Реферат содержит шесть глав





Скачать 491.67 Kb.
НазваниеРеферат содержит шесть глав
страница2/3
Дата публикации22.12.2014
Размер491.67 Kb.
ТипРеферат
100-bal.ru > Химия > Реферат
1   2   3

1.1 Опыт Пристли


Удивительная всё же закономерность: великие открытия, как правило, обычно делались совершенно случайно. Пристли искал способ очистки воздуха, испорченного горением и дыханием людей или животных. Его мучил такой вопрос: каким образом могло случиться, что атмосферный воздух, который постоянно портится, в течении несметных веков не утратил своей способности поддерживать жизнь и горение? Пристли приходит к заключению, что на поверхности нашей планеты должен существовать какой-то регулятор, процесс, обратный дыханию, процесс, улучшающий воздух. Долго искал ответ на вой вопрос Пристли, многое перепробовал, пока не сделал удивительное открытие. Метод исправления воздуха, который был испорчен горением свечи. Обычный воздух необходим для жизни как растении, так и животных, то растения и животные действуют на него одинаково. Когда Пристли поместил пучок мяты в стеклянный кувшин, опрокинутый в сосуд с водой, она продолжала расти там несколько месяцев, и он убедился, что этот воздух не тушит свечи и не вредит мыши, которую Пристли туда поместил. (В замкнутом сосуде без растения мышь быстро бы задохнулась). Официально считается, что так был открыт фотосинтез. Но фактически Пристли лишь доказал, что растения выделяют кислород. Да, по существу Пристли открыл кислород, с тем чтобы два года спустя уже сознательно (и официально) совсем в иных опытах открыть его вторично. Но так или иначе в хаосе неоформленных ещё представлении о газах –порядок вскоре навел А. Лавуазье, он же дал имя кислороду – начало открытию фотосинтеза было положено.


Глава 2 История фотосинтеза
В течение тысячелетий люди считали, что питается растение исключительно благодаря корням, поглощая с их помощью все необходимые вещества из почвы. Проверить эту точку зрения взялся в начале девятнадцатого века голландский натуралист Ян Ван Гельмонт. Он взвесил землю в горшке и посадил туда побег ивы. В течение пяти лет он поливал деревце, а затем высушил землю и взвесил её и растение. Ива весила семьдесят пять килограмм, а вес земли изменился всего на несколько сот граммов. Вывод учёного был таков - растения получают питательные вещества, прежде всего, не из почвы, а из воды. На два столетия в науке утвердилась теория водного питания растений. Листья, по этой теории, лишь помогали растению испарять излишнюю влагу.

К самому неожиданному, но правильному предположению о воздушном питании растений ученые пришли лишь к началу девятнадцатого века. Важную роль в понимании этого процесса сыграло открытие, совершенное английским химиком Джозефом Пристли в 1771 году. Он поставил опыт, в результате которого он сделал вывод: растения очищают воздух и делают его пригодным для дыхания. Позднее выяснилось: для того, чтобы растение очищало воздух, необходим свет.

Десять лет спустя, учёные поняли, что растение не просто превращает углекислый газ в кислород. Углекислый газ необходим растениям для жизни, он служит для них настоящей пищей (вместе с водой и минеральными солями).

Воздушное питание растений называется фотосинтезом. Кислород в процессе фотосинтеза выделяется в качестве необычного продукта.

Миллиарды лет назад на земле не было свободного кислорода. Весь кислород, которым дышат почти все живые существа нашей планеты, выделен растениями в процессе фотосинтеза. Фотосинтез сумел изменить весь облик нашей планеты!

Начиная с семидесятых годов прошлого столетия, крупные успехи в области фотосинтеза были получены в России. Работами русских учёных Пуриевича, Ивановского, Риктера, Иванова, Костычева были изучены многие стороны этого процесса .

Значение фотосинтеза не осознавалось до сравнительно недавнего времени. Аристотель и другие учёные Греции, наблюдая, что жизненные процессы животных зависят от потребления пищи,

полагали, что растения добывают свою «пищу» из почвы.

Немногим более трехсот лет назад в одном из первых тщательно продуманных биологических экспериментов голландский врач Ян Ван Гельмонт представил доказательства того, что не одна почва кормит растение. Ван Гельмонт выращивал маленькое дерево ивы в глиняном горшке, добавляя в него только воду. Через пять лет масса игл увеличилась на 74,4 кг, в то время, как масса почвы уменьшилась только на 57 гр.

В конце XVIII века английский ученый Джозеф Пристли сообщил, что он «случайно обнаружил метод исправления воздуха, который был испорчен горением свечей». 17 августа 1771 г. Пристли «… поместил живую веточку мяты в закрытый сосуд, в котором горела восковая свеча», а 21 числа того же месяца обнаружил, что «… другая свеча снова могла гореть в этом же сосуде». «Исправляющим началом, которым для этих целей пользуется природа, - полагал Пристли, - было растение». Он расширил свои наблюдения и скоро показал, что воздух, «исправляемый» растением, не был «совсем не подходящим для мыши».

Опыты Пристли впервые позволили объяснить, почему воздух на Земле остается «чистым» и может поддерживать жизнь, несмотря на горение бесчисленных огней и дыхание множества живых организмов. Он говорил: «Благодаря этим открытиям мы уверены, что растения произрастают не напрасно, а очищают и облагораживают нашу атмосферу».

Позднее голландский врач Ян Ингенхауз (1730-1799) подтвердил работу Пристли и показал, что воздух «исправляется» только на солнечном свету и только зелеными частями растения. В 1796 году Ингенхауз предположил, что углекислота разлагается при фотосинтезе на С и О2, а О2 выделяется в виде газа. В последствие было обнаружено, что соотношение атомов углерода, водорода и кислорода в сахарах и крахмале таково, что один атом углерода приходится на одну молекулу воды, на что и указывает слово «углеводы». Считалось общепринятым, что углеводы образуются из С и Н2О, а О2 выделяется из углекислоты. Это вполне разумная гипотеза была широко признана, но, как позднее выяснилось, она была совершенно неверной.

Исследователем, который опроверг эту общепринятую теорию, был Корнелиус ван Ниль из Стамфордского университета, когда он, будучи еще студентом - дипломником, исследовал метаболизм различных фотосинтезирующих бактерий. Одна группа таких бактерий, а именно пурпурные серные бактерии, восстанавливает С до углеводов, но не выделяет О2. Пурпурным серным бактериям для фотосинтеза необходим сероводород. В результате фотосинтеза внутри бактериальных клеток накапливаются частицы серы. Ван Ниль обнаружил, что для этих бактерий уравнение фотосинтеза может быть записано как:

свет

С О2 + 2Н2S (CH2O) + Н2О + 2S



Этот факт не привлекал внимания исследователей до тех пор, пока ван Ниль не сделал смелого сообщения и не предложил следующего суммарного уравнения фотосинтеза:
свет

С О2 + 2Н2А (CH2O) + Н2О + 2А




В этом уравнении Н2А представляет собой либо воду, либо другое окисляемое вещество, например, сероводород или свободный Н2. У зеленых растений и водорослей Н2А = Н2О. То есть ван Ниль предположил, что Н2О, а не углекислота, разлагается при фотосинтезе. Эта блестящая идея, выдвинутая в тридцатые годы, экспериментально была доказана позднее, когда исследователи, использую тяжелый изотоп О2(18О2), проследили путь кислорода от воды до газообразного состояния:
свет

С О2 + 2Н218О2 (CH2O) + Н2О + 18О2
Таким образом, для водорослей или зеленых растений, у которых вода служит донором электронов, суммарное уравнение фотосинтеза записывается следующим образом:
свет

6СО2 + 12Н2О C6H12O6 + 6О2 + 6Н2О
Современные представления о фотосинтезе:

В настоящее время известно, что фотосинтез проходит две стадии, но только одна из них – на свету. Доказательства двухстадийности процесса впервые были получены в 1905 году английским физиологом растений Ф.Ф. Блэклином, который исследовал влияние освещенности и температуры на объем фотосинтеза.

На основании экспериментов, Блэклин сделал следующие выводы.

1. Имеется одна группа светозависимых реакций, которые не зависят от температуры. Объем этих реакций в диапазоне низких освещенностей мог возрастать с увеличением освещенности, но не с увеличением температуры.

2. Имеется вторая группа реакций, зависимых от температуры, а не от света. Оказалось, что обе группы реакций необходимы для осуществления фотосинтеза. Увеличение объема только одной группы реакций увеличивает объем всего процесса, но только до того момента, пока вторая группа реакций не начнет удерживать первую. После этого необходимо ускорить вторую группу реакций, чтобы первые могли проходить без ограничений.

Таким образом, было показано, что обе стадии светозависимы: «световая и темновая». Важно помнить, что темновые реакции нормально проходят на свету и нуждаются в продуктах световой стадии. Выражение «темновые реакции» просто означает, что свет как таковой в них не участвует.

Объем темновых реакций возрастает с увеличением температуры, но только до 30о, а затем начинает падать. На основании этого факта предположили, что темновые реакции катализируются ферментами, поскольку обмен ферментативных реакций, таким образом, зависит от температуры. В последствие оказалось, что данный вывод был сделан неправильно.

На первой стадии фотосинтеза (световые реакции) энергия света используется для образования АТФ (молекула аденозин-трифосфата) и высокоэнергетических переносчиков электронов. На второй стадии фотосинтеза (темновые реакции) энергетические продукты, образовавшиеся в световых реакциях, используются для восстановления СО2 до простого сахара (глюкозы).

Процесс фотосинтеза все больше и больше привлекает к себе внимание ученых. Наука близка к разрешению важнейшего вопроса – искусственного создания при помощи световой энергии ценных органических веществ из широко распространенных неорганических веществ. Проблема фотосинтеза усиленно разрабатывается ботаниками, химиками, физиками и другими специалистами.

В последнее время уже удалось искусственно получить синтез формальдегида и сахаристых веществ из водных растворов карбонатной кислоты; при этом роль поглотителя световой энергии играли вместо хлорофилла карбонаты кобальта и никеля. Недавно синтезирована молекула хлорофилла.

Успехи науки в области синтеза органических веществ наносят сокрушительный удар по идеалистическому учению – витализму, который доказывал, что для образования органических веществ из неорганических необходима особая «жизненная сила» и что человек не сможет синтезировать сложные органические вещества.

Фотосинтез в растениях осуществляется в хлоропластах. Он включает преобразования энергии (световой процесс), превращение вещества (темновой процесс). Световой процесс происходит в гилакоидах, темновой – в строме хлоропластов. Обобщенное циркулирование фотосинтеза выглядит следующим образом:
свет

6СО2 + 12Н2О C6H12O6 + 6Н2О + 6О2

Два процесса фотосинтеза выражаются отдельными уравнениями

свет

12Н2О 12H2 + 6О2 + энергия АТР

(световой процесс)

12H2 + 6О2 + энергия АТФ С6Н12О6 + Н2О

(темновой процесс)

Глава 3 Значение фотосинтеза в природе
Фотосинтез – единственный процесс в биосфере, ведущий к увеличению ее свободной энергии за счет внешнего источника. Запасенная в продуктах фотосинтеза энергия – основной источник энергии для человечества.

Ежегодно в результате фотосинтеза на Земле образуется 150 млрд. тонн органического вещества и выделяется около 200 млн. тонн свободного кислорода.

Круговорот кислорода, углерода и других элементов, вовлекаемых в фотосинтез, поддерживает современный состав атмосферы, необходимый для жизни на Земле. Фотосинтез препятствует увеличению концентрации СО2, предотвращая перегрев Земли вследствие так называемого «парникового эффекта».

Поскольку зеленые растения представляют собой непосредственную или опосредованную базу питания всех других гетеротрофных организмов, фотосинтез удовлетворяет потребность в пище всего живого на нашей планете. Он – важнейшая основа сельского и лесного хозяйства. Хотя возможности воздействия на него еще не велики, но все же и они, в какой то мере используются. При повышении концентрации углекислого газа в воздухе до 0,1% (против 0,3% в естественной атмосфере) удалось, например, повысить урожайность огурцов и томатов втрое.

Квадратный метр поверхности листьев в течение одного часа продуцирует около одного грамма сахара; это значит, что все растения, по приблизительной оценке, изымают из атмосферы от 100 до 200 млрд. тонн С в год. Около 60% этого количества поглощают леса, занимающие 30% непокрытой льдами поверхности суши, 32% - окультуренные земли, а оставшиеся 8% - растения степей и пустынных мест, а также городов и поселков.

Зеленое растение способно не только использовать углекислый газ и создавать сахар, но и превращать азотные соединения, и соединения серы в вещества, слагающие его тело. Через корневую систему растение получает растворенные в почвенной воде ионы нитратов и перерабатывает их в своих клетках в аминокислоты – основные компоненты всех белковых соединений. Компоненты жиров также возникают из соединений, образующихся в процессах обмена веществ и энергии. Из жирных кислот и глицерина возникают жиры и масла, которые служат для растения, главным образом, запасными веществами. В семенах приблизительно 80% всех растений, в качестве богатого энергией запасного вещества, содержатся жиры. Получение семян, жиров и масел играет важную роль в сельскохозяйственной и пищевой промышленности.

ФОТОСИНТЕЗ (от фото... и синтез), уникальный физико-химический процесс, осуществляемый на Земле всеми зелеными растениями и некоторыми бактериями и обеспечивающий преобразование электромагнитной энергии солнечных лучей в энергию химических связей различных органических соединений. Биологический смысл фотосинтеза заключается в использовании и преобразовании энергии Солнца в энергию органических соединений – углеводов, АТФ. Процесс фотосинтеза происходит в хлоропластах. Основа фотосинтеза — последовательная цепь окислительно-восстановительных реакций, в ходе которых осуществляется перенос электронов от донора — восстановителя (вода, водород и др.) к акцептору — окислителю (СО2, ацетат) с образованием восстановленных соединений (углеводов) и выделением O2, если окисляется вода. Основными условиями для протекания фотосинтеза является наличие в листе воды, углекислого газа и солнечное излучение, которое служит источником энергии. В результате фотосинтеза образуются органические вещества. В результате фотосинтеза – важнейшего физико-химического процесса – растения, используя энергию солнечных лучей, поглощают углекислый газ и другие органические вещества, необходимые для их развития, и выделяют кислород, жизненно необходимый всему живому на Земле. Фотосинтез играет ведущую роль в биосферных процессах, приводя в глобальных масштабах к образованию органического вещества из неорганического. Фотосинтезирующие организмы, используя солнечную энергию в реакциях фотосинтеза, осуществляют связь жизни на Земле со Вселенной и определяют в конечном итоге всю ее сложность и разнообразие. Гетеротрофные организмы — животные, грибы, большинство бактерий, а также бесхлорофилльные растения и водоросли — обязаны своим существованием автотрофным организмам — растениям-фотосинтетикам, создающим на Земле органическое вещество и восполняющим убыль кислорода в атмосфере. Человечество все более осознает очевидную истину, впервые научно обоснованную К. А. Тимирязевым и В. И. Вернадским: экологическое благополучие биосферы и существование самого человечества зависит от состояния растительного покрова нашей планеты. Фотосинтезирующие организмы:

Самый примитивный тип фотосинтеза осуществляют галобактерии, живущие в средах с высоким (до30%) содержанием хлорида натрия. Простейшими организмами, способными осуществлять фотосинтез, являются также пурпурные и зеленые серобактерии, а также несерные пурпурные бактерии. Фотосинтетический аппарат этих организмов устроен гораздо проще (только одна фотосистема), чем у растений; кроме того, они не выделяют кислород, так как в качестве источника электронов используют соединения серы, а не воду. Фотосинтез такого типа получил название бактериального. Однако цианобактерии (прокариоты, способные к фоторазложению воды и выделению кислорода) обладают более сложной организацией фотосинтетического аппарата — двумя сопряженно работающими фотосистемами. У растений реакции фотосинтеза осуществляются в специализированной органелле клетки – хлоропласте.

У всех растений (начиная от водорослей и мхов и кончая современными голосеменными и покрытосеменными) прослеживается общность в структурно-функциональной организации фотосинтетического аппарата. Хлоропласты, как и остальные пластиды, содержатся только в растительных клетках. Их наружная мембрана гладкая, а внутренняя образует многочисленные складки. Между ними находятся стопки связанных с ней пузырьков, называемые гранами. В них расположены зёрна хлорофилла – зелёного пигмента, играющего главную роль в процессе фотосинтеза. В хлоропластах образуется АТФ, а так же происходит синтез белка. Фотосинтетические пигменты:

Основными пигментами, осуществляющими поглощение квантов света в процессе фотосинтеза, являются хлорофиллы, пигменты Mg-порфириновой природы. Обнаружено несколько форм хлорофиллов, различающихся по химическому строению. Спектр поглощения различных форм хлорофиллов охватывает видимую, ближнюю ультрафиолетовую и ближнюю инфракрасную области спектра (у высших растений от 350 до 700 нм, а у бактерий — от 350 до 900 нм). Хлорофилл а является основным пигментом и характерен для всех организмов, осуществляющих оксигенный, т. е. с выделением кислорода, фотосинтез. У зеленых и эвгленовых водорослей, мхов и сосудистых растений, кроме хлорофилла a, имеется хлорофилл b, содержание которого составляет 1/4-1/5 от содержания хлорофилла a. Это дополнительный пигмент, расширяющий спектр поглощения света. У некоторых групп водорослей, в основном бурых и диатомовых, дополнительным пигментом служит хлорофилл с, а у красных водорослей — хлорофилл d.У пурпурных бактерий содержится бактериохлорофилл a и b, а у зеленых серных бактерий наряду с бактериохлорофиллом a содержатся бактериохлорофиллы c и d. В поглощении световой энергии участвуют и другие сопровождающие пигменты — каротиноиды(пигменты полиизопреноидной природы) у фотосинтезирующих эукариот и фикобилины (пигменты с открытой тетрапиррольной структурой) у цианобактерий и красных водорослей. У галобактерий в плазматических мембранах обнаружен единственный пигмент — сложный белок бактериородопсин, близкий по химическому строению родопсину — зрительному пигменту сетчатки глаза.

В клетке молекулы хлорофилла находятся в различных агрегированных (связанных) состояниях и образуют пигмент-липопротеидные комплексы, и вместе с другими пигментами, участвующими в процессах поглощения квантов света и передачи энергии, связаны с белками фотосинтетических (тилакоидных) мембран, образуя так называемые светособирающие хлорофилл-белковые комплексы. По мере увеличения степени агрегации и плотности упаковки молекул максимум поглощения пигментов сдвигается в длинноволновую область спектра. Основная роль в поглощении световой энергии принадлежит коротковолновым формам, которые затем передают ее на более длинноволновые формы, участвующие в процессах миграции энергии. Присутствие в клетке серии спектрально близких форм пигментов обеспечивает высокую степень эффективности миграции энергии в реакционные фотохимические центры, где находятся наиболее длинноволновые формы пигментов, играющие роль так называемых энергетических ловушек. Две стадии фотосинтеза:

Процесс фотосинтеза состоит из двух последовательных и взаимосвязанных этапов: светового (фотохимического) и темнового (метаболического). На первой стадии происходит преобразовании поглощенной фотосинтетическими пигментами энергии квантов света в энергию химических связей высокоэнергетического соединения АТФ и универсального восстановителя НАДФН — собственно первичных продуктов фотосинтеза, или так называемой «ассимиляционной силы». Свет попадает на молекулы хлорофилла, находящиеся в мембранах тилакоидов гран и приводит их в возбужденное состояние. Часть «возбуждённых» электронов возвращается на прежний уровень, а другая часть при помощи переносчиков переносится на наружную поверхность мембраны тилакоида, где и накапливаются. Одновременно внутри полостей тилакоида происходит фотолиз (т.е. её разложение под действием энергии света)

H2O > (свет) H+ + OH-

Ионы гидроксида ОН- отдают свои электроны, превращаясь в реакционноспособные радикалы ОН. Образовавшиеся электроны переносчиками доставляются к молекулам хлорофилла восстанавливают их. Радикалы объединяются, образуя воду и свободный кислород, который выделяется в атмосферу.

4ОН- > H2O + O2

Протоны водорода Н+, образовавшиеся при фотолизе, не могут проникнуть через мембрану тилакоида и поэтому накапливаются внутри, образуя положительно заряженное электронное поле, а на наружной мембране накапливаются свободные электроны, создавая отрицательно заряженное поле. По мере накопления по обе стороны мембраны противоположно заряженных частиц возрастает разность потенциалов. При достижении критической разности потенциалов сила электрического поля начинает проталкивать протоны Н+ через протонный канал АТФ – синтетазы. На выходе из протонного канала создаётся высокий уровень энергии, которая используется на синтез АТФ.

Протоны Н+, вышедшие через протонный канал наружу на поверхность мембраны, соединяются с электронами, образуя атомарный водород, он идёт на восстановление переносчика НАДФ+ (никотинамедаденинди – нуклеотидфосфат).

Н+ + 2е + НАДФ+ > НАДФ . Н

(Переносчик с присоединенным водородом)

Атомы водорода переносчиками транспортируются в сторону хлоропласта и участвуют в синтезе углеводов.

Вывод: В световую фазу фотосинтеза осуществляется три процесса:

1. Образование кислорода вследствие разложения воды. Он выделяется в атмосферу.

2. Синтез АТФ.

3. Образование атомов водорода, участвующих в образовании углеводов.

В темновых реакциях фотосинтеза происходит использование образовавшихся на свету АТФ и НАДФН в цикле фиксации углекислоты и ее последующего восстановления до углеводов. Темновая фаза осуществляется в строме хлоропластов, как в темноте, так и на свету и представляет собой ряд последовательных ферментативных реакции преобразования углекислого газа (СО2), поступающего из воздуха. Реакция темновой фазы осуществляется за счет энергии АТФ и НАДФ . Н поступающих от тилакоидов гран с использованием пятиуглеродных сахаров, имеющихся в плистидах и углекислом газе, поступающего из воздуха. Пятиуглеродный сахар (пентоза С5) ферменты связывают с углекислым газом. В результате образуется нестойкое шестиуглеродное соединение С6, которое под действием ферментов распадается на две трехуглеродные молекулы ФГК (фосфоглицериновой кислоты) 2С3. Каждая из трехуглеродных молекул принимает по одной фосфатной группе от 2АТФ, это обогащает молекулы энергией, затем каждая присоединяет по одному атому водорода от 2НАДФ . Н.

После чего трехуглеродные группы объединяются, образуя углеводы (глюкоза):

3 > C6 > C6H12O6 (глюкоза)

Но часть трехуглеродных групп объединяются, образуя пентозы:

3 > 3C5

и снова вступает в цикл реакции преобразования СО2

Вывод: В темновую фазу фотосинтеза осуществляются следующие процессы:

1. Преобразование углекислого газа.

2. Образование глюкозы.

Суммарное уравнение фотосинтеза:

6СО2 + 6Н2О > C6H12O6 + 6O2

В основе фотосинтеза лежит окислительно – восстановительный процесс, в результате которого образуется кислород (О2), а так же моносахариды (глюкоза и др.), которые превращаются в крахмал и запасаются растением. В процессе фотосинтеза также синтезируются мономеры других органических соединений – жирных кислот, глицерина, аминокислот. Значение фотосинтеза:

1. Усвоение и превращение свободной солнечной энергии с образованием органических веществ, которые являются пищей для гетеротрофных организмов.

2. Выделение свободного кислорода в атмосферу, который необходим для дыхания всех живых организмов.

3. Усвоение углекислого газа из атмосферного воздуха, который пагубно влияет на живые организмы.

4. Обеспечение всех земных организмов химической энергией, преобразовавшейся из энергии солнечного света.

Зеленые растения играют космическую роль, являясь посредником между жизнью на Земле и Солнцем. Растения улавливают энергию солнечного луча, за счет которой существует все живое на нашей планете. Процесс фотосинтеза, осуществляющийся в грандиозных, космических масштабах, коренным образом преобразил лик нашей планеты. Благодаря фотосинтезу солнечная энергия не рассеивается полностью в пространстве, а сохраняется – в виде химических энергий органических веществ. Благодаря способности зеленых растении в процессе фотосинтеза выделять кислород в воздухе сохраняется постоянный процент кислорода. Кроме зеленых растении в природе нет другого источника свободного кислорода. У всех фотосинтезирующих организмов фотохимические процессы световой стадии фотосинтеза происходят в особых энергопреобразующих мембранах, называемых тилакоидными, и организованы в так называемую электрон-транспортную цепь. Темновые реакции фотосинтеза осуществляются вне тилакоидных мембран (в цитоплазме у прокариот и в строме хлоропласта у растений). Таким образом, световая и темновая стадии фотосинтеза разделены в пространстве и во времени.

Глава 4 Фотохимические реакции фотосинтеза
Общее представление о фотосистемах


Фотохимический этап фотосинтеза включает ряд последовательно протекающих процессов, локализованных в тилакоидных мембранах. Пигменты, специфически связанные с белками фотосинтетических мембран, и другие компоненты, необходимые для протекания реакций поглощения света и электронного транспорта, образуют надмолекулярные комплексы — фотосистему I (ФС I) и фотосистему II (ФС II). В составе каждой фотосистемы различают: реакционный центр, в котором происходят очень быстрые реакции первичного разделения зарядов; комплекс компонентов, по которым передается электрон от реакционного центра, и последний окисляется (электронтранспортная цепь); комплекс компонентов, за счет работы которых происходит фотоокисление воды и восстановление реакционного центра.

Первый этап сложного преобразования электромагнитного излучения (света) в свободную энергию химических связей включает поглощение фотонов светособирающими комплексами (антеннами), связанными с ФС I и ФС II (ССКI и ССКII, соответственно). Затем энергия возбуждения мигрирует по пигментам антенны (от более коротковолновых форм хлорофилла к более длинноволновым) и захватывается ловушкой — специализированным реакционным центром, который расположен в центре комплекса. Реакционные центры образованы самыми длинноволновыми формами хлорофилла а [с максимумом поглощения 700 нм (Р700) в ФС I и 680 нм (Р680) в ФС II]. Возбужденные Р700* и Р680* — очень сильные восстановители и быстро передают электрон на близко расположенную молекулу акцептора, а сами при этом окисляются. Эти реакции первичного разделения зарядов, происходящие в реакционных центрах ФС I и ФС II, являются единственными, в которых действительно происходит превращение энергии кванта света в химическую энергию. Дальнейший транспорт электронов, препятствующий рекомбинации зарядов, осуществляется по градиенту электрохимического потенциала компонентов электрон-транспортной цепи фотосинтеза. Электронтранспортная цепь фотосинтеза ее структурно-функциональная организация:

Фотосинтетическую цепь переноса электронов, локализованную в тилакоидных мембранах, принято представлять в виде предложенной в 1961 так называемой «Z-схемы», в которой переносчики расположены по градиенту электрохимического потенциала.

Свойства тилакоидной мембраны (высокое электрическое сопротивление, низкая проницаемость для ионов, анизотропная структура) обеспечивают, одновременно с переносом электронов по градиенту электрохимического потенциала, направленный трансмембранный перенос протонов (Н+) из стромы хлоропласта во внутритилакоидное пространство.

Местом локализации процесса фотосинтеза у эукариот являются специализированные органоиды клетки — хлоропласты, точнее их особые мембранные структуры — тилакоиды. Тилакоиды представляют собой уплощенные дисковидные полые мешки, в ограничивающих мембранах которых и осуществляется фотосинтез. Благодаря наличию многослойной системы тилакоидных мембран, отделяющих матрикс (строму) хлоропласта от внутреннего пространства тилакоида, пространство внутри хлоропластов строго структурировано. Тилакоиды могут либо находиться в тесном контакте друг с другом, образуя стопки (гранальные тилакоиды), либо обособленно располагаться в строме (стромальные тилакоиды). В липидном матриксе гранальных тилакоидных мембран локализована ФС II, стромальных — ФС I;. Белковый b/f-цитохромный комплекс локализован в тилакоидах обоих типов, а АТФ-синтазный комплекс — в стромальных тилакоидах и в соприкасающейся со стромой области гранальных тилакоидов. Типы фотосинтетического транспорта электронов:

ФС II осуществляет реакции фотоокисления воды, приводящие к образованию молекулярного кислорода и протона Н+. Светозависимый транспорт электронов от молекул воды через ФС II, b/f-цитохромный комплекс и ФС I к НАДФ+ носит название нециклического. Это основной (магистральный) путь переноса электронов в фотосинтетической цепи. Впервые выделение кислорода на свету в системе изолированных хлоропластов шпината с использованием искусственного акцептора электронов (феррицианида калия) наблюдал в 1939 английский исследователь Р. Хилл. Впоследствии нециклический перенос электронов (с участием физиологических или искусственных соединений), включающий работу обеих фотосистем или только одной из них получил название реакции Хилла.

Наряду с ним возможны так называемые альтернативные (дополнительные) пути: циклический и псевдоциклический. Циклический транспорт электронов осуществляется вокруг ФС I — in vivo он обычно включает пул пластохинонов, b/f-цитохромный комплекс и пластоцианин; in vitro (при использовании искусственных кофакторов) может осуществляться по более короткому пути. Циклический транспорт электронов (но со значительно меньшей скоростью) может осуществляться и вокруг ФС II.

Транспорт электронов называется псевдоциклическим, если вместо НАДФ+ акцептором электронов — от воды через ФС II, цитохром b/f-комплекс и компоненты восстановительной стороны ФС I — является молекулярный кислород. Кислород при этом либо не выделяется, либо наблюдается его видимое поглощение. Менее активен этот процесс в ФС II. При этом типе транспорта образуются высокореакционные восстановленный кислород — супероксид-анион-радикал O2- и пероксид водорода H2O2, которые обезвреживаются в хлоропласте с помощью фермента супероксиддисмутазы. Способность изолированных хлоропластов осуществлять фотовосстановление молекулярного кислорода впервые была показана немецким ученым А. Мелером в 1951. Впоследствии перенос электронов на молекулярный кислород (псевдоциклический транспорт электронов) получил название реакции Мелера. Синтез АТФ и образование НАДФН:

Одновременно с фотосинтетическим транспортом электронов происходит перенос протонов из стромы хлоропласта во внутритилакоидное пространство — возникает трансмембранный электрохимический градиент ионов водорода (pH-градиент), используемый затем комплексом фермента АТФ-синтазы для синтеза АТФ из АДФ и неорганического фосфата в процессе фотосинтетического фосфорилирования. При нециклическом токе электронов и сопряженном с ним фотофосфорилировании происходит образование восстановителя НАДФН и АТФ. При альтернативных путях переноса электронов — циклическом и псевдоциклическом — образуется только АТФ.

Образующиеся в результате световых реакций первичные продукты фотосинтеза — НАДФН и АТФ — используются в ходе дальнейших ферментативных реакций для восстановления углекислоты до углеводов, жиров, белков. При неуглеводной направленности темнового метаболизма, когда преимущественно образуются аминокислоты, белки, органические кислоты, возрастает уровень потребления восстановителя НАДФН. Темновые реакции фотосинтеза (фотосинтетическая фиксация CO2):

Метаболические варианты фотосинтетической фиксации CO2 у растений принято классифицировать на С3-, С4- и САМ-фотосинтез. Образующиеся в темновых реакциях углеводы могут откладываться в виде крахмала в хлоропластах; выходить из хлоропластов и использоваться в образовании нового структурного материала клеток; служить источником энергии для различных метаболических процессов; транспортироваться в запасающие органы растения. С3-путь фотосинтеза:

Восстановительный пентозофосфатный цикл фиксации CO2 (С3-путь, или цикл Кальвина), открытый американскими учеными Э. Бенсоном и М. Калвином в 1950-е годы, универсален и обнаруживается практически у всех автотрофных организмов. В этом цикле (рис.5) фиксация СО2 осуществляется на пятиуглеродное соединение рибулезобисфосфат (РуБФ) при участии фермента рибулезобисфосфаткарбоксилазы (РуБФ-карбоксилазы). Первым стабильным продуктом являются две молекулы трехуглеродного соединения 3-фосфоглицериновой кислоты (3-ФГК), восстанавливаемая затем с использованием АТФ и НАДФН до трехуглеводных сахаров, из которых образуется конечный продукт фотосинтеза — шестиуглеродная глюкоза. Субстратом ключевого фермента фотосинтетической фиксации СО2 — РуБФ-карбоксилазы — наряду с СО2 может быть и О2. При взаимодействии РуБФ с кислородом реализуется гликолатный, или С2-путь, известный как фотодыхание.

Большинство наземных растений осуществляют фотосинтез по С3-пути. Типичные представители этой группы — горох, фасоль, конские бобы, шпинат, салат, капуста, пшеница, овес, рожь, ячмень, свекла, подсолнечник, тыква, томаты и другие одно- и двудольные растения. С4-путь фотосинтеза:

У некоторых видов растений (в основном тропических и очень небольшого числа видов из умеренных широт) первыми стабильными соединениями при фиксации СО2 являются четырехуглеродные органические кислоты — яблочная и аспарагиновая. Такие растения отличаются видимым отсутствием фотодыхания (или очень низким уровнем), высокой скоростью фиксации СО2 в расчете на единицу поверхности листа, более высокой общей фотосинтетической продуктивностью, быстрой скоростью роста. Функционально и анатомически в ткани их листьев выделяют 2 типа фотосинтезирующих клеток — клетки паренхимной обкладки, окружающие проводящие пучки, и клетки мезофилла.

Для всех растений этой группы характерна катализируемая ферментом фосфоенолпируваткарбоксилазой (ФЕП-карбоксилазой) фиксация СО2 на трехуглеродное соединение фосфоенолпируват (ФЕП) с образованием щавелевоуксусной кислоты, которая далее превращается в яблочную (малат) или аспарагиновую кислоту. Эти реакции протекают в цитоплазме клеток мезофилла листа. С4-кислоты затем поступают в клетки обкладки проводящих пучков, где подвергаются декарбоксилированию, а высвободившаяся СО2 фиксируется через цикл Кальвина. Следовательно, у С4-растений фотосинтетический метаболизм углерода пространственно разделен и осуществляется в клетках различного типа, т. е. по «кооперативному механизму», подробно описанному австралийскими исследователями М. Хетчем и К Слэком и советским биохимиком Ю. С. Карпиловым в конце 1960-70 годах.

В соответствии с первичным механизмом декарбоксилирования С4-кислот все С4-растения подразделяются на три группы. НАДФ-малатдегидрогеназные растения осуществляют декарбоксилирование малата с помощью фермента НАДФ-малатдегидрогеназы в хлоропластах клеток обкладки проводящих пучков. Типичные представители этой группы — кукуруза, сахарный тростник, сорго, росичка кроваво-красная и другие злаки. НАД-малатдегидрогеназные растения осуществляют декарбоксилирование малата с помощью митохондриальной НАД-малатдегидрогеназы. Первичным продуктом фиксации углекислоты у них является аспартат. К типичным представителям этой группы принадлежат различные виды амаранта, портулак огородный, просо обыкновенное, бизонья трава, растущая в прериях Северной Америки и др. Фосфоенолпируват-карбоксикиназные растения осуществляют декарбоксилирование аспартата в цитоплазме клеток обкладки проводящих пучков с образованием ФЕП. Типичные представители — некоторые виды проса, хлориса, бутелуа и др.

У суккулентных растений, произрастающих в условиях водного дефицита, фиксация СО2 осуществляется с помощью так называемого САМ-пути (метаболизм кислот по типу растений семейства толстянковых). Первичный продукт фиксации углекислоты (яблочная кислота) образуется у них в темновой период и накапливается в вакуолях клеток листа. В дневное время при закрытых устьицах (которые закрываются для сохранения воды в тканях листа) осуществляется декарбоксилирование этой кислоты, а освобождающаяся СО2 поступает в цикл Кальвина.

Возникновение С4- и САМ-путей фотоассимиляции СО2 связано с давлением на высшие наземные растения засушливого климата. С4-растения хорошо адаптированы к высокой интенсивности света, повышенным температурам и засухе. Оптимальная температура для осуществления фотосинтеза у них выше, чем у С3-растений. С4-растения наиболее многочисленны в зонах с высокими температурами. Они более экономно используют воду по сравнению с С3-растениями. В настоящее время известно, что все растения с С4-фотосинтезом — цветковые (из 19 семейств:16 — двудольных и 3 —однодольных). Не обнаружено ни одного семейства, которое бы состояло только из С4-растений.


Глава 5 Генетика и экология фотосинтеза

Хлоропласты обладают собственной системой синтеза РНК и белка. Они содержат двухцепочечную ДНК кольцеобразной формы, не связанную с гистонами, что роднит их с ДНК прокариот. ДНК хлоропластов кодирует рибосомную, транспортную и информационную РНК. Хлоропласты высокополиплоидны, т. е. каждый хлоропласт содержит много копий кольцевого генома, причем количество ДНК увеличивается по мере развития органеллы. Хлоропласты содержат рибосомы 70S и 20-30% общей РНК клетки. В процессе развития хлоропластов осуществляется считывание (транскрипция) как их собственного, так и ядерного геномов, что свидетельствует об их относительной автономности. Пластидная ДНК кодирует РНК рибосом, большую субъединицу РуБФ-карбоксилазы и специфические белки тилакоидов. Однако значительная часть хлоропластных белков кодируется ядерной ДНК, например, РНК-полимераза, малая субъединица РуБФ-карбоксилазы и др.

Интенсивность фотосинтеза зависит в первую очередь от интенсивности и спектрального состава света, концентрации СО2 и О2, температуры, водного режима растения, минерального питания и др. факторов внешней среды. Адаптация фотосинтеза к этим факторам лежит в основе жизнедеятельности растения. В условиях, когда внешние факторы не лимитируют скорость фотосинтеза, его интенсивность достигает максимальной величины и целиком определяется ростовой функцией.

В среднем листья поглощают 80-85% энергии фотосинтетически активной радиации (400-700 нм) и 25% энергии инфракрасных лучей, что составляет около 55% общей солнечной радиации. Однако для фотосинтеза используется только 1,5-2% поглощенной энергии.

Зависимость скорости фотосинтеза от интенсивности падающего света имеет форму логарифмической кривой. У светолюбивых С3-растений максимальная скорость фотосинтеза наблюдается при освещении меньше яркого солнечного света. При дальнейшем увеличении интенсивности падающего света кривая скорости фотосинтеза постепенно выходит на плато (насыщение) и затем снижается (так называемое послеполуденное торможение). У С4-растений высокая скорость фотосинтеза наблюдается только при высоком уровне освещенности. У них отсутствует послеполуденное торможение фотосинтеза, а световая кривая не имеет насыщения на ярком солнечном свету.

При изменении условий освещения интенсивность фотосинтеза меняется, а фотосинтетический аппарат «настраивается» на новые условия на разных уровнях своей организации. Это важное адаптивное свойство позволяет растениям полнее использовать свет низких и умеренных интенсивностей и предохранять мембраны хлоропластов от повреждений при очень ярком свете, особенно если он сочетается с неблагоприятными факторами среды (низкой температурой, засухой и др.).

Качественный состав падающего света также влияет на скорость фотосинтеза и качественный состав его продуктов. Так, при выращивании растений на синем свету преимущественно образуются соединения неуглеводной природы — аминокислоты, белки и органические кислоты.

Зависимость фотосинтеза от температуры описывается одновершинной кривой. У растений умеренного пояса интенсивность фотосинтеза достигает максимума в интервале температур 20-25°С и снижается при дальнейшем повышении температуры. При температуре 40°С фотосинтез практически полностью тормозится, а при 45°С такие растения погибают. Однако растения, произрастающие в пустыне, способны осуществлять фотосинтез даже при температуре 58°С. У растений северных широт нижняя температурная граница фотосинтеза находится в пределах от -15°С (сосна, ель) до -0,5°С, а у тропических растений — в области низких положительных температур (4-8°С).

Глава 6 Зелёная архитектура

Экскурсия по лабиринтам зеленого листа очень поучительна. Так, в XVIII веке немецкий биолог и инженер С. Швенденер обратил внимание на продолговатые «остроумно устроенные вентиляционные отверстия» в листьях растении, называемые устьицами. Их назначение – автоматически поддерживать необходимый уровень влажности внутри растений. Если приток воды из корней превышает потерю влаги на испарения, то устьица широко раскрываются, облегчая испарение (транспирацию). При недостатке же влаги процесс идет в обратном направлении: количество устьиц сокращается. Однако роль устьиц этим не ограничиваются. Это также и «проходная», через которую в лист поступает углекислый газ. И если устьица закрыты, питание растения прекращается. Потому что К.А. Тимирязев писал, что «растению приходится пролагать свой жизненный путь между Сциллой и Харибдой» - между голодом и жаждой. Вообразить себе, сколь напряженные события разыгрываются в устьицах, нелегко. Вот что однажды, беседуя с журналистами, член корреспондент А.А. Ничипорович. «Тесно пешеходам и автомобилям на узких улицах больших городов. А в крошечных устьицах ещё «теснее». Обычно через каждое устьице диаметром в несколько микрон каждую секунду внутрь должны пройти 2500 миллиардов молекул углекислого газа… Скользнув взглядом по зелёной листве, мы и не догадываемся порой, с какой бешеной скоростью идут процессы внутри листа. Лист внутри пористый, словно губка. На долю пор приходится 20 – 30% его объема. Эта мера облегчает испарение влаги и диффузию углекислого газа к клеткам мезофилла – мякоти, основой рыхлой и пористой ткани листа. Удивительная эффективность работы листа обеспечена не только достаточно интенсивным газообменом с окружающей средой (большая пористость, гидрофобность стенок его пор), но также высокими показателями отношения поверхности его клеток к объему листа. Внутренняя поверхность одного кубического сантиметра зелёной ткани листа достигает 100 – 200 квадратных сантиметров. Поэтому квадратный метр листьев за час способен усвоить из воздуха до 6 – 8 граммов (3 -4 литра) углекислого газа и одновременно выделить столько же по объему кислорода. Однако как бы хорошо ни функционировал лист, он не может дать больше того, на что способен. Обязательно должна существовать какая – то стадия, которая лимитирует весь процесс фотосинтеза в целом. Это может быть и газообмен, и фотофизический акт поглощения квантов света, и влагообмен, и многое другое.
1   2   3

Похожие:

Реферат содержит шесть глав iconПринципы полимеразной цепной реакции
Структура работы. Реферат состоит из введения, пяти глав, заключения и списка литературы. Список литературы содержит 6 научных и...
Реферат содержит шесть глав iconПринципы полимеразной цепной реакции
Структура работы. Реферат состоит из введения, пяти глав, заключения и списка литературы. Список литературы содержит научных и научно-популярных...
Реферат содержит шесть глав iconПринципы полимеразной цепной реакции
Структура работы. Реферат состоит из введения, пяти глав, заключения и списка литературы. Список литературы содержит научных и научно-популярных...
Реферат содержит шесть глав iconПринципы полимеразной цепной реакции
Структура работы. Реферат состоит из введения, пяти глав, заключения и списка литературы. Список литературы содержит 6 научных и...
Реферат содержит шесть глав iconПравительство Российской Федерации Федеральное государственное автономное...
Работа состоит из введения, 4 глав и заключения. Основной материал работы изложен на 87 страницах, содержит 10 рисунков и 10 таблиц....
Реферат содержит шесть глав iconРеферат Данная работа изложена на 57 страниц машинописного текста...
Данная работа изложена на 57 страниц машинописного текста и состоит из реферата, введения, 4-х глав (разделов) и 8-и подразделов,...
Реферат содержит шесть глав iconПравила оформления рефератов (по материалам Краевой школы «Экспедиция к успеху») реферат
Реферат пишется на основе анализа, систематизации и обобщения работ ряда авторов имеющиеся знания по выбранной теме, содержит достаточное...
Реферат содержит шесть глав iconТематический план повышения квалификации глав администраций сельских...
Российской академии кадрового обеспечения агропромышленного комплекса организуется учеба глав администраций муниципальных районов,...
Реферат содержит шесть глав iconРеферат состоит: из трех глав, введения и заключения. Введение в...
Реферат состоит: из трех глав, введения и заключения. Введение в котором определяется постановка проблемы. В первой главе говорится...
Реферат содержит шесть глав iconПрием «Шесть шляп»
Класс разбивается на шесть групп для работы с текстом параграфа. Каждая группа имеет шляпу своего цвета и соответственно по своему...
Реферат содержит шесть глав iconСказкотерапевтический тренинг «Шесть шляп»
«Шесть шляп мышления» по Эдварду де Боно, исследователя механизмов творчества. Успешная социальная адаптация. Развитие самосознания,...
Реферат содержит шесть глав iconКнига Тилака содержит 13 глав и завершается общим индексом терминов,...
Xiii. Значение наших результатов по исследованию истории изначальной культуры и религии арьев
Реферат содержит шесть глав iconДипломная работа содержит 134 страницы, 5 глав, 18 рисунков, 12 таблиц,...
Сириус, прием, хранение и обработку этих сообщений для подтверждения выполнения задач, поставленных перед oss-платформой, и с целью...
Реферат содержит шесть глав iconОбразовательная программа дополнительного образования детей «шесть ступеней мастерства»
Программа «Шесть ступеней мастерства», реализуемая в студии спортивного танца, имеет две направленности – художественно-эстетическую...
Реферат содержит шесть глав iconРеферат, по теме соответствующей его варианту, объемом от 15 до 20 страниц
В начала реферата должно быть содержание с указанием номеров страниц расположения всех глав и пунктов
Реферат содержит шесть глав iconКафедра информатики и вычислительной техники карпенко сергея михайловича...
Структура и объем работы. Данная работа состоит из введения, двух глав, заключения и трех приложений. Общий объем работы – 82 с....


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск