Получение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств





Скачать 334.3 Kb.
НазваниеПолучение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств
страница2/3
Дата публикации30.11.2014
Размер334.3 Kb.
ТипАвтореферат
100-bal.ru > Биология > Автореферат
1   2   3

Рис. 1. Электрофореграмма рестриктных фрагментов ампликонов межгенной области, полученных в процессе генотипирования анализируемых образцов ДНК B.burgdorferi s.l. Электрофорез проводили в 12% ПААГ.

Дорожки: 1, 14 - маркеры молекулярных масс ДНК (pBR322, гидролизованная HaeIII); 2-13 - ампликоны межгенной области rrf-rrl анализируемых образцов ДНК B.burgdorferi s.l., гидролизованные рестриктазой MseI.
На рис. 1 видно, что 7 исследуемых образцов (дорожки 2, 4, 7, 10-13) содержат геномную ДНК спирохет, относящихся к геновиду B.garinii (геномная группа 20047T); 1 образец (дорожка 3) – к геновиду B.japonica; 1 образец (дорожка 8) – к геновиду B.afzelii; 1 образец (дорожка 6) содержат смесь геномных ДНК спирохет B.garinii (геномные группы NT29 и 20047T); 1 исследуемый образец (дорожка 9) содержат смесь геномных ДНК спирохет B.japonica и B.garinii 20047T.

За 6-ти летний период мониторинга заражённости боррелиями иксодовых клещей, населяющих рекреационную зону ННЦ, было установлено, что в этой популяции клещей, циркулируют два патогенных для человека геновида спирохет B.burgdorferi s.l.: B.garinii и B.afzelii, и один непатогенный геновид - B.japonica. Результаты этих исследований представлены в таблице 1.

Доминирующим геновидом являются спирохеты B.garinii, включающие представителей двух геномных групп: NT29 и 20047T (с преобладанием подгруппы 20047T), и обнаруживаемые в более чем 75% инфицированных спирохетами клещей. Зараженность иксодовых клещей спирохетами Borrelia burgdorferi s.l., колебалась в зависимости от года наблюдений в пределах 20% - 32%. Средняя годичная зараженность за весь наблюдаемый период составила 22,4±1,1%. С 2006 г. на территории Новосибирской области зафиксировано появление геновида B.japonica, распространённого в популяции клещей в Японии и на Дальнем Востоке РФ.


Таблица 1. Заражённость взрослых клещей I. persulcatus, отловленных в рекреационной зоне ННЦ в весенний период 2003 – 2008 г.г., различными геновидами спирохет B. burgdorferi s.l.

Год

Кол-во клещей

ПЦР-позитив-ные клещи, (%)

Количество генотипированных ПЦР-позитивных образцов ДНК из клещей

общее

кол-во

B garinii NT29

B.garinii 20047T

B.afzelii

B.japonica

mix

2003

210

31,7±6,0

37

10

14

3

-

10

2005

306

21,2±2,3

64

8

31

15

-

10

2006

590

26,1±1,8

154

13

97

20

6

24

2008

303

20,1±2,3

61

6

53

2

5

-

2

1409

22,4±1,1

316

37

195

40

11

44


1 Общая средняя ежегодная зараженность клещей за весь наблюдаемый период.

mix – смесь геновидов B.afzelii и B.garinii.

Доля позитивных клещей определялась как p ± SD, по формулам:

p = P/n * 100% (1);

SD = √р*(100 – p)/n (2);

где Р – количество позитивных особей в конкретной выборке, n – величина выборки.
Изоляция и культивирование спирохет Borrelia burgdorferi s.l.

Изоляцию и выращивание боррелий проводили на среде BSK II, в двух вариантах: прямое культивирование из клещей и с использованием лабораторных мышей в качестве природного фильтра. При выращивании боррелий непосредственно из клещей I.persulcatus, в качестве посевного материала использовали гомогенат клещей. По 5 особей клещей гомогенизировали в среде BSK II, хитиновые оболочки осаждали центрифугированием, а надосадочную жидкость инокулировали в пробирки со средой. Пробы инкубировали 15 суток при 320С, после чего культуры пересевали на свежую среду BSK II и выращивали еще 15 дней. Культивирование в общей сложности проводили в течение месяца. Во втором варианте, гомогенат клещей инъецировали животным внутрибрюшинно. Мышей после инъекций содержали 20 дней в виварии, затем кровь, сердце и мочевой пузырь извлекали и помещали в культуральную среду BSK II. Далее процедура была аналогична той, которая описана для культивирования боррелий из клещей. В результате этой работы нами было получено 37 изолятов боррелий, среди которых 24 изолята B.garinii; 3 изолята B.afzelii; и 10 образцов культур были представленны смесью изолятов B.garinii и B.afzelii. Полученные культуры использовали в качестве стабильного источника выделения ДНК спирохет и последующей амплификации методом ПЦР генов иммунодоминантных антигенов боррелий.


Выбор белков спирохет Borrelia burgdorferi s.l., перспективных для серодиагностики ИКБ

Известно, что спирохеты Borrelia burgdorferi s.l. характеризуются высокой антигенной изменчивостью. В связи с этим большую сложность представляет решение проблемы создания универсальных тестов для серодиагностики ИКБ. Принципиальное значение приобретает рациональный выбор антигенов боррелий и подбор их композиций для создания диагностических систем. На основе проведённого нами анализа литературных данных, наибольший интерес, с точки зрения создания тестов для серодиагностики ИКБ, представляют внешние поверхностные белки OspC и OspA, флагеллярные белки FlaA и FlaB и декоринсвязывающий белок DbpB. Белки OspC, FlaA и FlaB являются одними из первых антигенов индуцирующих иммунный ответ на ранней стадии инфекции ИКБ. Антигены OspA и DbpB индуцируют иммунный ответ на стадии диссеминированной инфекции и при хронизации болезни. Однако какие-либо сведения о первичной структуре генов этих белков для сибирских изолятов Borrelia burgdorferi s.l. в литературе отсутствовали. В связи с этим мы поставили перед собой задачу клонировать белок-кодирующие области этих генов, определить их первичные структуры, получить кодируемые ими рекомбинантные белки и исследовать их антигенные свойства.
Конструирование экспрессирующих векторов серии pRAC

Для удобства клонирования выбранных нами генов иммунодоминантых белков боррелий и обеспечения эффективной экспрессии этих генов в клетках E.coli были сконструированы экспрессирующие векторы серии pRAC. Новые конструкции векторов были созданы на основе вектора pREB-SAT, обеспечивающего экспрессию гена стафилококкового альфа-токсина (SAT) в E.coli (Камынина и Беклемишев, 1997; Беклемишев и др., 2008). Экспрессия гена SAT осуществлялась под контролем регуляторной области гена recA Proteus mirabilis (рис. 2). Вектор pREB имеет ряд недостатков. В частности, терминатор транскрипции Т0 в векторе pREB расположен на расстоянии 565 п.н. правее терминатора трансляции (стоп-кодона) вследствие чего существенно увеличивается длина транскрипта, синтезируемого на клонированном в составе вектора pREB целевом гене. Кроме того, сайт связывания рибосом (SD) расположен в векторе не на оптимальном расстоянии от инициирующего кодона ATG. Мы попытались усовершенствовать эту конструкцию, чтобы увеличить эффективность экспрессии клонируемых в её составе целевых генов. Для того, что бы отслеживать изменения в уровне экспрессии целевого гена, в составе различных конструкций векторов, вместо гена стафилококкового α-токсина был встроен ген зеленого флюоресцирующего белка GFP. Это позволило определять с помощью флюориметра относительное количество синтезируемого белка GFP непосредственно в культуре клеток. Затем мы выполнили ряд последовательных процедур по реконструкции вектора pREB2: 1) участок вектора pREB2, расположенный между сайтом рестрикции BamHI и терминатором транскрипции T0, включающий ген дигидрофолатредуктазы, был удалён, таким образом стоп кодон трансляции был помещён вблизи терминатора транскрипции T0; 2) заменили участок плазмиды, включающий сайт SD и последовательность до инициирующего кодона ATG, регуляторного района гена recA Proteus mirabilis на соответствующий район сильного синтетического промотора Ptaq; 3) слева от сайта SD промотора Ptaq был встроен энхансер трансляции гена 10 бактериофага Т7 с помощью пары комплементарных синтетических олигонуклеотидов. Структуры исходной регуляторной области гена recA Proteus mirabilis и модифицированных конструкций показаны на рис. 3. Новый вектор получил рабочее название pRAC (рис.2).

Рис. 2. Генетические карты рекомбинантных плазмид pREB-SAT и pRAC.

PrecA – регуляторная область гена recA Proteus mirabilis; PrecA-mod – модифицированная регуляторная область гена recA Proteus mirabilis; RBS – рибосомосвязывающий сайт (последовательность Шайна-Дальгарно); Signal seq. – фрагмент гена hla S.aureus, кодирующий сигнальный пептид стафилококкового альфа-токсина (САТ); hla – область гена hla S.aureus, кодирующая полипептид-предшественник альфа-токсина; 6His – участок ДНК, кодирующий 6-ти гистидиновую последовательность; DHFR – ген дигидрофолатредуктазы; T0-region – область терминатора транскрипции гена t0 бактериофага λ; Ori pMB1 – ориджин репликации плазмиды pMB1; pBR322 region – участок ДНК плазмиды pBR322; AmpR - ген bla, кодирующий бета-лактамазу – фермент обусловливающий устойчивость клеток E.coli к ампициллину.

SD Start

(1)-aatggtagtgacccatctttatgcttcactgcccagagggagataacatg

(2)-*******************************************ATT*TATG

(3)---------------------attaactttatacaggaaaca**att*tatg

Enhancer SD Start
Рис. 3. Сравнение первичных структур исходной и модифицированных регуляторных областей в районе сайта связывания рибосом разработанных плазмидных конструкций, содержащих промотор гена recA Proteus mirabilis

Обозначения: (1) - регуляторная область гена recA Proteus mirabilis; (2-3) - модифицированная регуляторная область гена recA Proteus mirabilis, в составе экспрессирующих векторов pREB (1), pREB2/pREB3 (2) и pRAC (3).

После проведённых реконструкций мы сравнили уровень синтеза белка GFP в клетках E.coli, содержащих различные варианты сконструированных плазмид. Клетки E.coli шт. BL21(DE3), содержащие плазмиду pRАС, примерно в три раза больше синтезировали белка GFP по сравнению с клетками, содержащими исходную плазмиду pREB2, со встроенным геном gfp (рис. 4А).


Рис. 4А. Гистограмма величин флюоресценции белка GFP в индуцированных налидиксовой кислотой клетках E.coli шт. Bl21(DE3), содержащих различные плазмидные конструкции pREB2, pREB3 и pRAC.

Рис. 4Б. Влияние различных экспозиций УФ-облучения на длине волны 302 нм на индукцию экспрессии гена белка GFP в клетках E.coli шт. Bl21(DE3), содержащих рекомбинантную плазмиду pRAC.
Вектор pRAC был использован в лаборатории для клонирования и экспрессии гена ксилозо(глюкозо)изомеразы Escherichia coli K12 в клетках E.coli шт. BL21(DE3). Выход рекомбинантной ксилозоизомеразы составлял стабильно более 40% от общего белка клетки. Всё выше изложенное позволяет сделать вывод, что сконструированный нами вектор pRАС может быть использован для высокоэффективной экспрессии клонированных в его составе генов.

Экспрессия целевых генов, клонированных в составе векторов серии pREB и pRAC, осуществляется под контролем регуляторной области гена recA Proteus mirabilis и индуцируется, в нашем случае, известным мутагеном - налидиксовой кислотой. Мы предположили, что штамм E.coli, содержащий вектор pRAC, может отвечать индукцией экспрессии гена белка GFP в ответ на воздействие каких-либо мутагенов физической или химической природы. Действительно, в серии экспериментов было показано, что при воздействии на клетки этого штамма ультрафиолетового излучения (рис. 4Б) и различных концентраций перекиси водорода, митомицина С, формальдегида и налидиксовой кислоты (рисунки не представлены), в клетках наблюдается дозозависимая индукция синтеза белка GFP. Полученные результаты позволили сделать вывод, что рекомбинантный штамм E.coli BL21(DE3), содержащий плазмиду pRAC может быть использован в качестве цельноклеточного биосенсора для обнаружения мутагенов в исследуемых образцах.

На завершающем этапе конструирования вектора, ген gfp был заменен на полилинкер - фрагмент ДНК содержащий сайты узнавания эндонуклеазами рестрикции EcoRI, KpnI, BssHII, BstEII, HindIII и XhoI. Такая структура полилинкера была получена в целях удобства клонирования выбранных нами генов боррелий. За полилинкером следовала нуклеотидная последовательность, кодирующая 8-ми гистидиновый аминокислотный фрагмент в С-концевой области рекомбинантных белков. Это позволяло очищать белки с помощью аффинной хроматографии на металло-хелатных сорбентах. Этот вариант экспрессирующего вектора получил название pRAC3.
Клонирование генов ospA, ospC изолята B.garinii и гена ospC изолята B.afzelii в составе вектора pRAC3

Кодирующие области генов белков OspC, OspA, FlaA, FlaB и DbpB были получены с помощью ПЦР. Для амплификации генов использовали праймеры, подобранные исходя из сравнения нуклеотидных последовательностей соответствующих генов, опубликованных в базе данных GenBank. В каждом праймере на 5’-конце был предусмотрен сайт узнавания определённой эндонуклеазой рестрикции, имеющийся в полилинкере вектора pRAC3. По этим сайтам осуществляли гидролиз генов и их встраивание в вектор. В качестве матрицы для амплификации всех 5-ти генов использовали ДНК изолята B.garinii группы 20047Т (NSK-10-06), поскольку этот геновид являлся самым встречаемым на территории Новосибирской области. Ген ospC амплифицировали также на ДНК изолята B.afzelii (NSK-05-06).

В качестве первых генов, проклонированных нами в составе вектора pRAC3 в клетках E.coli шт. Rosetta 2, были гены внешних поверхностных белков OspA и OspC. Наличие вставки генов в составе вектора подтверждали секвенированием. Клоны, в которых рамка трансляции белка не нарушалась, исследовали на индуцируемую продукцию целевого рекомбинантного антигена методом электрофореза лизатов клеток в ПААГ. Ни в одном из проанализированных клонов не было обнаружено видимых количеств белков OspA и OspC. По-видимому, очень низкий уровень синтеза этих полноразмерных антигенов обусловлен их высокой токсичностью для клеток E.coli, которую отмечали и другие исследователи (Dunn et al., 1990). Определённую ингибирующую роль могли сыграть и вторичные структуры синтезированных мРНК этих белков. В связи с этим в дальнейшей работе мы клонировали гены ospC, ospA, flaA и flaB, с делетированными последовательностями, кодирующими сигналы секреции соответствующих белков. Кроме того, для повышения экспрессии генов было решено использовать вектор pET36b(+), содержащий один из самых сильных промоторов (промотор гена 10 бактериофага Т7).
Клонирование кодирующих областей генов ospC, ospA, flaA, flaB и dbpB в составе вектора рЕТm

Чтобы вектор pET36b(+) был удобен для клонирования выше названных генов, мы модифицировали его, путем встраивания под регуляторную область промотора полилинкера из вектора pRAC3. Модифицированный вектор был назван рЕТm. Для амплификации фрагментов генов ospC, ospA, flaA и flaB, кодирующих соответствующие белки, лишённые сигналов секреции были подобраны новые праймеры.

В результате клонирования фрагментов генов ospC, ospA, flaA, flaB и гена dbpB в клетках E.coli в составе модифицированного вектора рЕТm, и последующей индукции экспрессии генов, мы наблюдали на электрофореграммах четкие мажерные полосы, соответстующие рекомбинантным белкам OspA, OspC B.garinii (OspC-Bg), OspC B.afzelii (OspC-Ba), FlaA, FlaB и DbpB (рис. 5).


Рис. 5. Электрофореграмма лизатов клеток клонов E.coli шт. Rosetta 2, содержащих рекомбинантные плазмиды pETm со встроенными фрагментами генов ospA, ospC-Bg, ospC-Ba, dbpB, flaA и flaB.

Дорожки: 1, 3, 5, 7, 10 и 12 - лизаты неиндуцированных ИПТГ клеток E.coli, продуцирующих белки OspA (1), OspC-Bg (3), OspC-Ba (5), DbpB (7), FlaA (10) и FlaB (12);

дорожки: 2, 4, 6, 8, 11 и 13 лизаты индуцированных ИПТГ клеток E.coli, продуцирующих белки OspA (2), OspC-Bg (4), OspC-Ba (6), DbpB (8), FlaA (11) и FlaB (13);

дорожка 9 – маркерные белки массой 65, 45 и 14,5 кДа.
Получение и очистка рекомбинантных белков боррелий.

В качестве штамма-продуцента рекомбинантных антигенов боррелий был использован штамм E.coli Rosetta2, содержащий плазмиду, обеспечивающую экспрессию генов т-РНК специфичных для редко встречаемых в E.coli кодонов. Полученные штаммы-продуценты обеспечивали высокий уровень синтеза рекомбинантных белков, который составлял от общего белка клетки 13% для OspA, 28% для OspC-Bg, 20% для OspC-Ba, 29% для DbpB, 30% для FlaA и 41% для FlaB. Рекомбинантные белки выделяли с помощью колоночной аффинной хроматографии на никель-хелатном сорбенте в денатурирующих или нативных условиях. В среднем выход очищенных белков составлял: 30 - 65 мг/л культуры клеток-продуцентов. Чистоту рекомбинантных белков определяли методом электрофореза в ПААГ (рис. 6). Как видно на рисунке степень очистки белков достигала не менее 90%.


Рис. 6. Электрофореграмма препаратов очищенных рекомбинантных белков. Белки нанесены на дорожки в количестве ~20 мкг. Дорожки: (1 – 6) – препараты очищенных рекомбинантных белков OspА (1), OspC-Ba (2), OspC-Bg (3), FlaA (4), FlaB (5) и DbpB (6); 7 – маркерные белки (65, 45 и 14,5 кДа).
Изучение антигенных свойств рекомбинантных белков боррелий

Антигенные свойства очищенных рекомбинантных белков боррелий исследовали методом твердофазного ИФА на панели сывороток больных с достоверным диагнозом ИКБ с мигрирующей эритемой (стадия локализованной инфекции) и более поздней стадией - стадией диссеминированной инфекции. Результаты исследования представлены в таблице 2.

В экспериментах по выявлению методом ИФА специфических антител класса IgM и IgG наибольшей чувствительностью обладали рекомбинантные белки OspC-Bg и FlaB в обеих стадиях заболевания, локализованной и диссеминированной. Наименьшей чувствительностью обладали белки OspA и DbpB.

Рекомбинантные белки FlaA, FlaB, OspC-Bg и OspC-Ba примерно в равной степени выявляли антитела в сыворотках больных с локализованной и диссеменированной стадиями заболевания. Существенные отличия были обнаружены только в случае использования рекомбинантных белков OspA и DbpB. При тестировании сывороток больных ИКБ с локализованной стадией инфекции на наличие специфических антител класса IgM оба этих антигена показали низкую чувствительность 21,7% и 26,1%, соответственно. При выявлении в сыворотках больных ИКБ с диссеминированной стадией инфекции антител класса IgG, специфичных к белкам OspA и DbpB чувствительность к этими антигенами увеличивалась примерно в два раза – до 42%. Основываясь на этих данных можно утверждать, что белки OspA и DbpB более пригодны для выявления специфичных им IgG в сыворотках крови больных ИКБ с диссеминированной стадией инфекции.
Таблица 2. Выявление методом ИФА специфических антител класса IgM и IgG к рекомбинантным белкам B.burgdorferi s.l. в сыворотках больных ИКБ


Антигены


Вид

Количество сывороток с положительными результатами

( % чувствительности)

IgM

IgG

Стадия I

(с МЭ; n=46)

(а)

Стадия II

(без МЭ; n=28)

(б)

Стадия I

(с МЭ; n=30)

(а)

Стадия II

(без МЭ; n=24)

(б)

OspA

B.garinii

10 (21,7)

3 (10,7)

10 (33,3)

10 (41,6)

DbpB

B.garinii

12 (26,1)

9 (32,1)

10 (33,3)

10 (41,6)

FlaA

B.garinii

18 (39,1)

12 (42,8)

12 (40,0)

11 (45,8)

FlaB

B.garinii

25 (54,3)

16 (57,1)

19 (63,3)

16 (66,6)

OspC-Ba

B.afzelii

23 (50,0)

11 (39,3)

15 (50,0)

12 (50,0)

OspC-Bg

B.garinii

28 (60,9)

20 (71,4)

21 (70,0)

18 (75,0)

(а) – группа больных ИКБ с мигрирующей эритемой (локализованная инфекция), сыворотка взята в период 2-4 недели с начала заболевания; (б) – группа больных ИКБ без мигрирующей эритемы (диссеминированная инфекция), сыворотка взята в период 4-8 недели с начала заболевания; n – количество исследуемых образцов сывороток.
В ряде работ содержатся сведения о том что, некоторые белки боррелий взаимодействуют с антителами сывороток пациентов больных сифилисом и ревматоидным артритом. Поэтому специфичность каждого антигена мы определяли тестированием 30 сывороток здоровых доноров, 20 - больных сифилисом и 12 - ревматоидным артритом. Результаты тестирования представлены в таблице 3.
Таблица 3. Выявление методом ИФА антител класса IgM и IgG к рекомбинантным белкам B.burgdorferi s.l. в сыворотках от больных сифилисом, ревматоидным артритом и здоровых доноров

Антигены

Сыворотки больных

сифилисом

(n=20)

Сыворотки больных ревматоидным артритом (n=12)

Сыворотки здоровых доноров

(n=30)

IgM

IgG

IgM

IgG

IgM/IgG

OspA

0

0

0

0

0

DbpB

0

0

0

0

0

FlaA

2 (10,0)

3 (15,0)

1 (8,3)

1 (8,3)

0

FlaB

3 (15,0)

3 (15,0)

2 (16,7)

2 (16,7)

0

OspC-Ba

1 (5,0)

1 (5,0)

1 (8,3)

0

0

OspC-Bg

1 (5,0)

1 (5,0)

1 (8,3)

1 (8,3)

0

n – количество исследуемых образцов сывороток.
По результатам тестирования этих сывороток на наличие антител класса IgM и IgG к исследуемым рекомбинантным антигенам отрицательные результаты были получены только с белками OspA и DbpB. В случае использования флагеллярных белков FlaA и FlaB ложноположительные результаты были получены примерно в 17% проанализированных сывороток от больных сифилисом и ревматоидным артритом; в случае применения антигенов OspC-Ba и OspC-Bg – в 8%. Следует отметить, что со всеми изучаемыми белками не было получено ни одного ложноположительного результата при тестировании сывороток здоровых доноров.

Проанализировав взаимодействия сывороток с каждым рекомбинантным белком (данные не представлены) мы обнаружили, что одни антигены выявляют сыворотки, которые не выявляются другими антигенами. Если предусмотреть одновременное использование пары антигенов для обнаружения антител, например методом Вестерн-блотта или иммунохроматографическим методом, то можно ожидать, что чувствительность такого анализа существенно увеличится. В нашем случае мы ожидаем повышения чувствительности выявления специфических антител для пар антигенов OspA/DbpB, FlaA/FlaB и OspC-Ba/OspC-Bg. Наибольшей чувствительностью, по результатам ИФА, полученным на исследуемой панели сывороток с индивидуальными антигенами, должна обладать пара антигенов OspC-Ba/OspC-Bg (табл. 4). Таким образом, используя композицию полученных рекомбинантных антигенов в Вестерн-блот анализе или иммунохроматографическом тесте можно добиться чувствительности обнаружения антител к антигенам спирохет B.burgdorferi s.l. в сыворотках больных ИКБ, приближающейся к 100%.
Таблица 4. Ожидаемое количество (%) выявляемых сывороток больных ИКБ в ИФА с использованием пар рекомбинантных антигенов боррелий

Пара антигенов

Выявляемый класс антител на различных стадиях ИКБ

Локализованная стадия

Диссеменированная стадия

IgM,

(n=46)

IgG,

(n=30)

IgM,

(n=28)

IgG,

(n=24)

OspA/DbpB

20 (43,5%)

18 (60,0%)

12 (42,8%)

20 (83,3%)

FlaA/FlaB

28 (60,9%)

22 (73,3%)

21 (75,0%)

24 (100%)

OspC-Bg/OspC-Ba

39 (84,8%)

29 (96,7%)

26 (92,8%)

24 (100%)

n – количество исследованных образцов сывороток с индивидуальными антигенами.
Сравнительный анализ аминокислотных последовательностей полученных рекомбинантных белков боррелий

Аминокислотную последовательность каждого из полученных в настоящей работе рекомбинантных белков (DbpB, OspA, FlaA, FlaB, OspC B.garinii 20047т и OspC B.afzelii) сравнивали с последовательностями аналогичных белков боррелий, представленными в электронной базе данных GenBank (декабрь 2008 г.).

Самая высокая степень гомологии была установлена для флагеллярных белков FlaA и FlaВ. Оба белка показали максимальную 100%-ю гомологию с соответствующими белками-аналогами изолятов B.burgdorferi s.l. выделенных на территории Европы. В отличие от флагеллярных белков, для белка DbpB высокая гомология 92-100% была показана с аналогичными белками только изолятов геновида B.garinii, выделенных на территории Европы. Вариабельность белка OspA была значительно больше. Даже в рамках изолятов одного геновида B.garinii, полученных на территории Европы, гомология сравниваемых белков OspA варьировала от 75% до 100%.

Самая высокая гетерогенность была свойственна белкам OspC. При сравнении первичных структур полученных нами рекомбинантных антигенов OspC с опубликованными аминокислотными последовательностями аналогичных белков, наибольшая гомология была установлена с белками OspC изолятов боррелий, выделенных на территории Европы (97-67%). Следует отметить, что рекомбинантные антигены OspC-Bg и OspC-Ba изолятов B.garinii и B.afzelii циркулирующих на одной территории Новосибирской области имели гомологию по отношению друг к другу, составляющую всего 67%. Вполне понятно, что такие отличия в первичных структурах этих антигенов обусловливают их различную иммунореактивность с сыворотками больных ИКБ.
ЗАКЛЮЧЕНИЕ

В настоящей работе была определена зараженность и геновидовой состав спирохет Borrelia burgdorferi s.l. в клещах Ixodes persulcatus Schulze, обитающих на территории Новосибирского научного центра и отловленных в весенние периоды 2003, 2005, 2006 и 2008 г.г. Впервые на территории Новосибирской области в клещах Ixodes persulcatus были обнаружены спирохеты геновида Borrelia japonica (2006 и 2008 г.г.). В работе были получены культуры спирохет B.garinii и B.afzelii, циркулирующих в популяции иксодовых клещей, населяющих рекреационную зону ННЦ. Были проклонированы в клетках E.coli в составе экспрессирующих векторов pRAC3 и pETm кодирующие области генов внешних поверхностных липопротеинов (OspA и OspC), флагеллярных белков (FlaA и FlaB) и декоринсвязывающего белка В (DbpB) изолята B.garinii группы 20047Т и белка OspC изолята B.afzelii.

В работе были получены высоко очищенные рекомбинантные белки боррелий OspC-Bg, OspC-Ba, OspA, FlaA, FlaB и DbpB и исследованы их антигенные свойства методом ИФА на сыворотках больных ИКБ. По результатам ИФА можно сделать вывод о пригодности полученных в данной работе рекомбинантных антигенов OspC, FlaA и FlaB B.garinii и OspC B.afzelii для серодиагностики инфекций ранней и диссеминированной стадий. Рекомбинантные белки OspA и DbpB могут быть использованы для серодиагностики диссеминированной и хронической стадий ИКБ. Результаты ИФА свидетельствуют о необходимости использования композиций антигенов для увеличения чувствительности методов серодиагностики ИКБ. На примере рекомбинантных белков OspC изолятов B.garinii и B.afzelii показана необходимость использования для серодиагностики гомологичных вариабельных антигенов, всех патогенных изолятов боррелий циркулирующих на территории Новосибирской области.

По данным сравнения аминокислотных последовательностей, полученных в настоящей работе рекомбинантных белков, с первичными структурами аналогичных белков боррелий, представленных в базе данных GenBank, изолят B.garinii 20047Т (Nsk-10-06) филогенетически близок изолятам этого геновида, выделенным на территории Европы.

ВЫВОДЫ

  1. Зараженность клещей Ixodes persulcatus Schulze, отловленных в рекреационной зоне ННЦ в весенние периоды с 2003 по 2008 г.г., спирохетами Borrelia burgdorferi s.l., колебалась в зависимости от года наблюдений в пределах 20% - 32%.

  2. В популяции исследованных клещей Новосибирской области выявлены только три геновида боррелий – Borrelia garinii (группы NT29 и 20047T), Borrelia afzelii и Borrelia japonica с явным преобладанием первого (~75%).



  1. Сконструированные плазмидные векторы pRAC3 и рЕТm, обеспечивают эффективную экспрессию клонируемых в их составе генов в клетках E.coli шт. BL21(DE3) и шт. Rosetta2 и последующую аффинную очистку рекомбинантных белков.

  2. Штамм E.coli, содержащий вектор pRAC, может применяться в качестве цельноклеточного биосенсора для обнаружения мутагенов химичечской и физической природы в исследуемых образцах.

  3. Штаммы E.coli BL21(DE3) и Rosetta2, несущие экспрессирующий вектор рЕТm со встроенными в него кодирующими областями генов flaA, flaB, ospC, ospA и dbpB B.garinii 20047Т и ospC B.afzelii обеспечивают эффективный синтез соответствующих этим генам рекомбинантных белков.

  4. Полученные в настоящей работе рекомбинантные антигены FlaA, FlaB, OspC, OspA и DbpB могут быть использованы для конструирования тест-систем серодиагностики локализованной и диссеменированной стадий ИКБ.

  5. Западносибирский изолят B.garinii 20047Т (Nsk-10-06) филогенетически близок изолятам этого геновида, выделенным на территории Европы.
1   2   3

Похожие:

Получение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств iconСписок тем рефератов для зачета по курсу лекций "проблемы современной...
Е. П. Альтшуллер, Д. В. Серебряная, А. Г. Катруха. Получение рекомбинантных антител и способы увеличения их аффинности. Успехи биологической...
Получение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств iconСписок тем рефератов для зачета по курсу лекций "проблемы современной...
Е. П. Альтшуллер, Д. В. Серебряная, А. Г. Катруха. Получение рекомбинантных антител и способы увеличения их аффинности. Успехи биологической...
Получение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств iconСписок тем рефератов для зачета по курсу лекций "проблемы современной...
Е. П. Альтшуллер, Д. В. Серебряная, А. Г. Катруха. Получение рекомбинантных антител и способы увеличения их аффинности. Успехи биологической...
Получение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств iconМинистерство образования и науки РФ московский энергетический институт (технический университет)
Целью дисциплины является изучение основных понятий, а также получение базовых умений в области управления проектами; изучение специфики...
Получение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств iconИзучение свойств Атмосферы земли
Образовательная: обеспечить усвоение учащимся основных физических свойств воздуха; состава воздуха; типов облаков
Получение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств iconТипы алгоритмов. Алгоритмы с повторениями
...
Получение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств iconИсследовательская работа на тему: «Получение и исследование свойств...
Муниципальное бюджетное общеобразовательное учреждение г. Астрахани «Средняя общеобразовательная школа №36»
Получение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств iconПрограмма по формированию навыков безопасного поведения на дорогах...
Показать строение белков как важнейших органических веществ, входящих в состав клетки. Рассмотреть четыре структуры белков. Дать...
Получение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств iconКонтрольные вопросы для самоподготовки к практическим и лабораторным...
Белок как молекулярная основа живой материи. Роль белков в процессах жизнедеятельности
Получение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств iconРабочая программа по комплексной теме «изучение радиоактивных элементов»
Данная рабочая программа отвечает одной из общих тематик учебно-реферативной деятельности учащихся Лицея – «изучение химических и...
Получение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств iconПрограмма по формированию навыков безопасного поведения на дорогах...
Изучение свойств постоянных магнитов. Объяснение намагниченности железа (гипотеза Ампера). Обнаружение и изучение магнитного поля...
Получение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств iconРеконструкция эволюции белков семейства танкираз
Показано, что танкираза 2 хордовых ближе к предшественникам, чем танкираза Гомологи Dictiostelum и Caenorhabditis сильно отличаются...
Получение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств iconНепредельные углеводороды. Этилен. Строение молекулы. Свойства. Получение, применение
Углубить понятия об общности свойств гомологов, обусловленных сходством состава и строения. Рассмотреть химические свойства на примере...
Получение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств icon«Физкультура»
Большинство людей потребляют больше белков, чем требуется организму. Но сейчас спортивные диетологи пришли к выводу, что ведущим...
Получение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств iconПрограмма дисциплины “Системное программное обеспечение” для подготовки инженеров
Целью данной дисциплины является изучение общих принципов организации и программных интерфейсов операционных систем (ОС) и базового...
Получение рекомбинантных белков западносибирских изолятов borrelia burgdorferi sensu lato и изучение их антигенных свойств iconРабочая программа по дисциплине с 11. Микробиология
Изучение биологических свойств микробов; их роли в природе и в жизни человека; их значения для биосферы в целом


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск