Реферат к проекту по дисциплине «Экология»





Скачать 264.65 Kb.
НазваниеРеферат к проекту по дисциплине «Экология»
Дата публикации28.04.2015
Размер264.65 Kb.
ТипРеферат
100-bal.ru > Химия > Реферат


Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

Владимирский государственный университет


Кафедра экологии


Реферат к проекту по дисциплине «Экология» на тему:

Образование кислотных осадков

и их влияние на окружающую среду

Выполнили:

ст. гр. УИ-107

Голубочкин В.С.

Карев С.А.
Проверила:

Любишева А.В.


Владимир 2010

Содержание.

Введение

3

Понятие кислотности

4

Основные антропогенные источники кислотообразующих выбросов

6

Механизм образования кислотных осадков

11

Выпадение кислотных дождей

13

Влияние кислотных дождей на экосистемы и людей

16

Способы защиты от кислотных дождей

22

Заключение

26

Список использованной литературы

28


Введение.
Интенсификация деятельности человека в последнее столетие привела к значительному нарушению сложившегося в природе равновесия, в результате чего возникло множество проблем, связанных с защитой окружающей среды.

Среди весьма серьезных проблем экологического плана наибольшее беспокойство вызывает нарастающее загрязнение воздушного бассейна Земли примесями, имеющими антропогенную природу. Атмосферный воздух является основной средой деятельности биосферы, в том числе человека. В период промышленной и научно-технической революции увеличился объем эмиссии в атмосферу газов и аэрозолей антропогенного происхождения. По ориентировочным данным ежегодно в атмосферу поступают сотни миллионов тонн оксидов серы, азота, галогенопроизводных и других соединений. Основными источниками атмосферных загрязнений являются энергетические установки, в которых используется минеральное топливо, предприятия черной и цветной металлургии, химической и нефтехимической промышленности, авиационный и автомобильный транспорт.

Попадая в атмосферу, многие загрязнения подвергаются химическим или фотохимическим превращениям с участием компонентов воздуха. Конечные продукты химических превращений удаляются из атмосферы с осадками или выпадают на поверхность Земли с аэрозолями. Попадая на поверхность биологических объектов, строительных конструкций и других предметов, загрязнения и продукты их превращения интенсифицируют физико-химические процессы разрушения органических веществ, металлов и неорганических материалов.

Ущерб, наносимый живой природе атмосферными загрязнениями и продуктам производственной деятельности человека, трудно оценить, но гибель лесов, загрязнение водных бассейнов, распространение аллергических заболеваний, нарушение биологического равновесия в экосистемах не в последнюю очередь связаны с высокими концентрациями агрессивных примесей в атмосфере.
1. Понятие кислотности
Кислотность водного раствора определяется присутствием в нем положительных водородных ионов Н+ и характеризуется концентрацией этих ионов в одном литре раствора C(H+) (моль/л или г/л). Щелочность водного раствора определяется присутствием гидроксильных ионов ОН– и характеризуется их концентрацией C(ОН–).

Как показывают расчеты, для водных растворов произведение молярных концентраций водородных и гидроксильных ионов – величина постоянная, равная

C(H+)C(ОН–) = 10–14, другими словами, кислотность и щелочность взаимосвязаны: увеличение кислотности приводит к снижению щелочности, и наоборот.

Раствор является нейтральным, если концентрации водородных и гидроксильных ионов одинаковы и равны (каждая) 10–7 моль/л. Такое состояние характерно для химически чистой воды.

Из сказанного следует, что для кислых сред выполняется условие:

10–7 < C(H+) Ј 100,

для щелочных сред:

10–14 Ј C(H+) < 10–7.

На практике степень кислотности (или щелочности) раствора выражается более удобным водородным показателем рН, представляющим собой отрицательный десятичный логарифм молярной концентрации водородных ионов:

рН = –lgC(H+).

Например, если в растворе концентрация водородных ионов равна 10–5 моль/л, то показатель кислотности этого раствора рН = 5. При этом изменению показателя кислотности рН на единицу соответствует десятикратное изменение концентрации водородных ионов в растворе. Так, концентрация водородных ионов в среде с рН = 2 в 10, 100 и 1000 раз выше, чем в среде с рН = 3, 4 и 5 соответственно.

В кислых растворах рН < 7, и чем меньше, тем кислее раствор. В щелочных растворах рН > 7, и чем больше, тем выше щелочность раствора.

Шкала кислотности идет от рН = 0 (крайне высокая кислотность) через рН = 7 (нейтральная среда) до рН = 14 (крайне высокая щелочность).

Чистая природная, в частности дождевая, вода в отсутствие загрязнителей, тем не менее имеет слабокислую реакцию (рН = 5,6), поскольку в ней легко растворяется углекислый газ с образованием слабой угольной кислоты:

СО2 + Н2О ↔ Н2СО3.

Для определения показателя кислотности используют различные рН-метры, в частности дорогостоящие электронные приборы. Простым способом определения характера среды является применение индикаторов – химических веществ, окраска которых изменяется в зависимости от рН среды. Наиболее распространенные индикаторы – фенолфталеин, метилоранж, лакмус, а также естественные красители из красной капусты и черной смородины.

Достаточно точно показатель кислотности рН измеряется с помощью индикаторной бумаги, содержащей кислотореагирующие пигменты.

2. Основные антропогенные источники кислотообразующих выбросов.
Главные кислотообразующие выбросы в атмосферу – диоксид серы SO2 (cернистый ангидрид, или сернистый газ) и оксиды азота NОх (монооксид, или оксид азота NО, диоксид азота NO2 и др.).

Природными источниками поступления диоксида серы в атмосферу являются главным образом вулканы и лесные пожары. Естественная фоновая концентрация SО2 в атмосфере достаточно стабильна, включена в биохимический круговорот и для экологически благополучных территорий России равна 0,39 мкг/м3 (Арктика) – 1,28 мкг/м3 (средние широты). Эти концентрации значительно ниже принятого в мировой практике предельно допустимого значения (ПДК) по SО2, равного 15 мкг/м3.

Общее количество диоксида серы антропогенного происхождения в атмосфере сейчас значительно превышает ее естественное поступление и составляет в год около 100 млн т (для сравнения: природные выбросы SO2 в год равны примерно 20 млн т). Из них на долю США приходится 20%, на долю России – менее 10%. Диоксид серы образуется при сжигании богатого серой горючего, такого, как уголь и мазут (содержание серы в них колеблется от 0,5 до 5–6%), на электростанциях (~40% антропогенного поступления в атмосферу), в металлургических производствах, при переработке содержащих серу руд, при различных химических технологических процессах и работе ряда предприятий машиностроительной отрасли промышленности (~50%).

При сжигании каждого миллиона тонн угля выделяется около 25 тыс. т серы в виде главным образом ее диоксида (до триоксида окисляется менее 3% серы); в 4–5 раз меньше окисленной серы дает сжигание мазута.

Как показывают данные, приведенные в таблице, в России выбросы диоксида серы составляют более 30% всех вредных промышленных выбросов. На предприятиях энергетической отрасли промышленности, черной и цветной металлургии доля выбросов диоксида серы составляет примерно 40 и 50% соответственно (см. табл.). Меньше доля выбросов SO2 предприятиями нефтедобывающей, нефтеперерабатывающей, угольной и газовой отраслей промышленности (см. табл.) – около 8% собственных выбросов загрязняющих веществ и около 5% суммарных выбросов и оксида серы предприятиями России, хотя предприятия этих отраслей дают примерно пятую часть всех техногенных выбросов загрязняющих веществ.

Анализ техногенных источников выбросов сернистого газа в атмосферу показывает, что выбросы производят высокоразвитые промышленные страны, и это становится проблемой в первую очередь для них и их ближайших соседей.

Данные мониторинга воздушной атмосферы свидетельствуют об увеличении в последние годы доли выбросов азотных соединений в закисление атмосферных осадков.

Содержанию оксидов азота в атмосфере стали уделять внимание лишь после обнаружения озоновых дыр в связи с открытием азотного цикла разрушения озона.

Природные поступления в атмосферу оксидов азота связаны главным образом с электрическими разрядами, при которых образуется NО, впоследcтвии – NО2. Значительная часть оксидов азота природного происхождения перерабатывается в почве микроорганизмами, т. е. включена в биохимический круговорот. Для экологически благополучных районов России естественная фоновая концентрация оксидов азота равна 0,08 мкг/м3 (Арктика) – 1,23 мкг/м3 (средние широты), что существенно ниже ПДК, равного 40 мкг/м3.

Оксиды азота техногенного происхождения образуются при сгорании топлива, особенно если температура превышает 1000 °С. При высоких температурах часть молекулярного азота окисляется до оксида азота NО, который в воздухе немедленно вступает в реакцию с кислородом, образуя диоксид NO2 и тетраоксид диазота N2O4. Первоначально образующийся диоксид азота составляет лишь 10% выбросов всех оксидов азота в атмосферу, однако в воздухе значительная часть оксида азота превращается в диоксид – гораздо более опасное соединение.

При высокотемпературном сгорании органического природного топлива происходят реакции двух типов: между кислородом воздуха и азотом, содержащимся в топливе (в угле содержание азота составляет в среднем около 1%, нефти и газе – 0,2–0,3%), и между кислородом воздуха и азотом, также содержащимся в воздухе.

Техногенные мировые выбросы оксидов азота в атмосферу составляют в год около 70 млн т (природные выбросы оксидов азота, по некоторым оценкам, равны в год 700 млн т), примерно 30% их приходится на долю США, 25% – на долю стран Западной Европы и лишь несколько процентов – на долю России (см. табл.). Суммарные антропогенные выбросы оксидов азота в атмосферу больше. Дополнительный источник таких выбросов – сельское хозяйство, интенсивно использующее химические удобрения, в первую очередь содержащие соединения азота. Вклад этой отрасли мирового хозяйства в загрязнение атмосферы оксидами азота учесть трудно, по некоторым данным, поступление оксидов азота в атмосферу с сельскохозяйственных полей сопоставимо с промышленными выбросами.

В России (см. рис. 2) около 25% выбросов оксидов азота дает сжигание топлива на предприятиях электро- и теплоэнергетики, столько же – на предприятиях металлургической, машиностроительной и не связанной с процессами горения топлива химической отраслей промышленности (например, получение азотной кислоты и взрывчатых веществ). Главный источник техногенных оксидов азота в атмосфере – автотранспорт и другие виды моторного транспорта (около 40%). Распределение выбросов оксидов азота по основным отраслям промышленного производства приведены в таблице.

Следует отметить, что при наметившейся в 1990-е гг. в России тенденции снижения выбросов загрязняющих веществ промышленными предприятиями (см. табл.) доля диоксида серы и оксидов азота в этих выбросах увеличивается.

Суммарные выбросы всех загрязнителей в воздушную среду в 1997 г. по сравнению с 1993 г. сократились примерно на 30%, диоксида серы – примерно на 20%, оксидов азота – на 30%.

Однако лишь 20% этих сокращений обусловлены природоохранными мероприятиями и усилением экологического контроля. Основная причина – спад производства, который за эти годы составил более 50%. Расхождение между относительными показателями спада производства и сокращения выбросов свидетельствует о росте отрицательного техногенного воздействия на окружающую среду в расчете на единицу произведенного продукта. Как показывает анализ, спад производства был неравномерен в различных отраслях хозяйства – наименьшим он оказался в самых экологически напряженных секторах (энергетика, металлургия и др.) и наибольшим – в отраслях, оказывающих относительно слабое воздействие на окружающую среду (машиностроение, оборонная отрасль промышленности и др.), при этом выбросы автотранспорта возросли, причем в крупных городах – очень значительно.


Отметим еще два – экономических – аспекта рассматриваемой проблемы, оказывающих большое влияние на общую экологическую ситуацию в России, в том числе и связанную с кислотными осадками. К началу спада производства в России (1991) на предприятиях срок эксплуатации наличного промышленного оборудования был запредельным, в базовых отраслях промышленности (среди них те, что дают наибольшие кислотообразующие выбросы) средний возраст оборудования приближался к 30 годам. Изношенное оборудование требует больше ресурсов для эксплуатации, производит больше отходов, отличается повышенной аварийностью. Помимо отсутствия средств на капитальные затраты предприятия не имеют средств и на текущие затраты. В этих критических условиях для снижения удельных затрат на производимую продукцию предприятие экономит на всем и в первую очередь на охране окружающей среды, строительстве или модернизации очистных сооружений и других мероприятиях.

Как следует из ежегодных государственных докладов Госкомэкологии «О состоянии окружающей природной среды в Российской Федерации», данных мониторинга Росгидромета, во многих регионах даже сократившийся поток загрязнений превосходит ассимиляционный потенциал соответствующих экосистем, т. е. является для них заведомо чрезмерным.
3. Механизм образования кислотных осадков



Диоксид серы, попавший в атмосферу, претерпевает ряд химических превращений, ведущих к образованию кислот.

Частично диоксид серы в результате фотохимического окисления превращается в триоксид серы (серный ангидрид) SО3:

2SO2 + O2 → 2SO3,который реагирует с водяным паром атмосферы, образуя аэрозоли серной кислоты:

SO3 + Н2O → Н2SO4.

Основная часть выбрасываемого диоксида серы во влажном воздухе образует кислотный полигидрат SО2•nH2O, который часто называют сернистой кислотой и изображают условной формулой Н23:

SO2 + H2O → H2SO3.

Сернистая кислота во влажном воздухе постепенно окисляется до серной:

23 + О2 → 2Н2SO4.

Аэрозоли серной и сернистой кислот приводят к конденсации водяного пара атмосферы и становятся причиной кислотных осадков (дожди, туманы, снег).

При сжигании топлива образуются твердые микрочастицы сульфатов металлов (в основном при сжигании угля), легко растворимые в воде, которые осаждаются на почву и растения, делая кислотными росы.

Аэрозоли серной и сернистой кислот составляют около 2/3 кислотных осадков, остальное приходится на долю аэрозолей азотной и азотистой кислот, образующихся при взаимодействии диоксида азота с водяным паром атмосферы:

2NО2 + Н2О → НNО3 + НNО2.

Существуют еще два вида кислотных дождей, которые пока не отслеживаются мониторингом атмосферы. Находящийся в атмосфере хлор (выбросы химических предприятий; сжигание отходов; фотохимическое разложение фреонов, приводящее к образованию радикалов хлора) при соединении с метаном (источники поступления метана в атмосферу: антропогенный – рисовые поля, а также результат таяния гидрата метана в вечной мерзлоте вследствие потепления климата) образует хлороводород, хорошо растворяющийся в воде с образованием аэрозолей соляной кислоты:

Сl• + СН4 → CН•3 + НСl,

СН•3 + Сl2 → CН3Cl + Сl•.

Очень опасны выбросы фтороводорода (производство алюминия, стекольное), который хорошо растворяется в воде, что приводит к появлению в атмосфере аэрозолей плавиковой кислоты.
4. Выпадение кислотных дождей.
Впервые кислотные дожди были отмечены в Западной Европе, в частности Скандинавии, и Северной Америке в 1950-х гг. Сейчас эта проблема существует во всем индустриальном мире и приобрела особое значение в связи с возросшими техногенными выбросами оксидов серы и азота.

За несколько десятилетий размах этого бедствия стал настолько широк, а отрицательные последствия столь велики, что в 1982 г. в Стокгольме состоялась специальная международная конференция по кислотным дождям, в которой приняли участие представители 20 стран и ряда международных организаций. До сих пор острота этой проблемы сохраняется, она постоянно в центре внимания национальных правительств и международных природоохранных организаций.

В среднем кислотность осадков, выпадающих в основном в виде дождей в Западной Европе и Северной Америке на площади почти 10 млн км2, составляет 5–4,5, а туманы здесь нередко имеют рН, равный 3–2,5.

В последние годы кислотные дожди стали наблюдаться в промышленных районах Азии, Латинской Америки и Африки. Например, в Восточном Трансваале (ЮАР), где вырабатывается 4/5 электроэнергии страны, на 1 км2 выпадает около 60 т серы в год в виде кислотных осадков. В тропических районах, где промышленность практически неразвита, кислотные осадки вызваны поступлением в атмосферу оксидов азота за счет сжигания биомассы.

В России наиболее высокие уровни выпадений окисленной серы и оксидов азота (до 750 кг/км2 в год) на значительных по площади ареалах (несколько тыс. км2) наблюдаются в густонаселенных и промышленных регионах страны – в Северо-Западном, Центральном, Центрально-Черноземном, Уральском и других районах; на локальных ареалах (площадью до 1 тыс. км2) – в ближнем следе металлургических предприятий, крупных ГРЭС, а также больших городов и промышленных центров (Москва, Санкт-Петербург, Омск, Норильск, Красноярск, Иркутск и др.), насыщенных энергетическими установками и автотранспортом.

Превышение уровня критических нагрузок по выпадению окисленной серы отмечается в ряде областей (Ленинградская, Московская, Рязанская), на европейской территории России и по выпадениям оксидов азота – на половине этой территории.

За последние пять лет, согласно результатам измерений Росгидромета, наблюдается неизменное повышение кислотности дождей (минимальные значения рН = 3,1–3,4) на Урале и в Предуралье, на северо-западе и юге европейской территории России.

Специфическая особенность кислотных дождей – их трансграничный характер, обусловленный переносом кислотообразующих выбросов воздушными течениями на большие расстояния – сотни и даже тысячи километров. Этому в немалой степени способствует принятая некогда «политика высоких труб» как эффективное средство против загрязнения приземного воздуха. Почти все страны одновременно являются «экспортерами» своих и «импортерами» чужих выбросов. Наибольший вклад в трансграничное подкисление природной среды России соединениями серы вносят Украина, Польша, Германия. В свою очередь, из России больше всего окисленной серы направляется в страны Скандинавии. Соотношения здесь такие: с Украиной – 1:17, с Польшей – 1:32, с Норвегией – 7:1. Экспортируется «мокрая» часть выбросов (аэрозоли), сухая часть загрязнений выпадает в непосредственной близости от источника выброса или на незначительном удалении от него.

Обмен кислотообразующими и другими загрязняющими атмосферу выбросами характерен для всех стран Западной Европы и Северной Америки. Великобритания, Германия, Франция больше направляют окисленной серы к соседям, чем получают от них. Норвегия, Швеция, Финляндия больше получают окисленной серы от своих соседей, чем выпускают через собственные границы (до 70% кислотных дождей в этих странах – результат «экспорта» из Великобритании и Германии). Трансграничный перенос кислотных осадков – одна из причин конфликтных взаимоотношений США и Канады.

5. Влияние кислотных дождей на экосистемы и людей



Кислотные дожди оказывают многоплановое влияние на окружающую среду.

В первую очередь отрицательному воздействию подвергаются водные экосистемы, почва и растительность.

Природные поверхностные воды обладают буферными способностями по отношению к посторонним водородным и гидроксильным ионам, т. е. способностью поддерживать постоянную величину рН вблизи нейтральной точки; за пределами интервала значений

рН = 4–13 буферная способность полностью утрачивается. Главным буферным соединением в воде является гидрокарбонат-ион HCO3–, образующийся при диссоциации угольной кислоты и способный нейтрализовать кислоты и основания:

НСО3– + Н+ Н2СО3,

НСО3– + ОН СО32– + Н2О.

Таким образом, гидрокарбонат-ион принимает на себя более или менее значительную часть добавляемых водородных или гидроксильных ионов, благодаря чему рН раствора меняется незначительно. Особенно высокими буферными способностями обладает морская вода, рН которой составляет в общем от 7 до 8,5, что соответствует слабощелочной реакции. Снеговые воды, а также большинство пресных водоемов, особенно в северных областях земного шара, обладают слабыми буферными свойствами и имеют кислую реакцию: 7 > рН > 4.

Самый богатый животный мир присущ водам, рН которых лежит в нейтральной или слабощелочной области. Он во много раз богаче, чем животный мир кислых или щелочных вод. Водоемы с очень кислыми водами необитаемы, жизни в них нет, как нет жизни и в водоемах со значениями рН больше 11.

Первыми жертвами кислотных дождей стали озера и реки. Сотни озер в Скандинавии, на северо-востоке США и на юго-востоке Канады, в Шотландии превратились в кислотные водоемы. Кислотные дожди привели к резкому снижению продуктивности 2500 озер Швеции. В Норвегии примерно половина поверхностных вод имеет повышенную кислотность, из 5000 озер в 1750 исчезла рыба. В провинции Онтарио (Канада) пострадало 20% озер, а в провинции Квебек – до 60% озер.

При повышении кислотности воды (еще до критического порога выживания водной биоты, например для моллюсков таким порогом является рН = 6, для окуней – рН = 4,5) в ней быстро нарастает содержание алюминия за счет взаимодействия гидроксида алюминия придонных пород с кислотой:

Аl(ОН)3 + 3H+ → Al3+ + 3Н2О.

Даже небольшая концентрация ионов алюминия (0,2 мг/л) смертельна для рыб. В то же время фосфаты, обеспечивающие развитие фитопланктона и другой водной растительности, соединяясь с алюминием, становятся малодоступными этим организмам.

Повышение кислотности приводит к появлению в воде высокотоксичных ионов тяжелых металлов – кадмия, свинца и других, которые прежде входили в состав нерастворимых в воде соединений и не представляли угрозы живым организмам.

Дефицит питательных веществ и интоксикация воды приводят к своеобразной «стерилизации» водоемов. Закисленная и токсичная вода разрушает скелеты рыб и раковины моллюсков, а главное – снижает репродуктивные процессы. В свою очередь, это приводит к сокращению популяций наземных животных и птиц, связанных с водной биотой трофическими цепями (цепи питания).

«Мертвая вода» усиливает дефицит пресной воды, обусловленный возрастающими масштабами хозяйственного и бытового использования и ее загрязнением.

Что касается состояния рек и озер России, то качество воды большинства водных объектов в течение всех последних лет наблюдений и контроля со стороны Госкомэкологии не отвечает нормативным требованиям из-за сильного загрязнения промышленными сточными водами. Все основные реки России и их крупные притоки оцениваются как «загрязненные» или «сильно загрязненные». При таком положении кислотные осадки мало изменяют качественные характеристики воды.

Почвенные организмы более приспособлены к пониженным значениям рН почвенной влаги, но и они угнетаются возрастающей кислотностью, особенно азотфиксирующие бактерии и грибницы. Разрыхляющие почву дождевые черви могут жить в слабокислых почвах, в таких условиях они «нейтрализуют» почвенные кислоты с помощью выделяемой ими извести; в кислой почве дождевые черви погибают. Среди других нарушений, происходящих в почве вследствие ее подкисления, следует отметить нарушение процессов питания растений, разрушение их корневой системы.

Почвенное подкисление считается одной из основных причин усыхания лесов умеренной зоны северного полушария, причем этот фактор долгодействующий, который может проявиться через много лет после прекращения вредных кислотообразующих выбросов в атмосферу. Больше всего страдают елово-пихтовые и дубовые леса. Непосредственное воздействие кислотных осадков приводит к нарушению листовой поверхности, процессов транспирации (испарение с поверхности листа) и фотосинтеза за счет разрушения хлорофилла (это воздействие можно определить зрительно по побурению листьев и игл).

Многообразно косвенное влияние: загрязнения выступают в роли пусковых механизмов биологических и биохимических процессов, ослабляющих растение, нарушающих его рост, повышающих чувствительность к климатическим изменениям, делающих его менее устойчивым к вредителям – грибам, бактериям, жукам и др.

В то же время подкисление почвы азотокислыми дождями стимулирует развитие лесных вредителей.

Наибольший урон кислотные дожди нанесли лесам Центральной Европы, в частности 35% лесов Германии (на площади более 2,5 млн га) повреждены ими. Ущерб от кислотных дождей для европейских лесов оценивается в 118 млн м3 древесины в год (из них около 35 млн м3 на европейской территории России). В меньшей степени от кислотных дождей страдают сельскохозяйственные растения, поскольку подкисление почв здесь можно контролировать агрохимикатами.

Воздействию кислотообразующих газов и кислотных осадков подвергаются органические материалы – кожа, бумага, ткани, резина, красители. Бумага, большинство тканей, кожа образованы гидрофильными веществами, которые накапливают воду между волокнами. Кислоты постепенно гидролизуют макромолекулы (главным образом целлюлозы и белков), в результате чего эти материалы становятся хрупкими и разрушаются. Как восстановитель диоксид серы вызывает обесцвечивание красителей, что приводит к выцветанию тканей.

Известняк, мел, мрамор, туф, содержащие карбонат кальция, разрушаются под действием кислотных дождей:

СаСО3 + Н24 → Са2+ + SO42–+ СО2 + Н2О,

СаСО3 + 2HNO3 → Са2+ + 2NО3– + СО2 + Н2О.

Многие скульптуры и здания в Риме, Венеции и других городах, памятники зодчества, такие, как Акрополь в Афинах, Кёльнский собор и другие, за несколько последних десятилетий получили значительно большие повреждения, чем за все предыдущее время. Под угрозой полного разрушения в результате действия кислотных осадков находятся более 50 тыс. скульптур скального «Города Будд» под Юньанем в Китае, построенного 15 веков назад.

Из бетона и других минеральных строительных материалов, а также стекла под действием кислотных дождей выщелачиваются не только карбонаты, но и силикаты. Если рН осадков достигает значений, равных 4,5–3, то ионы алюминия начинают вымываться из кристаллической решетки. С уменьшением рН интенсивно протекает разрушение силикатной кристаллической структуры, как, например, в полевом шпате (сырье для производства керамики, стекла, цемента):

3KAlSi3O8 + 12Н2О + 2H+ → КAl3Si3O10(ОН)2 + 6H4SiO4 + 2К+,

2КAl3Si3O10(ОН)2 + 18Н2О + 2Н+ → 3Al2O32О)3 + 6H4SiO4 + 2К+.

Подобным образом кислотные дожди разрушают древние оконные стекла церквей, соборов и дворцов. Старинное стекло из-за повышенного содержания оксидов щелочных и щелочно-земельных металлов более подвержено действию кислот, чем современное.

Металлы под действием кислотных дождей, туманов и рос разрушаются еще быстрее, чем строительные материалы и стекло. Корка образующегося на поверхности железных изделий гигроскопичного сульфата железа (II) окисляется кислородом воздуха, при этом образуется основная соль сульфата железа (III), являющаяся составной частью ржавчины:

2FeSO4 + Н2О + 0,5O2 → 2Fe(ОН)SO4.

Такой же ущерб претерпевают изделия из бронзы, на которых образуется так называемая патина, состоящая из карбонатов и сульфатов. Слои пыли и копоти на поверхности создают пленку, которая удерживает влагу и в которой постоянно растворяются кислотообразующие газы. Кислота разъедает металл, переводя его в виде ионов в раствор, что становится заметным при отслаивании корки налета, достигающей миллиметровой толщины. Изделие при этом теряет свою первоначальную форму.

Загрязнение воздуха кислотообразующими выбросами оказывает многообразное вредное влияние и на организм человека.

Вдыхание влажного воздуха, содержащего диоксид серы, особенно опасно для пожилых людей, страдающих сердечно-сосудистыми и легочными заболеваниями, в тяжелых случаях может возникнуть отек легких. Вредно это и для здоровых людей, поскольку SO2 и сульфатные частицы обладают канцерогенным действием. Установлена тесная взаимосвязь между повышением смертности от бронхитов и ростом концентрации диоксида серы в воздухе. Во время трагического лондонского тумана 1952 г. более 4000 смертей было отнесено за счет повышенного содержания во влажном воздухе диоксида серы и сульфатных частиц.

Многочисленные исследования показали увеличение числа заболеваний дыхательных путей в районах, воздух которых загрязнен диоксидом азота NО2. Попадая в дыхательные пути, он взаимодействует с гемоглобином крови, затрудняя перенос кислорода к органам и тканям, вызывает респираторные, астматические и сердечные заболевания. В феврале 1972 г. в Японии по этой причине заболело более 70 000 человек, для многих из них заболевание имело летальный исход.

Кислотные дожди подобным образом действуют и на животных, однако систематических исследований здесь не проводилось, за исключением обитателей водных экосистем.

6.Способы защиты от кислотных дождей.

Кислотные дожди могут оказывать как прямое, так и косвенное воздействие на живую и неживую природу. Из этого следует, что меры по частичному восполнению ущерба или предотвращению дальнейшего разрушения окружающей среды могут быть различными.

Наиболее эффективным способом защиты следует считать значительное сокращение выбросов двуокиси серы и окиси азота. Этого можно достичь несколькими методами, в том числе путем сокращения использования энергии и создания электростанций, не использующих минеральное топливо. Другие возможности уменьшения выброса загрязнений в атмосферу — удаление серы из топлива с помощью фильтров, регулирование процессов горения и другие технологические решения.

Снижение содержания серы в различных видах топлива. Лучше всего было бы использовать топливо с низким содержанием серы. Однако таких видов топлива очень мало. По приближенным оценкам из известных в настоящее время мировых запасов нефти только 20% имеют содержание серы менее 0, 5%. Среднее содержание серы в используемой нефти увеличивается, так как нефть с низким содержанием серы добывается ускоренными темпами.

Так же обстоит дело и с углями. Угли с низким содержанием серы находятся практически только в Канаде и Австралии, но это только небольшая часть имеющихся залежей угля. Содержание серы в углях колеблется от 0, 5 до 1,0%.

Таким образом, энергоносители с низким содержанием серы у нас имеются в ограниченном количестве. Если мы не хотим, чтобы содержавшаяся в нефти и угле сера попала в окружающую среду, необходимо принимать меры для ее удаления.

Во время переработки (дистилляции) нефти остаток (мазут) содержит большое количество серы. Удаление серы из мазута — процесс очень сложный, а в результате удается освободиться всего от 1/3 или 2/3 серы. К тому же процесс очистки мазута от серы требует от производителя больших капитальных вложений.

Сера в угле находится частично в неорганической, а частично в органической форме. Во время очистки, когда удаляют несгораемые части, удаляется также часть пирита. Однако таким способом даже при самых благоприятных условиях можно освободиться только от 50% общего содержания серы в угле. С помощью химических реакций могут быть удалены как органические, так и неорганические серосодержащие соединения. Но в связи с тем, что процесс идет при высоких температурах и давлениях, этот способ оказался гораздо дороже предыдущего.

Очистка угля и нефти от серы, таким образом, представляет собой достаточно сложный и малораспространенный процесс, причем затраты на него весьма высоки. Кроме того, даже после очистки энергоносителей в них остается приблизительно половина первичного содержания серы. Поэтому очистка от серы является не самым лучшим решением проблемы кислотных дождей.

Применение высоких труб. Это один из наиболее спорных способов. Сущность его заключается в следующем. Перемешивание загрязняющих веществ в значительной степени зависит от высоты дымовых труб. Если мы используем низкие трубы (здесь в первую очередь необходимо вспомнить трубы электростанции), то выбрасываемые соединения серы и азота перемешиваются в меньшей степени и быстрее выпадают в осадок, чем при наличии высоких труб. Поэтому в ближайшем окружении (от нескольких километров до нескольких десятков километров) концентрация оксидов серы и азота будет высокой и, естественно, эти соединения будут причинять больше вреда. Если труба высокая, то непосредственные воздействия уменьшаются, но возрастает эффективность перемешивания, что означает большую опасность для отдаленных районов (кислотные дожди) и для всей атмосферы в целом (изменение серы в газах, образующихся во время горения топлива химического состава атмосферы, изменение климата). Таким образом, строительство высоких труб, несмотря нараспространенное мнение, не решает проблемы загрязнения воздуха, зато в значительной степени увеличивает "экспорт" кислотных веществ и опасность выпадения кислотных дождей в отдаленных местах. Следовательно, увеличение высоты трубы сопровождается тем, что непосредственные воздействия загрязнений (гибель растений, коррозия зданий и т.п.) уменьшаются, однако косвенные воздействия (влияние на экологию удаленных районов) увеличиваются. Строительство высоких труб в известной степени безнравственно, поскольку страна, где происходят сильные выбросы загрязнений, переадресовывает часть кислотных осадков вместе с их неблагоприятными последствиями в другие страны.
Технологические изменения.

Известно, что в процессе горения топлива азот и кислород воздуха образуют окись азота NO, которая в значительной степени способствует повышению кислотности осадков. Выше было указано, что в целом в мире горение топлива дает две трети всех антропогенных выбросов. Количество оксида азота NO, который образуется при горении, зависит от температуры горения. Выявлено, что чем меньше температура горения, тем меньше возникает оксида азота, к тому же количество NO зависит от времени нахождения топлива в зоне горения и от избытка воздуха. Таким образом, соответствующим изменением технологии можно сократить количество выбрасываемого загрязняющего вещества.

Количество выбрасываемых соединений серы можно значительно уменьшать, используя установку, показанную на рисунке.

Схема технологии сжигания топлива с большой скоростью в специальной печи. С помощью этого процесса уменьшается содержание серы в газах, образующихся во время горения топлива.

В зону горения (с перфорированной подстилкой) направляют поток несгораемого вещества, связывающего серу. Всасываемый снизу с большой скоростью воздух измельчает и перемешивает вещество, находящееся в объеме горения. С помощью этого процесса можно не только уменьшить выброс двуок си серы, но и снизить количество образующегося оксида азота NO, так как при этом снижается температура горения.

Сокращения выброса двуокиси серы можно также достичь очисткой конечных газов от серы. Наиболее распространенный метод — мокрый процесс, когда конечные газы барботируют через раствор известняка, в результате чего образуются сульфит или сульфат кальция. Таким способом удаляется большая часть серы. Этот способ еще не получил широкого распространения.
Известкование.

Для уменьшения закисления в озера и в почву добавляют щелочные вещества (например, карбонат кальция). Эта операция называется известкованием. Его достаточно часто применяют в Скандинавских странах, где известь распыляют на почву или на водосборную территорию с вертолетов. Известь, попадая в воду, быстро растворяется, а образующаяся в результате гидролиза щелочь сразу же нейтрализует кислоты. Можно подсчитать, что в 1 м3 воды необходимо внести около 5 г извести для изменения значения рН с 4, 5 до 6, 5. Известкование применяют для обработки кислых почв с целью их нейтрализации. Наряду с преимуществами известкование имеет ряд недостатков:

  • в проточной и быстро перемешивающейся воде озер нейтрализация проходит

  • недостаточно эффективно;

  • происходит грубое нарушение химического и биологического равновесия вод

  • и почв;

  • не удается устранить все вредные последствия закисления.

С помощью известкования нельзя удалять тяжелые металлы. Эти металлы во время уменьшения кислотности переходят в труднорастворимые соединения и осаждаются, однако при добавлении новой дозы кислот снова растворяются, представляя таким образом постоянную потенциальную опасность для озер.

Кроме описанных выше известно еще множество способов защиты от загрязнений. Например, погибшие популяции животных и растений заменяют новыми, которые лучше переносят закисление. Памятники культуры с целью предотвращения дальнейшего их разрушения обрабатывают специальной глазурью.

Рассмотренные здесь способы имеют одно общее свойство — их использование до сих пор не привело к существенному уменьшению выбросов оксидов серы и азота. Не достигнуты заметные успехи и в предотвращении вредных воздействий, вызываемых кислотными дождями.

Заключение.

Нам уже известно, что дальнейшее закисление окружающей среды зависит от того, как будет обстоять дело с антропогенными выбросами оксидов серы и азота в атмосферу. Разумеется, предсказать это очень сложно. Однако мы можем сделать определенное заключение на основе анализа интенсивности выбросов в прошлом. Оцененный таким способом выброс двуокиси серы в будущем тысячелетии значительно больше нынешнего уровня. Согласно этому ожидается рост закисления окружающей среды, а причиняемый кислотными осадками ущерб станет катастрофическим. Это вызывает большое беспокойство, если принять во внимание, что и настоящие уровни выброса уже приводят к ужасающим последствиям.

Неблагоприятно положение и с выбросами оксидов азота, поскольку антропогенные выбросы соединений азота по сравнению с соединениями серы увеличиваются еще более высокими темпами.

В определенных странах увеличение эмиссии двуокиси серы, кажется, удалось остановить. Что касается оксидов азота, то и в Европе и во всем мире продолжают увеличиваться выбросы NOx, особенно в связи с возрастающим числом автомобилей.

В некоторых странах проблема эмиссии оксидов серы и азота является в какой-то мере политической, так как в результате их распространения загрязняющие вещества попадают за пределы государственной границы, и одно государство может обвинить другое в ущербе, причиненном кислотными осадками, соответственно потребовав его возмещения. Канада, например, действует таким образом по отношению к США, а Швеция — по отношению к промышленно развитым государствам Европы. Специалисты Европы и Севе ной Америки серьезно обеспокоены дальнейшими последствиями выпадения кислотных осадков. Многочисленные международные организации по охране окружающей среды занимаются проблемами крупномасштабного распространения веществ, загрязняющих воздух.

Международный исследовательский институт прикладного системного анализа (IIASA) проводит изучение моделей с целью установления возможной кислотности почв, вод и т.п. через десятки лет. Результаты говорят о том, что почвы и леса в Европе могут быть спасены от дальнейшего закисления только путем значительного сокращения выбросов.

Эти выбросы должно самостоятельно регулировать каждое государство. Для уменьшения эмиссии загрязняющих веществ в атмосферу существует ряд способов:

  • сильное сокращение использования энергии;

  • ввод новых технологий, установка фильтрующего оборудования;

  • использование слабозагрязняющих либо совсем незагрязняющих источников энергии.

Подобное решение звучит довольно нереально. Ни одно государство не согласится уменьшить масштабы потребления энергии и тем самым ухудшить уровень жизни. Ввод новых технологий и установка фильтрующего оборудования также представляют собой экономическую проблему.

Плачевное состояние окружающей среды поставило современных ученых-экологов перед острой проблемой загрязнения нашей планеты. Необходимо найти новые методы решения этого вопроса. В настоящий момент ученые всего мира ищут выход из положения. Но не стоит забывать о том, что будущее планеты зависит в первую очередь от нас с вами.

Список использованной литературы:
1.Ю.А. Израэль «Экология и контроль состояния природной среды»

2.Л.Хорват «Кислотный дождь», Москва, Стройиздат, 1990г.

3.Л.Беттен «Погода в нашей жизни», Издательство «Мир», Москва, 1985г.

4.Агаджанян Н.А. «Человек и биосфера», Москва, из-во Знание, 1996г.

5.Дрожак Й. «Земля, люди, катастрофы.», Киев, Высшая школа, 1990г.


Добавить документ в свой блог или на сайт

Похожие:

Реферат к проекту по дисциплине «Экология» iconРеферат Отчета по проекту №1812
Отчета по проекту №1812 «Управляемая спиновая динамика квантово размерных полупроводниковых наноструктур». Руководитель проекта:...
Реферат к проекту по дисциплине «Экология» iconМетодические указания к курсовому проекту по дисциплине «Программная инженерия»
Документирование процесса разработки программных средств с использованием uml: Методические указания к курсовому проекту по дисциплине...
Реферат к проекту по дисциплине «Экология» iconРеферат по дисциплине «Радиационная экология»
Роль ядерной энергетики в структуре мирового энергетического производства X 20
Реферат к проекту по дисциплине «Экология» iconМетодические указания по выполнению самостоятельной работы по дисциплине...
...
Реферат к проекту по дисциплине «Экология» iconРеферат по дисциплине: Экология На тему: Радиоактивные отходы
Государственное общеобразовательное учреждение – средняя общеобразовательная школа с углубленным изучением иностранного языка
Реферат к проекту по дисциплине «Экология» icon«Экология»
По дисциплине «Экология» Для специальности 270102. 65 «Промышленное и гражданское строительство» Форма подготовки очная/заочная
Реферат к проекту по дисциплине «Экология» iconУчебно-методический комплекс по дисциплине «Экология» составлен в...
Дисциплина входит в федеральный и региональный компонент цикла общих математических и естественнонаучных дисциплин и является обязательной...
Реферат к проекту по дисциплине «Экология» iconПрограмма первой производственной практики по дисциплине «Экология»
Программа первой производственной практики по дисциплине «Экология» составлена в соответствии с требованиями государственного стандарта...
Реферат к проекту по дисциплине «Экология» iconТребования к оформлению реферата по учебной дисциплине
Реферат по учебной дисциплине выполняется в установленной форме (имя файла электронной формы: «р реферат по дисциплине шаблон»)
Реферат к проекту по дисциплине «Экология» iconРеферат в номинации: «Экология и здоровье» Тема: «Защитные полосы...
...
Реферат к проекту по дисциплине «Экология» iconЗаключение по проекту актуализированного сниП 05. 85* Автомобильные дороги
Некоммерческое Партнёрство дорожных проектных организаций «родос» рассмотрев представленные поправки в постановление Правительства...
Реферат к проекту по дисциплине «Экология» iconРеферат по проекту ро 3 2234
В связи с этим актуализируется необходимость изучения основных принципов и характеристик новой онтологии общества знания, стратегий...
Реферат к проекту по дисциплине «Экология» iconОтчет по программе развития деятельности студенческих объединений...
По проекту №1 «Фитодизайнерская деятельность по оптимизации территориальной структуры подразделений университета»
Реферат к проекту по дисциплине «Экология» iconУчебно-методический комплекс по дисциплине «социальная экология»
Панов В. И. Социальная экология. Учебно-методический комплекс – М.: Ноу впо «Институт психоанализа», 2009, 72с
Реферат к проекту по дисциплине «Экология» iconУчебное пособие для преподавателей и студентов образовательных учреждений...
«Гигиена и экология человека» и Примерной интегрированной программой блока дисциплин для всех специальностей средних медицинских...
Реферат к проекту по дисциплине «Экология» iconСамостоятельная работа (реферат) по дисциплине «экология городской среды»
Многое в нашем городском окружении зависит, казалось бы, от мелочей: функционального зонирования малых городских пространств (дворов,...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск