Окб астрон





Скачать 321.02 Kb.
НазваниеОкб астрон
страница3/3
Дата публикации10.11.2014
Размер321.02 Kb.
ТипДокументы
100-bal.ru > Биология > Документы
1   2   3
ОКБ АСТРОН г. Лыткарино, www.ASTROHN.ru

3. Фильтр верхних частот

Согласно изобретению спектральное ограничение входного сигнала в отношении нижних частот желательно по трем причинам:

1. Низкочастотный (НЧ) шум

Амплитуда НЧ-шума возрастает обратно частоте. Следовательно, с увеличением времени измерения шумовые составляющие присутствуют на все более низкой частоте и фальсифицируют измеряемый сигнал. Основные источники НЧ-шума - передающий генератор, генератор преобразователя и операционные усилители.

2. Медленные движения

Движения тела, подлежащего обнаружению, при постоянной скорости вызывают допплеровский сдвиг частоты, а значит, и спектральные составляющие, которые могут попадать в изучаемую полосу частот. В случае нерегулярных движений возникает широкая дополнительная полоса. Чем медленнее движения, тем ниже частота спектров, которые все труднее и труднее отличить от шумовых составляющих.

3. Время оценки

Для идентификации спектральной линии частоты f необходимо проводить измерения по меньшей мере в течение времени t=1/f, то есть чем ниже определяемые частоты, тем продолжительнее должен быть период, в течение которого необходимо проводить измерения. Поскольку невозможно гарантировать, что время измерения является кратным интегралом спектральной составляющей, представляющей интерес, при анализе Фурье возникает эффект утечки. Это приводит к расширению спектра. Поэтому при анализе нижних частот необходимо соблюдать время измерения, которое является кратным продолжительности периода, при этом степень точности возрастает пропорционально времени измерения. При 10% ошибок в спектральном разрешении и нижней частоте 0,2 Гц необходимо проводить измерения в течение 50 секунд.

На фиг. 3 представлена общая схема цепи оценки. Персональные IBM-совместимые ЭВМ офисного типа используются как центральные узлы, поскольку их мощности достаточно для выполнения поставленной задачи.

Схема, представленная на фиг. 4 и 4 а, дает общий вид этапов обработки, где F { } обозначает преобразование Фурье, a F-1 { } - обратное преобразование Фурье.

Результаты

После разных предварительных испытаний было обнаружено, что достаточно, чтобы частота дискретизации составляла 16 Гц с однополюсным разрешением 13 разрядов (общее разрешение 14 разрядов). Ширина окна прозрачности, выбранного для спектрального анализа, составляла 512 значений, что соответствовало приблизительно 33 секундам, в качестве этого окна прозрачности была выбрана финитная взвешивающая функция Хемминга.

На фиг. 5 показана частота сердцебиения исследуемого человека при остановленном дыхании. Спектральная составляющая выделяется настолько ясно, что дальнейшая обработка для обнаружения сердцебиения исследуемого человека не является необходимой. Количественный спектр нанесен в любых единицах относительно частоты в Герцах. Измерения проводили при частоте 2,4 ГГц, диодный прямой приемник, например, полуволновой симметричный вибратор (1/2 Dipol), использовали в качестве приемника, передатчиком служил гетеродин, дыхание было остановлено.

На фиг. 6 показан спектр сигнала, отраженного дышащим человеком, с применением диодного прямого приемника и логапериодической директорией антенны и передающего генератора 1,3 ГГц в качестве источника.

При этом присутствовали и частота сердцебиения и частота дыхания.

Эксперименты показали, что при частоте 440 МГц измерения были затруднены из-за чрезмерной чувствительности всей системы. Почти все регистрации продемонстрировали явления перерегулирования и реакцию на внешние эффекты.

Проблема перерегулирования может быть решена с помощью подходящего ослабления; оно не влияет на обнаружение дыхательной и сердечной активности.

Если применяется циркулятор, тогда, как описано, можно использовать антенну, принимающую и передающую одновременно.

Приведенные выше примеры достаточно ясно продемонстрировали, что обнаружение живых людей возможно. В этом отношении ни стены, ни расстояние в несколько десятков метров не являются препятствием, достойным упоминания. Рабочие частоты 1,3 ГГц и 2,4 ГГц были признаны наиболее подходящими. При использовании доступных антенн уровень чувствительности достаточно высок, чтобы получить воспроизводимые результаты с ясной идентификацией сердцебиения и дыхания без необходимости проведения интенсивных числовых вычислений, поскольку и так присутствуют достаточно сильные принимаемые сигналы.

Структурная схема фильтра верхних частот и фильтра нижних частот с защитой от наложения спектров

На фиг. 8a и 8b показана структурная электрическая схема блока, применяемого для ограничения полосы. Фильтр верхних частот третьего порядка подавляет низкочастотные шумовые составляющие, в частности НЧ-шум. Следующий фильтр нижних частот третьего порядка ограничивает спектр до более высоких частот. Затем следует линейный усилительный каскад для согласования уровня. Рабочее напряжение симметризируют электронным путем, так что достаточно однополюсного источника. Два из этих блоков, находящиеся в каскадной зависимости, выполняют требования, предъявляемые теоремой Котельникова.

Структурная схема диодного демодулятора

Диодный детектор, схема которого представлена на фиг. 7, служит для фазовой демодуляции принимаемого сигнала, который смешивают для получения промежуточной частоты, и как прямой демодулятор для разработанных приемных антенн. Такая схема соответствует типичному измерителю мощности; предразрядный или входной ток может быть приложен из выхода. Входной импеданс может быть адаптирован к ПЧ-смесителю или антеннам.

Структурная схема диодного прямого приемника

Диодные прямые приемники содержат диодные детекторы с полуволновой или волновой длиной, умноженные на соответствующий коэффициент укорочения и которые предвключены соответствующим образом. Предразрядный или входной ток может быть приложен на выходе.

Кроме того, каждый блок снабжен собственным источником стабилизированного напряжения и собственным выключателем питания, чтобы блоки с долговременной постоянной (гетеродины, предусилители, фильтр нижних частот) могли работать в непрерывном режиме и находились в тепловом и электрическом равновесии, тогда как потребители или нагрузки с высоким потреблением тока (последние передающие каскады, преобразователи) можно было выключать между использованиями.

Ниже описываются предпочтительные примеры выполнения согласно изобретению.


Патент предоставлен ОКБ АСТРОН г. Лыткарино, www.ASTROHN.ru

Первый пример выполнения изобретения - система для контролирования жизненной функции дыхания и/или сердцебиения в медицинском секторе. В здании 14 расположена передающая антенна 2 и приемная антенна 4 с соответствующими связанными с ними отражателями. Антенна 2, которая используется как передающая антенна, подключена к передатчику 1, который выдает мощность 20 мВт как заменяющую или эквивалентную нагрузку активных 377 Ом.

Горизонтальные и вертикальные углы раскрыва антенн адаптированы к соответствующему применению. Для осуществления контроля в блоках интенсивной терапии по меньшей мере приемная антенна имеет характеристику приема, содержащую небольшие вторичные лепестки, а ее основная зона детектирования приблизительно равна размеру грудной клетки человека. Приемная антенна 4, RX, подключена к приемнику, который с помощью преобразователя 6 преобразует входящие сигналы в указанный выше диапазон частот. Затем следует демодулятор 5, усилитель, фильтр 7 и блок управления для передачи сигнала.

Сигналы передают на дистанционный аналого-цифровой преобразователь 9 с помощью экранированных линий (на чертежах не показаны). Аналого-цифровой преобразователь 9 и следующая за ним описанная выше электронная система оценки расположены либо в портативном блоке, предпочтительно в виде небольшого чемодана, либо в стационарной, питающейся от сети аппаратуры, или же они являются частью центрального контролирующего узла с центральным дисплеем жизненных функций в форме спектров, показанных на фиг. 5 и 6, в клинической станции контроля. Чтобы точно оценивать сигналы во временной области, производят свертку с помощью обратной передаточной функции тракта сигнала, которая происходит перед

операцией аналого-цифрового преобразования. Таким образом, по существу моментальное состояние жизненных функций или, при использовании подходящих средств запоминания изображения, их история могут быть представлены на мониторах центральной клинической станции контроля или портативного устройства.

В более простом примере выполнения, представленном на фиг. 10, передняя панель 15 содержит выключатель питания 16 и оптический индикатор 17 и/или звуковой индикатор 18. Оптический индикатор 17 может быть установлен под прозрачной частью передней панели 15, как показано на фиг. 10, или над корпусом 15, как показано на фиг. 9. С помощью зажима 19, который только схематически показан на фиг. 9 в форме прижимного винта, этот первый пример выполнения согласно изобретению можно легко и быстро закрепить вблизи кроватей или на кровати пациентов, которых необходимо контролировать. Кроме того, согласно изобретению, в качестве фиксирующего устройства 19 используют любые другие альтернативные конструкции, например, механические соединительные устройства или байонетные приспособления с соответствующим стационарным взаимодействующим элементом. Таким образом, устройство можно закрепить на кровати или вблизи кровати пациента, подлежащего наблюдению, в домашней обстановке.

Навесной кронштейн 21 с поворотным шарнирным соединением 22 на конце кронштейна 21 позволяет управлять ориентацией устройства известным способом.

В следующем примере выполнения, показанном на фиг. 11, корпус 15 закреплен приблизительно в центре с помощью натяжного или привязного средства 23 на потолке 24 здания. Устройство 23 позволяет регулировать высоту и, в частности, позволяет перемещать корпус 15 вниз, чтобы можно было обеспечить оптимальное наблюдение за человеком, лежащим под устройством, поскольку благодаря смещению устройства вверх оно не ограничивает свободы движений.

Для надежного учета клинических факторов детектируемая ширина полосы частот ограничена диапазоном 0,02-6,0 Гц. При этом можно обнаружить дыхание с интервалом от 166 МС до 50C и сердцебиение с частотой от 1,2 до 360 ударов/мин. Электронная система оценки, расположенная в центральном месте, определяет высоту сигнала с ограниченным спектром и имеет установленную пороговую величину, при которой в случае отсутствия сигналов выдается предупреждение относительно жизненных функций, и включает оптический и/или звуковой сигнал тревоги или, если она интегрирована в систему контроля, сигнал тревоги передается в эту систему.

В другом альтернативном исполнении обнаружимые интервалы дыхания ограничены до менее 30 с, так что период для оценки сигналов также не продолжительнее приблизительно 30 с.

Главные области применения описанных выше примеров выполнения связаны с контролем за людьми, которые подвержены суицидным намерениям, беспроводным контролем за людьми, находящимися в коме, и людьми с ожоговыми ранами. В клинических, а также домашних условиях можно обеспечить контроль за людьми, нуждающимися в уходе и интенсивной терапии, а также контролировать жизненные функции младенцев, чтобы предотвратить внезапную смерть ребенка. Можно уменьшить или полностью исключить нарушения сна, характерные для блоков интенсивной терапии из-за наличия проводов, и помимо чисто механических неудобств также уменьшается психологическая нагрузка.

Можно также определять частоту сердцебиения нерожденного ребенка при обследовании беременных. Это позволяет также осуществлять беспроблемный и непрерывный контроль без установки электродов.

В следующем примере выполнения согласно изобретению, изображенном на фиг. 13, комнату 25 контролируют с помощью передающего/приемного устройства, расположенного в одном углу потолка. Как было описано в связи с предыдущими примерами выполнения, передающая антенна 2 и приемная антенна 4 подключены к описанным выше электронным блокам для оценки сигнала.

Передатчик 1 предпочтительно передает в диапазоне частот 300 МГц - 3 ГГц и выдает мощность от нескольких мВт до нескольких Вт при заменяющей или эквивалентной нагрузке активных 50 Ом или активных 377 Ом. В случае контролирования комнаты антенны 2,4 выполнены в форме трехполюсных призм, как показано на фиг. 13.

В следующем примере выполнения, изображенном на фиг. 14, передающая/приемная антенна 2,4 с циркулярной поляризацией установлена на верхнем этаже 26 здания 27. Благодаря специальной конфигурации пространственных характеристик передачи передающей антенны 2 и пространственных характеристик приема антенны 4 они адаптированы к желаемой области приема, то есть к размерам контролируемого здания. Можно также установить множество передающих антенн 2 и множество приемных антенн 4 в областях, которые следует контролировать, и каждую подсоединить к электронной системе оценке.

В примере выполнения, изображенном на фиг. 15, передающая или приемная антенна 2,4 расположены за подвесным потолком 28. Большая площадь для расположения антенн упрощает точное определение зоны наблюдения. На фиг. 15 также показано другое скрытое контролирующее устройство в области боковой стены 29.


Патент предоставлен ОКБ АСТРОН г. Лыткарино, www.ASTROHN.ru

На фиг. 16, кроме контролирования комнаты 30, также показана комбинация передающей/приемной антенны 2,4 для контролирования участка перед зданием. В этом случае область 30, которая изображена только схематически, может быть передним двором частного или общественного здания. Поэтому возможно, например, непрерывное наблюдение, охватывающее всю площадь, например, в психиатрических лечебницах или местах заключения. Кроме того, подключенная электронная система оценки может обеспечивать автоматическую сигнализацию, как уже описывалось в связи с применением в области медицины.

Следующей важной областью применения является сектор химической промышленности, а также на сооружениях открытого излучения, например, снабжения атомной энергией или производства и обогащения ядерного топлива. Области открытого излучения и воздействия химических веществ можно контролировать таким образом, что будет охвачена вся площадь, так что люди смогут входить в эти зоны, не вызывая сигнала тревоги, только если они узнаны, или при утечке вредных веществ можно выявить присутствие живых людей вблизи места, где произошла утечка.

Следующая важная область применения - тушение пожара целевым направленным способом. При использовании связующих кислород агентов или специальных способов для тушения огня вместо обычных агентов или способов во избежание ущерба для собственности (например, в случае пожара на печатном производстве или производстве ЭВМ), чтобы не создавать угрозу для людей, еще находящихся в помещениях, процедуры тушения огня можно начинать только после проверки мест пожара на наличие в них живых людей. Такой контроль предусмотрен законодательством при применении противопожарных агентов, но он очень противоречив с точки зрения проблем, связанных с безопасностью пожарной службы. С другой стороны, проверку мест пожара на наличие людей, которые, возможно, еще живы, следует проводить эффективно, быстро и дистанционно, то есть за рамками помещения, охваченного пламенем. При этом людей, находящихся в помещении, охваченном огнем, обнаруживают и спасают быстрее, и пожарная служба подвергается меньшей опасности в источнике огня. Благодаря более быстрому началу тушения огня можно дополнительно минимизировать ущерб от пожара.


Формула изобретения

1. Устройство для обнаружения жизненных функций живых организмов, в частности, для обнаружения жизненных функций у живых человеческих организмов с помощью электромагнитных сигналов, включающее приемное устройство для электромагнитных сигналов, которое содержит устройство для получения частных составляющих, характерных для живых организмов, для различения живых организмов от мертвых, отличающееся тем, что приемное устройство содержит демодулятор для выделения частотных составляющих, характерных для живых организмов, непосредственно из принятых электромагнитных сигналов.

2. Устройство по п.1, отличающееся тем, что демодулятор включает в себя элемент с нелинейной характеристикой тока/напряжения в качестве частотно-селективного элемента для демодуляции частотных составляющих, характерных для живых организмов.

3. Устройство по п.2, отличающееся тем, что демодулятор включает в себя диод, биполярный или полевой транзистор в качестве частотно-селективного элемента.

4. Устройство по одному из пп.1 - 3, отличающееся тем, что приемное устройство включает в себя устройство преобразования частоты, предвключенное демодулятору.

5. Устройство по одному из пп.1 - 4, отличающееся тем, что содержит передающее устройство для передачи сигнала электромагнитной несущей на фиксированной частоте.

6. Устройство по п.5, отличающееся тем, что сигнал несущей находится в диапазоне частот примерно от 1 МГц до 1 ТГц.

7. Устройство по одному из пп.1 - 6, отличающееся тем, что устройство для получения частотных составляющих, характерных для живых организмов, включает в себя устройство для фильтрации, устройство для дискретизации, аналого-цифровой преобразователь и вычислительное устройство для спектрального анализа.

8. Устройство по п.7, отличающееся тем, что устройство для фильтрации включает в себя, по меньшей мере, один фильтр для дискретизации аналогового сигнала.

9. Устройство по п. 8, отличающееся тем, что фильтр для дискретизации ограничивает ширину полосы электромагнитного сигнала в направлении верхних частот перед операцией дискретизации и перед операцией аналого-цифрового преобразования.

10. Устройство по одному из пп.1 - 9, отличающееся тем, что как передающая антенна, так и приемная антенна установлены в общем корпусе для поворотного и наклонного движения с помощью съемного фиксирующего средства.

11. Устройство по одному из пп.1 - 9, отличающееся тем, что передающая антенна и приемная антенна установлены в общем корпусе, который закреплен на потолке посредством держателя, регулируемого по высоте.

12. Способ обнаружения жизненных функций у живых организмов, в частности, обнаружения жизненных функций у живых человеческих организмов, путем приема электромагнитных сигналов, при котором из принятых электромагнитных сигналов получают частотные составляющие, характерные для живых организмов, отличающийся тем, что частотные составляющие, характерные для живых организмов, получают из принятых электромагнитных сигналов непосредственно.

13. Способ по п.12, отличающийся тем, что принятый электромагнитный сигнал преобразуют в промежуточную частоту.

14. Способ по одному из пп.12 или 13, отличающийся тем, что принятый сигнал ограничивают в аналоговом виде в направлении верхних и нижних частот.

15. Способ по одному из пп.12 - 14, отличающийся тем, что принятый электромагнитный сигнал дискретизируют после операции фильтрации и преобразуют в цифровой сигнал.

16. Способ по п.15, отличающийся тем, что цифровой сигнал свертывают с помощью взвешивающей функции во временной области и обратной передаточной функции приемного устройства.

17. Способ по пп.14, 15 или 16, отличающийся тем, что цифровой сигнал трансформируют из временной области в частотную область перед его оценкой и представлением в качестве выходного сигнала.

18. Способ по п. 17, отличающийся тем, что трансформированный сигнал анализируют в диапазоне частот около 0,01 - 10 Гц, предпочтительно 0,02 - 3 Гц, на наличие частотных составляющих сердечной и/или дыхательной активности, характерных для живых организмов.


Патент предоставлен ОКБ АСТРОН г. Лыткарино, www.ASTROHN.ru

1   2   3

Похожие:

Окб астрон iconОкб астрон
А, 13. 07. 1993. Us 6243036 B1, 05. 06. 2001. Ru 2133971 C1, 27. 07. 1999. Ru 2067759 C1, 10. 10. 1996. Wo 90/07130 A1, 28. 06. 1990....
Окб астрон iconОкб астрон, www. Astrohn. Ru резонансный болометр
Сильно коррелированные низкоразмерные электронные системы. Теория ферми-жидкости Ландау. Латинжеровская жидкость
Окб астрон iconОкб астрон
Заявленная полезная модель может быть использована в научных исследованиях, биологии, медицине и фармакологии, военном деле и безопасности,...
Окб астрон iconОкб астрон
Кроме того простота и более низкая стоимость производства блока генерации позволяет снизить стоимость конечного устройства и его...
Окб астрон iconОкб астрон
Приемник (3) электромагнитных сигналов имеет устройство для извлечения частотных составляющих, характерных для живых организмов,...
Окб астрон iconЗадания Для предцикловой подготовки очно заочного цикла: «Судебно...
Адрес: г. Тюмень, ул. Одесская, 46а, административный корпус окб, тел: 207-776, 205-793, e-mail: goutmk@ mail ru
Окб астрон iconКнига фгуп «Санкт-Петербургское окб «Электроавтоматика»
Рассматриваются основные принципы построения перспективных бортовых цифровых вычислительных систем в авиационном приборостроении....
Окб астрон icon1. Общая характеристика вертолета стр
Не лишним будет отметить, что именно в России был впервые разработан и осуществлен первый боевой одноместный ударный вертолет, со...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск