Окб астрон





Скачать 321.02 Kb.
НазваниеОкб астрон
страница2/3
Дата публикации10.11.2014
Размер321.02 Kb.
ТипДокументы
100-bal.ru > Биология > Документы
1   2   3
www.ASTROHN.ru

Для этой цели подходят, например, элементы с очень существенными квадратичными характеристиками; ими, помимо прочего, могут быть полевые транзисторы, элементы с экспоненциальными характеристиками, которые можно по частям аппроксимировать как квадратичные диоды и транзисторы. И если при этом сумму двух частот применить как приложенное принятое напряжение, это даст члены более высокого порядка.

Если есть квадратичный член, то кроме выпрямленного тока имеют место также разностные частоты. Поэтому для демодуляции фазомодулированного сигнала, отраженного обнаруженным человеком, можно использовать даже обычный выпрямитель, несмотря на очень высокие требования в отношении поведения частоты.

Этот фазомодулированный сигнал наложен на нелинейную характеристику, что вызывает возникновение токов, пропорциональных частоте фазовой модуляции http://www.fips.ru/chr/937.gif и ее кратным k http://www.fips.ru/chr/183.gif http://www.fips.ru/chr/937.gif . Форма кривой модуляции не сохраняется с учетом принципа демодуляции, но было обнаружено, что эти изменения в форме кривой не имеют критического значения для большинства применений согласно изобретению, так как обнаружения модуляции может быть достаточно для таких применений.

Отношение сигнал-шум определяет уровень чувствительности в случае прямого определения. Для частоты дыхания, S/N, были получены значения выше 46 дБ, а для частоты сердцебиения - 26 дБ на расстоянии 3 мм и при мощности генератора около 5 мВт.

Если предположить, что сердце излучает сферические волны между мощностью передачи и приема, то существует зависимость, обратно пропорциональная расстоянию во второй степени. Следовательно, для отношений амплитуд частоты дыхания UA к шуму UN или частоты сердцебиения UH к шуму можно оценить, что предел приема с мощностью передачи 1 Вт составляет около 1 м для сердцебиения и типично 160 м для дыхания.

Антенны с малошумящими элементами с более высоким усилением могут соответственно увеличивать эти значения согласно изобретению. Это значит, что сигналы, подходящие для приема, можно ожидать в операции локации даже при наличии слоя земли толщиной в несколько метров.

Идеальным с точки зрения тока насыщения 10 и температурного потенциала диодом является мощный кремниевый диод марки 1N4004, применение которого в качестве выпрямителя, однако, ограничено высокими частотами из-за высокой барьерной емкости. За ним следует низкосигнальный кремниевый диод марки 1N4148, затем кремниевый диод Шотки BAT46 и, наконец, два германиевых диода AA116 и AA144.

Диодный приемник был соответственно отрегулирован для 440 МГц, 1,3 ГГц, 2,4 ГГц, 5,6 ГГц и 10 ГГц. Для четырех из пяти частот были разработаны следующие приемные антенны для прямого диодного приемника:

440 МГц: полуволновой симметричный вибратор с v=0,940, Z=60,5 Ом и BAT 46

1,3 ГГц: полуволновой симметричный вибратор с v=0,906, Z=57,4 Ом и BAT 46

2,4 ГГц: полуволновой симметричный вибратор с v=9,40, Z=60,5 Ом и BAT 46

5,6 ГГц: волновой многопроводной триадический симметричный вибратор с v= 0,73, Z=140 Ом и BAT 46.


Патент предоставлен ОКБ АСТРОН г. Лыткарино, www.ASTROHN.ru

Было обнаружено, что при таком приемнике уровень чувствительности существенно падает по сравнению с приемником 2,4 ГГц. При 10 ГГц уже больше не было возможности обнаруживать полезное напряжение, поэтому диодный приемник на 10 ГГЦ был отклонен. Другие доступные диоды больше не проявили какого-либо полезного выпрямительного эффекта на высоких частотах этого типа.

Поскольку специалисты могут счесть сигналы согласно изобретению как находящиеся ниже уровня измерений, следует уделить большое внимание типам используемых антенн.

Антенны

Необходимо обеспечить максимально возможное защитное действие антенны в заднем полупространстве для локации, чтобы не принимать никакие сигналы, которые падают в противоположной зависимости к главному направлению излучения. По этой причине вторичные лепестки должны иметь минимальные размеры. Поэтому вся диаграмма излучения должна иметь как можно более узкий главный лепесток и не содержать вторичных (боковых) лепестков.

Входной импеданс антенн может и должен быть адаптирован согласно изобретению к реальным или сложным импедансам таким образом, чтобы обеспечивать адаптацию мощности для передатчиков и адаптацию шума для приемников. Однако одновременное выполнение этих требований за счет конструкции антенны невозможно.

Все используемые антенны являются антенными решетками осевого излучения, так как двухзеркальные антенны с аналогичными размерами всегда имеют худшее защитное действие в заднем полупространстве, так как конструкция волновода должна возбуждаться в заднем направлении. Антенны должны быть максимально широкополосными, чтобы исключить операцию корректировки. Логарифмически периодические конструкции известны как широкополосные антенны с очень хорошим защитным действием в заднем полупространстве. Широкополосный характер, с одной стороны, и выраженный направленный эффект, с другой стороны, достигаются благодаря логарифмической градации волноводных структур. Тот факт, что усиление по сравнению с резонансными антеннами сравнимых размеров ниже, не представляет проблемы для применения согласно изобретению.

Поликоническая антенна может заменить поворотную параболическую антенну, поскольку отклонения от параболической конфигурации менее чем на 1/10 длины волны не оказывают отрицательного действия на функционирование антенны. Даже для 1/5 длины волны потеря усиления составляет меньше 2 дБ и поэтому может игнорироваться в большинстве случаев.

Следовательно, конструкцию параболического отражателя, которую технически трудно реализовать, можно без проблем заменить поликоническим рефлектором, который легче изготовить. Однако возбуждение сравнительно дорого и сложно, и защитное действие в заднем полупространстве улучшается только при использовании отражателей, достаточно больших относительно длины волны и освещение которых ограничено внутренней областью.

Для преодоления проблем, связанных с поляризацией, в предлагаемых примерах выполнения с двумя более высокими частотами (5,6 ГГц и 10, 368 ГГц) в каждом случае использовали антенну с круговой поляризацией, с одной стороны, как приемную антенну, и, с другой стороны, как передающую антенну. Хотя, предположительно, это приводит к потерям типично 3 дБ, они невелики в сравнении с потерями, которые могут иметь место в случае взаимно поворачивающихся антенн с линейной поляризацией.

В одном примере выполнения с помощью только одной общей передающей/приемной антенны входящие и исходящие волны можно успешно разделять, например, с помощью циркулятора.

Особое внимание уделяется также высокочастотным блокам, чтобы преодолеть затруднения с точки зрения техники измерения.


Патент предоставлен ОКБ АСТРОН г. Лыткарино, www.ASTROHN.ru

Высокочастотные блоки

Необходимые высокочастотные блоки описаны ниже. В системе учтены возможные связи, которые возникают между модулями и периферийными элементами. Они соответствуют конфигурациям, разработанным согласно изобретению.

Модуляторы используются на более высоких частотах, скажем, выше 200 МГц, после преобразователей, которые преобразуют в промежуточную частоту 137,5 МГц. Как используемые диоды, так и транзисторы работают на этой частоте.

1. Диодный смеситель

Диодный смеситель содержит симметричную схему многократного умножения напряжения с резонансной схемой на входе и фильтром нижних частот на выходе.

При этом в отличие от напряжения, которое можно получить при использовании диода как прямого приемника, можно достичь четырехкратного выходного напряжения, так как источники теперь соединены последовательно. Возросшее при этом внутреннее сопротивление не имеет значения с точки зрения функций.

На практике было обнаружено, что диодный смеситель превосходит другие известные конструкции смесителей с точки зрения отношения сигнал-шум.

Низкочастотные блоки

Все модули, работающие в низкочастотном диапазоне, снабжены собственным источником питания. Для этой цели используются отдельные свинцовые аккумуляторы 12 В/2 А час, снабженные схемой контроля напряжения и выключателем. Необходимость строгой изоляции всех источников питания друг от друга обусловлена тем, что использование сетевого блока уже создало значительные помехи и проблемы.

Таким образом, вся система полностью изолирована на передающей стороне, а на приемной стороне она соединена с сетью только через персональную ЭВМ, которая, однако, имеет форму питающегося от батареи блока в переносном исполнении.

1. Предусилитель

Предусилитель использует малошумящий четырехкратный операционный усилитель. Один из усилителей подключен как средство симметризации рабочего напряжения; другие три подключены как полосовые фильтры и связаны между собой через фильтры верхних частот.

Фильтр нижних частот ограничивает шум первого каскада. С помощью факультативного резистора можно питать диодный прямой приемник предразрядным током от предусилителя. Использовалось всего два модуля предусилителей с разными уровнями усиления. Поскольку чувствительность всей системы может вызывать перегрузку АЦП (аналого-цифрового преобразователя), а значит, и потерю данных, необходим регулируемый усилитель.


Патент предоставлен ОКБ АСТРОН г. Лыткарино, www.ASTROHN.ru

2. Дискретизирующий фильтр (фильтр защиты от наложения спектров)

Дискретизация зависящих от времени сигналов должна производиться на частоте, которая больше чем вдвое превышает максимальную частоту, содержащуюся во входном сигнале. Следовательно, входной сигнал должен быть спектрально ограничен перед этапом аналого-цифрового преобразования. Неожиданно обнаружилось, что для целей изобретения такая операция ограничения должна выполняться аналоговым фильтром и не может быть заменена цифровой обработкой. Если это не учесть, потребуется субдискретизация спектральных составляющих, которые составляют больше половины частоты дискретизации. Они смешиваются в более низком диапазоне частот и необратимо фальсифицируют сигнал, препятствуя успешному достижению результата изобретения.

Так называемые цифровые фильтры защиты от наложения спектра, которые позволяют полагать, что ограничение полосы можно осуществить после АЦП, оказались совершенно неэффективными для данной проблемы: все ошибки, связанные с субдискретизацией, имели место. Последующая цифровая коррекция в дальнейшем была невозможна из-за разрушенного содержания сигнала.

Следует отметить, что у специалистов в отношении аналоговых и цифровых параметров существует ложное представление, состоящее в том, что конструкция измерительной системы для цифровой обработки аналоговых параметров на основе данных производителей и исключительное использование программного обеспечения и аппаратных средств, предлагаемых ими, не могут обеспечить достижение поставленной цели.

Требования, предъявляемые к аналоговым фильтрам нижних частот с защитой от наложения спектров, очень высоки, в зависимости от соответствующей последующей обработки. Поэтому динамический диапазон должен быть по меньшей мере на один разряд (бит) лучше, чем у следующего АЦП, и аналогично эффекты линейных и нелинейных искажений должны быть по меньшей мере на один разряд лучше, чем у АЦП. Хотя динамический диапазон АЦП на N-разрядов на практике в большинстве случаев составляет только N-2 разряда, эти зависимости необходимо учитывать. Использование фильтров с переключаемыми конденсаторами возможно, если при этом также учесть *p+27X теорему Котельникова (теорему о дискретном представлении) и если достаточен достигаемый динамический диапазон.

Складывание или свертка входного сигнала с помощью дискретизирующего фильтра приводит к амплитудному и фазовому искажениям, а также к искажению огибающей из-за группового времени задержки фильтра. Эти изменения сигнала можно учесть в случае необходимости с помощью процедуры, при которой обратная передаточная функция дискретизирующего фильтра складывается или свертывается с дискретизированным сигналом в ЭВМ. Эта процедура возможна только в том случае, если дискретизация была проведена правильно. Что же касается случая с субдискретизацией, там ошибка возрастает еще больше.


Патент предоставлен ОКБ АСТРОН г. Лыткарино, www.ASTROHN.ru

Между верхней частотой сигнала fs, частотой дискретизации fa, асимптотической крутизной или порядком дискретизирующего фильтра N и коэффициентом избыточной дискретизации k существует следующая зависимость относительно достижимой степени точности или разрешения А в разрядах:

http://www.fips.ru/fullimg/rupat4/200012/000.dwl/2160043-2t.gif

A = khttp://www.fips.ru/chr/183.gifN+1

Для ограниченной частоты fs=2 при степени разрешения А=13 разрядов это дает, например, следующие возможные конфигурации:

фильтр первого порядка (N=1) == частота дискретизации fa = 16384 Гц

фильтр третьего порядка (N=3) == частота дискретизации fa = 64 Гц

фильтр шестого порядка (N=6) == частота дискретизации fa = 16 Гц

В предлагаемых примерах выполнения согласно изобретению используется последняя комбинация. Для фильтров низкого порядка с "положительными" характеристиками относительно передаточной функции необходимо прибегнуть к чрезмерным коэффициентам избыточной дискретизации, чтобы получить полезные результаты. Несмотря на высокую частоту дискретизации порядка 16 кГц, только спектральные компоненты до 2 Гц дискретизируются правильно (при А=16 разрядов, fs = 20 кГц и fa = 44 кГц понадобятся фильтры 109-го порядка, чтобы произвести дискретизацию согласно теореме Котельникова).

Избыточная дискретизация имеет следующее преимущество: даже если каждый АЦП идеален в отношении его характеристик, он добавляет шум квантования к дискретизируемому сигналу, в результате чего этот сигнал фальсифицируется не только операцией квантования, то есть дискретизацией значений амплитуды, но имеет и дополнительный шум.

Этот шум можно с приближением считать белым, так что при большей ширине полосы дискретизации, то есть при избыточной дискретизации, соответственно меньший шум попадает в ширину полосы сигнала и поэтому можно пропорционально улучшить отношение сигнал-шум преобразователя, а не сигнал.

Применяемый дискретизирующий фильтр нижних частот шестого порядка получают путем последовательного соединения двух фильтров нижних частот третьего порядка (асимптотическая крутизна фронта 18 дБ на октаву или 60 дБ на декаду). Каждый фильтр нижних частот содержит операционный усилитель, подключенный как повторитель напряжения, и RC-контур.

Искажения амплитуды, фазы и огибающей, вызванные частотными и фазовыми характеристиками всех фильтров, а также групповым временем задержки, можно аннулировать с помощью процедуры, при которой функцию времени складывают или свертывают с ее обратной передаточной функцией Т-1 (W) тракта предыдущего сигнала Т (W), в результате чего осуществляют полную компенсацию локации с полюсами и нулями. Это может понадобиться, если необходимо реконструировать исходный временной сигнал и поэтому следует исключить деформацию временного сигнала преобразователями и элементами передающей цепи. В случае использования, при котором требуется существенная детекция спектральной линии, это можно не делать.

В примере выполнения предложенной конструкции временной сигнал проходит из преобразователя (приемной антенны) в персональную ЭВМ (АЦП) через по меньшей мере один фильтр верхних частот 15-го порядка и один фильтр нижних частот двадцать первого порядка, которые получают из произведения передаточных функций отдельных элементов измерительной цепи (прямой смеситель, предусилитель, фильтр нижних частот 2*, фильтр верхних частот 2*, АЦП).

В случае необходимости динамическое поведение аналоговой части электронной системы может быть также улучшено с помощью узлов, прямо влияющих на компенсацию локации с полюсами и нулями. Благодаря этому можно снизить шум, улучшить неблагоприятные характеристики передачи или достичь оптимальных качеств передачи согласно приведенным критериям.


Патент предоставлен
1   2   3

Похожие:

Окб астрон iconОкб астрон
А, 13. 07. 1993. Us 6243036 B1, 05. 06. 2001. Ru 2133971 C1, 27. 07. 1999. Ru 2067759 C1, 10. 10. 1996. Wo 90/07130 A1, 28. 06. 1990....
Окб астрон iconОкб астрон, www. Astrohn. Ru резонансный болометр
Сильно коррелированные низкоразмерные электронные системы. Теория ферми-жидкости Ландау. Латинжеровская жидкость
Окб астрон iconОкб астрон
Заявленная полезная модель может быть использована в научных исследованиях, биологии, медицине и фармакологии, военном деле и безопасности,...
Окб астрон iconОкб астрон
Кроме того простота и более низкая стоимость производства блока генерации позволяет снизить стоимость конечного устройства и его...
Окб астрон iconОкб астрон
Приемник (3) электромагнитных сигналов имеет устройство для извлечения частотных составляющих, характерных для живых организмов,...
Окб астрон iconЗадания Для предцикловой подготовки очно заочного цикла: «Судебно...
Адрес: г. Тюмень, ул. Одесская, 46а, административный корпус окб, тел: 207-776, 205-793, e-mail: goutmk@ mail ru
Окб астрон iconКнига фгуп «Санкт-Петербургское окб «Электроавтоматика»
Рассматриваются основные принципы построения перспективных бортовых цифровых вычислительных систем в авиационном приборостроении....
Окб астрон icon1. Общая характеристика вертолета стр
Не лишним будет отметить, что именно в России был впервые разработан и осуществлен первый боевой одноместный ударный вертолет, со...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск