записи на SD-карту 64 Mb: 64 минуты высокого качества (128 кбит/сек), 86 минут стандартного (96 кбит/сек) или 129 минут в LP-режиме (64 кбит/сек).

Stamina

Добавить документ в свой блог или на сайт

Похожие:

«Цифровые устройства обработки информации: цифровая видеокамера» iconПрограмма обучения администрации школы новым информационным и коммуникационным...
И компьютера. Производительность компьютера. Устройства ввода информации (клавиатура, мышь, сканер, цифровые камеры, микрофон и звуковая...
«Цифровые устройства обработки информации: цифровая видеокамера» iconТемы вашего учебного проекта
Существующие устройства ввода, работа с ними, занесение данных в персональный компьютер. Устройства ввода графической информации,...
«Цифровые устройства обработки информации: цифровая видеокамера» iconТемы вашего учебного проекта
Существующие устройства ввода, работа с ними, занесение данных в персональный компьютер. Устройства ввода графической информации,...
«Цифровые устройства обработки информации: цифровая видеокамера» iconРабочая программа по учебной дисциплине Устройства преобразования и обработки
Рабочая программа дисциплины «Устройства преобразования и обработки информации (упои)»
«Цифровые устройства обработки информации: цифровая видеокамера» iconТема урока Количество часов
Понятие алгоритма, свойства алгоритмов, виды алгоритмов. Представление о программе. Устройства ввода информации, устройства вывода...
«Цифровые устройства обработки информации: цифровая видеокамера» iconУчебное пособие Технологии обработки информации. Технологии хранения,...
Технологии обработки информации. Технологии хранения, поиска и сортировки информации в бд. Учеб. Пособие. М. МиигаиК, 2014. 31с
«Цифровые устройства обработки информации: цифровая видеокамера» iconВ настоящее время широко применяются устройства ввода информации,...
В настоящее время широко применяются устройства ввода информации, пульты дистанционного управления, устройства управления и т д для...
«Цифровые устройства обработки информации: цифровая видеокамера» iconЭлектронная цифровая подпись. Понятие, виды и практика их применения
Цифровая подпись предназначена для аутентификации лица, подписавшего электронный документ. Кроме этого, использование цифровой подписи...
«Цифровые устройства обработки информации: цифровая видеокамера» icon«Цифровая подпись»
Развитие основных типов криптографических протоколов (ключевой обмен, электронно-цифровая подпись (эцп), аутентификация и др) было...
«Цифровые устройства обработки информации: цифровая видеокамера» iconМетодические рекомендации по изучению дисциплины «Основы математической...
Цель курса: формирование системы знаний, умений и навыков, связанных с особенностями математических способов представления и обработки...
«Цифровые устройства обработки информации: цифровая видеокамера» iconВ е д е н и е
Кроме того, к компьютеру могут подключаться принтер для вывода на печать текстовой и графической информации; мышь —устройство, облегчающее...
«Цифровые устройства обработки информации: цифровая видеокамера» iconРабочая программа дисциплины цифровая схемотехника для специальности...
Программа дисциплины “Цифровая схемотехника” составлена в соответствии с современным развитием цифровой техники
«Цифровые устройства обработки информации: цифровая видеокамера» iconРабочая программа дисциплины «Архитектура ЭВМ и вычислительных систем»...
«Автоматизированные системы обработки информации и управления» (по отраслям) и 230105 «Программное обеспечение вычислительной техники...
«Цифровые устройства обработки информации: цифровая видеокамера» icon2 Курс «Математика и информатика»
Понятие информации, общая характеристика процессов сбора, передачи, обработки и накопления информации
«Цифровые устройства обработки информации: цифровая видеокамера» iconВнешние запоминающие устройства Классификация и характеристики внешних...
Внешний и архивный уровни образуют систему внешней памяти. В ее состав входят разнородные внешние запоминающие устройства (взу),...
«Цифровые устройства обработки информации: цифровая видеокамера» iconПростые автоматические устройства
Образовательные: Разобрать структуру простых автоматических устройств. Составить формулу автоматического устройства и собрать его...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск