Реферат Основы физики магнитных явлений





Скачать 232.5 Kb.
НазваниеРеферат Основы физики магнитных явлений
Дата публикации15.04.2015
Размер232.5 Kb.
ТипРеферат
100-bal.ru > Астрономия > Реферат

Забайкальский краевой

институт повышения квалификации и профессиональной переподготовки

работников образования

Факультет естественнонаучного и математического образования




Р е ф е р а т

Основы физики магнитных явлений

Выполнил учитель физики

МОУ СОШ пгт Новокручининский

Читинского района

Безбородова Галина Сергеевна


Чита, 2010г

Содержание
Страницы

Введение --------------------------------------------------- 3





  1. Основы физики магнитных явлений



    1. Истории открытий ------------------------------- 4 – 6

    2. Материальность магнитного поля -------------- 7 - 9

    3. Магнитные явления ---------------------------------9 - 13

    4. Магнитное поле Земли и его возмущение-----13 - 15

1.5 Практическое применение ----------------------- 15-20
Заключение ------------------------------------------------- 21
Список литературы --------------------------------------- 22

Введение

Открытие магнетизма, его изучение и широкое применение, не дает повод останавливаться на месте. Этот вопрос по прежнему будоражит умы, заставляет думать, искать новое интересное неизведанное.

Магнитная разведка, дефектоскопия, магнитные линзы и магнитная запись информации, магнитная обработка воды, поезда на магнитной подушке, создание адронного коллайдера – вот далеко не полный перечень перспективных областей промышленного применения магнитного поля. Неотъемлемой частью компьютерного томографа, без которого невозможна современная медицинская диагностика, является также источник магнитного поля.

В течение многих лет не ослабевает интерес к магнитным полям биологических объектов, повышено внимание к среде обитания их и к космосу, а также вопросам влияния магнитного поля Земли на человека. В наших квартирах десятки магнитов: в электробритвах, динамиках, магнитофонах, в часах, в банках с гвоздями, наконец. Сами мы – тоже магниты: биотоки, текущие в нас, рождают вокруг нас причудливый узор магнитных силовых линий. Земля, на которой мы живём, - гигантский голубой магнит. Солнце – жёлтый плазменный шар – магнит ещё более грандиозный. Галактик и туманности, едва различимые телескопами, - непостижимые по размерам магниты. Термоядерный синтез, магнитодинамическое генерирование электроэнергии, ускорение заряженных частиц в синхротронах, подъём затонувших судов – всё это области, где требуются грандиозные, невиданные раньше по размерам магниты. Проблема создания сильных, сверхсильных, ультрасильных магнитных полей стала одной из основных в современной физике и технике.



    1. История открытий

Открытие магнитов

Впервые о магните заговорил Плиний. Он рассказал, как некий пастух с острова Крит, сандалии которого были подкованы железом, обратил внимание, что к его обуви пристают какие-то мелкие черные камешки, в изобилии валявшиеся на склонах горы Идо. Пастуха звали Магнис, отсюда природные магниты получили свое название. А может, все было и не так. Римский поэт Лукреций Кар считал, что магнит обязан своим названием местности, где его нашли. Эта местность в Малой Азии называлась Магнезия. Китайцы, ничего не знавшие ни о Магнезии, ни о греческих пастухах в железных сандалиях, называли эти черные камешки «чу-ши», что можно перевести как «любящий камень». Ход мыслей был прост: раз тянется -- значит, любит. (Кстати говоря, людское мышление бывает забавно параллельным: на французском языке магнит называется «эман» -«любящий».) Китайцы - народ пытливый. Они первыми придумали, как можно практически использовать магниты. Они не изобрели компас, как многие думают, они изобрели игрушку – юго указатель. Небольшие фигурки с вытянутой рукой, постоянно указывающей на юг, ставились ими не только на корабли, но и на конные повозки. Это было четыре тысячи лет тому назад. Граждане огромной Поднебесной империи жили довольно замкнуто, тихо и мирно. Плавания совершали в основном каботажные - вдоль берега, по рекам, и компас был китайцам не очень-то нужен. (Заторможенные китайцы даже изобретенный порох умудрились не использовать для военных нужд - делали фейерверки и ракеты.) Другое дело - агрессивная и неугомонная европейская цивилизация, вечно тянет на какие-то приключения. Ей компас был просто необходим. И он был изобретен в Италии неким Джойя примерно 700 лет назад. Тогда уже научились натирать природными магнитами стальные иглы, которые стали первыми искусственными магнитами и которые использовали в качестве стрелок. Джойя снабдил магнитную стрелку кругом с делениями. Прибор получил название «компассаре», что означает «измерять шагами».То что стрелка компаса нигде не показывает на Полярную звезду, было известно еще Колумбу. Об этом свидетельствует письмо, написанное им королю и королеве Испании:«...Когда я отплыл из Испании в Западные Индии, я обнаружил, что, после того как я проплыл сто лиг на запад от Азорских островов..., стрелка компаса, дотоле показывавшая на северо-восток, вдруг повернулась на целую четверть, к северо-западу, и уже более не меняла своего направления...». Столь странное поведение компасной стрелки вызвало панику среди матросов Колумба: они полагали, что компас должен всегда указывать на Полярную звезду. Колумб и сам думал точно так же; однако ему удалось убедить своих моряков, что неправильно вел себя не компас, а Полярная звезда. Благодаря этому обману Колумб смог предотвратить мятеж матросов, требовавших возвращения назад, и довел до конца свой замечательный подвиг. В противном же случае открытие Америки могло бы отодвинуться на несколько десятков лет. Так магниты вошли в широкое применение.

Открытие электромагнетизма

В XVIII в. электричество и магнетизм считались хотя и похожими, но все же имеющими различную природу явлениями. Правда, были известны некоторые факты, указывающие на существование как будто бы связи между магнетизмом и электричеством, например намагниченных железных предметов в результате ударов молнии. Больше того, Франклину удалось как будто бы намагнитить кусок железа с помощью разряда лейденской банки. Все-таки известные факты не позволяли уверенно утверждать, что между электрическими и магнитными явлениями существует связь. Такую связь впервые обнаружил датский физик Ханс Кристиан Эрстед (1777 - 1851) в 1820 г. Он открыл действие электрического тока на магнитную стрелку. Интересна история этого открытия. Идею о связи между электрическими и магнитными явлениями Эрстед высказал еще в первом десятилетии XIX в. Он полагал, что в явлениях природы, несмотря на все их многообразие, имеется единство, что все они связаны между собой. Руководствуясь этой идеей, он поставил перед собой задачу выяснить на опыте, в чем эта связь проявляется. Эрстед открыл, что если над проводником, направленным вдоль земного меридиана, поместить магнитную стрелку, которая показывает на север, и по проводнику пропустить электрический ток, то стрелка отклоняется на некоторый угол. После того как Эрстед опубликовал свое открытие, многие физики занялись исследованием этого нового явления. Французские ученые Био и Савар постарались установить закон действия тока на магнитную стрелку, т. е. определить, как и от чего зависит сила, действующая на магнитную стрелку, когда она помещена около электрического тока. Они установили, что сила, действующая на магнитный полюс (на конец длинного магнита) со стороны прямолинейного проводника с током, направлена перпендикулярно к кратчайшему расстоянию от полюса до проводника и модуль ее обратно пропорционален этому расстоянию. Новый важнейший шаг в исследовании электромагнетизма был сделан французским ученым Андре Мари Ампером (1775 - 1836) в 1820г. Раздумывая над открытием Эрстеда, Ампер пришел к совершенно новым идеям. Он предположил, что магнитные явления вызываются взаимодействием электрических токов. Каждый магнит представляет собой систему замкнутых электрических токов, плоскости которых перпендикулярны оси магнита. Взаимодействие магнитов, их притяжение и отталкивание объясняются притяжением и отталкиванием, существующими между токами. 3емной магнетизм также обусловлен электрическими токами, которые протекают в земном шаре. Эта гипотеза требовала, конечно, опытного подтверждения. И Ампер проделал целую серию опытов для ее обоснования. Первые опыты Ампера заключались в обнаружении сил, действующих между проводниками, по которым течет электрический ток. Опыты показали, что два прямолинейных проводника с током, расположенные параллельно друг другу, притягиваются, если токи в них имеют одинаковое направление, и отталкиваются, если направление токов противоположно. Ампер показал также, что виток с током и спиралевидный проводник с током (соленоид) ведут себя как магниты.

1.2 Материальность магнитного поля.

В XIX веке была обнаружена связь между электричеством и магнетизмом и возникло представление о магнитном поле. По современным представлениям, проводники с током оказывают силовое действие друг на друга не непосредственно, а через окружающие их магнитные поля.

Источниками магнитного поля являются движущиеся электрические заряды (токи). Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности электрического поля. Такой характеристикой является вектор магнитной индукции Вектор магнитной индукции определяет силы, действующие на токи или движущиеся заряды в магнитном поле. За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно устанавливающейся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства. Для того, чтобы количественно описать магнитное поле, нужно указать способ определения не только направления вектора но и его модуля. Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока I в проводнике и его длине Δl:












В общем случае сила Ампера выражается соотношением:




F = IBΔl sin α.







Это соотношение принято называть законом Ампера.

В системе единиц СИ за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (Тл).









Тесла – очень крупная единица. Магнитное поле Земли приблизительно равно 0,5·10–4 Тл. Большой лабораторный электромагнит может создать поле не более 5Тл. Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику.

Магнитные поля

Электромагнитное поле материально. Физика знает две формы материи – вещество (твердое, жидкое, газообразное) и поле (электромагнитное, гравитационное, внутриядерное). Скорость распространения электромагнитного поля, как теоретически установил Джеймс Максвелл, равна скорости распространения света. Отсюда у Максвелла возникла идея, что и свет представляет собой электромагнитное поле. Электромагнитная теория света сменила предшествующую ей теорию Гюйгенса, которая рассматривала свет как колебания эфира.

« Электромагнитное поле – это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии», - писал Максвелл.

Материальность электромагнитного поля подтверждается тем, что в нем наблюдается действие сил, что оно является носителем и передатчиком энергии.

Эта материя всегда налицо, так как если откачать насосом обычную, вещественную материю, которую Максвелл называл «грубой» (или «сгущенной») материей, то останется «тончайшая» материя, способная передавать электрические и световые действия.

Вершиной научного творчества Джеймса Максвелла стал его «Трактат об электричестве и магнетизме», увидевший свет в 1873 году. Восемь лет труда отдал Максвелл «Трактату».
1.3 Магнитные явления

Сила Лоренца

В настоящее время под магнитным полем понимают особую форму материи состоящую из заряженных частиц. В современной физике пучки заряженных частиц используют для проникновения в глубь атомов с целью их изучения. Сила, с которой действует магнитное поле на движущуюся заряженную частицу, называется силой Лоренца.

Fл=qBvsin@

Где B – индукция магнитного поля, то есть его силовая характеристика. @ - это угол между направлением скорости и направлением индукции. Но энергия частиц, испускаемых при естественном распаде радиоактивных веществ, относительно невелика. Поэтому возникла необходимость создания искусственных источников заряженных частиц высоких энергий – ускорителей. Ускорители — устройства, служащие для получения пучка частиц (электронов, протонов, ионов) с большими энергиями. Необходимым элементом ускорителя является электростатическое поле с высокой разностью потенциалов U. Это поле и ускоряет частицы, сообщая им кинетическую энергию

где q — заряд частицы.

Однако создание электрических полей с разностью потенциалов порядка миллиона вольт и более связано с колоссальными трудностями. Поэтому необходимую энергию частицы получают, если они несколько раз пройдут ускоряющее электрическое поле. Для этого частица должна двигаться по замкнутой траектории или спирали. Это возможно, если движущуюся частицу поместить в магнитное поле. Ускорители, работающие по такому принципу, называются циклическими ускорителями (циклотронами). Схема циклотрона изображена на рисунке 2.



Рис. 2 В вакуумной камере (давление около 10 − 5 − 10 − 6 мм рт. ст.) размещаются два полуцилиндра, называемых дуантами. Вблизи центра камеры располагается источник тяжелых заряженных частиц (протонов, положительных ионов). К дуантам подводится высокочастотное (~1 -10 МГц) переменное напряжение U значением от нескольких сот до нескольких десятков тысяч вольт. Камера помещается между полюсами мощного электромагнита, который создает магнитное поле с индукцией 1,3-1,6 Тл. Положительный ион (или протон), попав в зазор между дуантами, приобретает кинетическую энергию Под действием магнитного поля заряженная частица движется внутри дуанта по окружности радиусом

Циклотрон пригоден для ускорения частиц только до скоростей, много меньших скорости света, так как при скоростях, близких к скорости света, масса частиц не остается постоянной и условие синхронизации будет нарушаться. Поэтому циклотрон совершенно не пригоден для ускорения электронов и используется для ускорения относительно тяжелых ионов и протонов.

Магнитное поле в веществе (магнетики)

Все вещества при рассмотрении их магнитных свойств принято называть магнетиками, т.е. они способны под действием магнитного поля приобретать магнитный момент (намагничиваться). По своим магнитным свойствам магнетики подразделяются на три основные группы: диамагнетики; парамагнетики; ферромагнетики. Количественной характеристикой намагниченного состояния вещества служит векторная величина - намагниченность J. Рассмотрим каждую группу в отдельности.

Диамагнетики. Диамагнетиками называются вещества, которые намагничиваются во внешнем магнитном поле в направлении, противоположном направлению вектора магнитной индукции поля (т.е. в нём внешнее магнитное поле незначительно ослабевает). К диамагнетикам относятся вещества, магнитные моменты атомов, молекул или ионов которых в отсутствие внешнего магнитного поля равны нулю. Диамагнетиками являются инертные газы, молекулярный водород и азот, цинк, медь, золото, висмут, парафин и многие другие органические и неорганические соединения. В случае отсутствия магнитного поля диамагнетик немагнитен, поскольку в данном случае магнитные моменты электронов взаимно компенсируются, и суммарный магнитный момент атома равен нулю. Т.к. диамагнитный эффект обусловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойственен всем веществам. Следует отметить, что магнитная проницаемость у диамагнетиков µ<1. Вот, например, у золота µ=0,999961, у меди µ=0,9999897 и т.д.

Парамагнетики. Парамагнетики - вещество, у которого вектор индукции собственного магнитного поля, сонаправленный с вектором магнитной индукции внешнего (намагничивающего) поля, меньше его по модулю (т.е. внешнее магнитное поле незначительно усиливается). У парамагнитных веществ при отсутствии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнетиков всегда обладают магнитным моментом. Однако вследствие теплового движения молекул их магнитные моменты ориентированы беспорядочно, поэтому парамагнитные вещества магнитными свойствами не обладают. Таким образом, парамагнетик намагничивается, создавая собственное магнитное поле, совпадающее по направлению с внешним полем и усиливающее его. При ослаблении внешнего магнитного поля до нуля ориентация магнитных моментов вследствие теплового движения нарушается и парамагнетик размагничивается. Вот некоторые парамагнитные вещества: Алюминий µ=1,000023; Воздух µ=1,00000038.

Ферромагнетики. Ферромагнетики - вещество, у которого вектор индукции собственного магнитного поля, сонаправленный с вектором магнитной индукции внешнего (намагничивающего) поля, значительно превышает его по модулю (внешнее магнитное поле значительно увеличивается). Ферромагнетики в отличие от слабомагнитных диа- и парамагнетиков являются сильномагнитными средами: внутреннее магнитное поле в них может в сотни и тысячи раз превосходить внешнее поле. Большой вклад в экспериментальное изучение свойств ферромагнетиков внес Столетов. В своей докторской диссертации он исследовал зависимость намагниченности мягкого железа от напряженности магнитного поля. Предложенный им способ заключался в измерении магнитного потока в ферромагнитных кольцах при помощи баллистического гальванометра. Ферромагнитные материалы в большой или меньшей степени обладают магнитной анизотропией, т.е. свойством намагничиваться с различной степенью трудности в различных направлениях. Магнитные свойства ферромагнитных материалов сохраняются до тех пор, пока их температура не достигнет значения, называемого точкой Кюри. При температурах выше точки Кюри ферромагнетик ведет себя во внешнем магнитном поле как парамагнитное вещество. Он не только теряет свои ферромагнитные свойства, но у него изменяется теплоемкость, электропроводимость и некоторые другие физические характеристики. Точка Кюри для различных материалов различна: для железа +7700 С; для никеля +3650 С; для кобальта +11300 С. При намагничивании ферромагнетиков происходит небольшое изменение их линейных размеров, т.е. увеличение или уменьшение их длины с одновременным уменьшением или увеличением поперечного сечения. Это явление называется магнитострикцией, оно зависит от строения кристаллической решетки ферромагнетика. Магнитотвёрдые ферромагнетики - ферромагнетики, у которых остаточная намагниченность велика (т.е. при воздействии сильного магнитного поля они сами становятся магнитами). Магнитомягкие ферромагнетики - ферромагнетики, концентрирующие в себе внешнее магнитное поле и, пока оно действует, ведут себя как магниты; но если внешнее поле исчезает, они не становятся магнитами.

1.4 Магнитное поле Земли и последствие его возмущений

Земля в целом представляет собой огромный шаровой магнит. Человечество начало использовать магнитное поле Земли давно. Уже в начале XII-XIII вв. получает широкое распространение в мореходстве компас. Однако в те времена (как сказано и оспорено выше) считалось, что стрелку компаса ориентирует Полярная звезда и её магнетизм. Предположение о существовании магнитного поля Земли впервые высказал в 1600 г. английский естествоиспытатель Гильберт. В любой точке пространства, окружающего Землю, и на её поверхности обнаруживается действие магнитных сил. Иными словами, в пространстве, окружающем Землю, создаётся магнитное поле. Магнитные и географические полюса Земли не совпадают друг с другом. Северный магнитный полюс N лежит в южном полушарии, вблизи берегов Антарктиды, а южный магнитный полюс S находится в Северном полушарии, вблизи северного берега острова Виктория (Канада). Оба полюса непрерывно перемещаются (дрейфуют) на земной поверхности со скоростью около 5 за год из-за переменности порождающих магнитное поле процессов. Кроме того, ось магнитного поля не проходит через центр Земли, а отстаёт от него на 430 км. Магнитное поле Земли не симметрично. Благодаря тому, что ось магнитного поля проходит всего под углом в 11,5 градусов к оси вращения планеты, мы можем пользоваться компасом. Основная часть магнитного поля Земли, по современным воззрениям, имеет внутриземное происхождение. Магнитное поле Земли создаётся её ядром. Внешнее ядро Земли жидкое и металлическое. Металл - проводящее ток вещество, и если бы существовали в жидком ядре постоянные течения, то соответствующий электрический ток создавал бы магнитное поле. Благодаря вращению Земли, такие течения в ядре существуют, т.к. Земля в некотором приближении является магнитным диполем, т.е. своеобразным магнитом с двумя полюсами: южным и северным. Незначительная часть магнитного поля (около 1%) имеет внеземное происхождение. Возникновение этой части приписывают электрическим токам, текущим в проводящих слоях ионосферы и поверхности Земли. Эта часть магнитного поля Земли подвержена слабому изменению со временем, которое называется вековой вариацией. Причины существования электрических токов в вековой вариации неизвестны. В идеальном и гипотетическом предположении, в котором Земля была бы одинока в космическом пространстве, силовые линии магнитного поля планеты располагались таким же образом, как и силовые линии обычного магнита из школьного учебника физики, т.е. в виде симметричных дуг, протянувшихся от южного полюса к северному. Плотность линий (напряжённость магнитного поля) падала бы с удалением от планеты. На деле, магнитное поле Земли находится во взаимодействии с магнитными полями Солнца, планет и потоков заряженных частиц, испускаемых в изобилии Солнцем. Если влиянием самого Солнца и тем более планет из-за удалённости можно пренебречь, то с потоками частиц, иначе - солнечным ветром, так не поступишь. Солнечный ветер представляет собой потоки мчащихся со скоростью около 500 км/с частиц, испускаемых солнечной атмосферой. В моменты солнечных вспышек, а также в периоды образования на Солнце группы больших пятен, резко возрастает число свободных электронов, которые бомбардируют атмосферу Земли. Это приводит к возмущению токов текущих в ионосфере Земли и, благодаря этому, происходит изменение магнитного поля Земли. Возникают магнитные бури. Такие потоки порождают сильное магнитное поле, которое и взаимодействует с полем Земли, сильно деформируя его. Через сутки-двое частицы долетают до Земли. Бомбардируя магнитное поле нашей планеты, они вызывают магнитные бури, северные сияния . В 20-е годы нашего века двое французов, Фор и Сарду, обнаружилизависимость между магнитными бурями и сердечно-сосудистыми заболеваниями. По их выкладкам получалось, что в 85% наблюдаемых мест Франции число сердечно-сосудистых больных увеличивалось в моменты магнитных бурь. Впоследствии были найдены корреляции между бурями и еще многими заболеваниями, в том числе астмой, язвой, эпилепсией и психическими заболеваниями. Возрастает также число самоубийств.

Вслед за физиками физиологи нашли свое объяснение вредного влияния бурь, но уже на макроуровне. Вегетативная нервная система состоит из двух отделов --симпатического и парасимпатического. Симпатический отдел отвечает за повышение артериального давления и убыстрение сердечных сокращений, а парасимпатический действует наоборот. Всплески магнитной активности нарушают гормональный баланс и тем самым активизируют какой-то из отделов нервной системы. В итоге - нарушение сердечного ритма, обострение всех хронических болезней, инфаркты.

1.5 Применение

1.Компас, прибор для определения горизонтальных направлений на местности. Применяется для определения направления, в котором движется морское, воздушное судно, наземное транспортное средство; направления, в котором идет пешеход; направления на некоторый объект или ориентир. Компасы подразделяются на два основных класса: магнитные компасы типа стрелочных, которыми пользуются топографы и туристы, и немагнитные, такие, как гирокомпас и радиокомпас.

2.Электромашинные генераторы и электродвигатели - машины вращательного типа, преобразующие либо механическую энергию в электрическую (генераторы), либо электрическую в механическую (двигатели). Действие генераторов основано на принципе электромагнитной индукции: в проводе, движущемся в магнитном поле, наводится электродвижущая сила (ЭДС). Действие электродвигателей основано на том, что на провод с током, помещенный в поперечное магнитное поле, действует сила.

3.Магнитоэлектрические приборы. В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю

4.Индукционные счетчики электроэнергии . Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками – токовой и обмоткой напряжения.

5.Электрические наручные часы питаются миниатюрной батарейкой. Для их работы требуется гораздо меньше деталей, чем в механических часах; так, в схему типичных электрических портативных часов входят два магнита, две катушки индуктивности и транзистор.

6.Магнитные замки . В цилиндровых замках некоторых моделей применяются магнитные элементы. Замок и ключ снабжены ответными кодовыми наборами постоянных магнитов. Когда в замочную скважину вставляется правильный ключ, он притягивает и устанавливает в нужное положение внутренние магнитные элементы замка, что и позволяет открыть замок.

7. Динамометр - механический или электрический прибор для измерения силы тяги или крутящего момента машины, станка или двигателя.

8. Электромагнитный динамометр может быть выполнен в виде миниатюрного прибора, пригодного для измерений характеристик малогабаритных двигателей.

9. Гальванометр – чувствительный прибор для измерения слабых токов. В гальванометре используется вращающий момент, возникающий при взаимодействии подковообразного постоянного магнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешенной в зазоре между полюсами магнита

Магнитные свойства вещества находят широкое применение в науке и технике как средство изучения структуры различных тел. Так возникли науки: (Магнитохимия) - раздел физической химии, в котором изучается связь между магнитными и химическими свойствами веществ; кроме того, магнитохимия исследует влияние магнитных полей на химические процессы. магнитохимия опирается на современную физику магнитных явлений. Изучение связи между магнитными и химическими свойствами позволяет выяснить особенности химического строения вещества.

Магнитная дефектоскопия , метод поиска дефектов, основанный на исследовании искажений магнитного поля, возникающих в местах дефектов в изделиях из ферромагнитных материалов.

10. Магнетрон. В магнетроне, изобретенном в Великобритании перед Второй мировой войной, эти недостатки отсутствуют, поскольку за основу взят совершенно иной подход к генерации СВЧ-излучения – принцип объемного резонатора В магнетроне предусмотрено несколько объемных резонаторов, симметрично расположенных вокруг катода, находящегося в центре. Прибор помещают между полюсами сильного магнита.

11. Лампа бегущей волны (ЛБВ). Еще один электровакуумный прибор для генерации и усиления электромагнитных волн СВЧ-диапазона – лампа бегущей волны. Она представляет собой тонкую откачанную трубку, вставляемую в фокусирующую магнитную катушку.

12. Ускоритель частиц , установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию. В современных ускорителях используются многочисленные и разнообразные виды техники, в т.ч. мощные прецизионные магниты. Представители различных наук учитывают магнитные поля в своих исследованиях. Физик измеряет магнитные поля атомов и элементарных частиц, астроном изучает роль космических полей в процессе формирования новых звёзд, геолог по аномалиям магнитного поля Земли отыскивает залежи магнитных руд, с недавнего времени биология тоже активно включилась в изучение и использование магнитов.

Большой адро́нный колла́йдер (
англ. Large Hadron Collider, LHC; сокр. БАК) — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований (фр. Conseil Européen pour la Recherche Nucléaire, CERN), на границе Швейцарии и Франции, недалеко от Женевы. БАК является самой крупной экспериментальной установкой в мире. Руководитель проекта — Лин Эванс. Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м[1]; адронным — из-за того, что он ускоряет адроны, то есть частицы, состоящие из трёх кварков; коллайдером (англ. collide — сталкиваться) — из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения[2].

Биологическая наука .От алхимиков XVI века и до наших дней биологическое действие магнита много раз находило поклонников и критиков. Неоднократно в течение нескольких веков наблюдались всплески и спады интереса к лечебному действию магнита. С его помощью пытались лечить (и не безуспешно) нервные болезни, зубную боль, бессонницу, боли в печени и в желудке – сотни болезней. Для лечебных целей магнит стал употребляться, вероятно, раньше, чем для определения сторон света. Как местное наружное средство и в качестве амулета магнит пользовался большим успехом у китайцев, индусов, египтян, арабов. греков, римлян и т.д. О его лечебных свойствах упоминают в своих трудах философ Аристотель и историк Плиний. Во второй половине XX века широко распространились магнитные браслеты, благотворно влияющие на больных с нарушением кровяного давления (гипертония и гипотония). Кроме постоянных магнитов используются и электромагниты. Их также применяют для широкого спектра проблем в науке, технике, электронике, медицине (нервные заболевания, заболевания сосудов конечностей, сердечно – сосудистые заболевания, раковые заболевания). Более всего учёные склоняются к мысли, что магнитные поля повышают сопротивляемость организма. Существуют электромагнитные измерители скорости движения крови, миниатюрные капсулы, которые с помощью внешних магнитных полей можно перемещать по кровеносным сосудам чтобы расширять их, брать пробы на определённых участках пути или, наоборот, локально выводить из капсул различные медикаменты. Широко распространён магнитный метод удаления металлических частиц из глаза. Большинству из нас известно исследование работы сердца с помощью электрических датчиков – электрокардиограмма. Электрические импульсы, вырабатываемые сердцем, создают магнитное поле сердца, которое в max значениях составляет 10 -6 напряжённости магнитного поля Земли. Ценность магнитокардиографии в том, что она позволяет получить сведения об электрически “немых” областях сердца. Самый простой вывод, который можно сделать из выше сказанного – нет области прикладной деятельности человека, где бы не применялись магниты.

 «Магнитотерапия» (лечение магнитным полем) и «магнитобиология» (биологическое воздействие магнитным полем)- термины, относящиеся к низкочастотному диапозону. Для лечения с помощью электромедицинских аппаратов используют постоянное магнитное поле (франклинизация), магнитное поле 10-40 мГц (индуктотерапия), электрическое поле 25-50 мГц (УВЧ-терапия). Отмечено, что при воздействии магнитным полем происходит изменение окислительно-восстановительных процессов и перекисного окисления липидов, перестройка в звеньях эндокринной системы. Противовоспалительный эффект действия магнитного поля связывают с изменением в свертывающей и противосвертывающей системах крови, улучшением микроциркуляции, а также выбросом гармонов. Магнитотерапия применяется в имплантологии и травмотологии, т.к. ускоряет процессы регенерации тканей.

Ферриты и изделия из них начиная с момента их изобретения нашли наиболее широкое применение в радиоэлектронике и вычислительной технике среди других магнитомягких материалов. Кроме того, что ферритовые изделия в большинстве случаев могут эффективно заменить изделия из других материалов, они обладают рядом уникальных физико-химических, магнитных и электрических свойств, не присущих ни одному другому материалу.

Заключение

Мы рассмотрели ряд вопросов связанных с открытием объяснением и применением магнитных явлением. Магнетизм тесно связан с электричеством, поэтому разделить их и рассматривать по отдельности не возможно. Использование электромагнетизма играет ведущую роль во многих отраслях науки и техники с ним связывают развитие энергетики, транспорта, вычислительной техники, физики плазмы, термоядерного синтеза и т.д. В моей работе попыталась отразить; магнитные свойства веществ, что такое магниты и их применение в биологии, медицине, в быту. Магнитное поле и действие его на заряженные частицы, что используется в ускорителях. Магнитное поле Земли и его возмущение и воздействие на человека. В заключение хочу сказать, что выбрала данную тему для реферата из-за её актуальности. Нет области прикладной деятельности человека, где бы ни применялись магниты. Особенно пользуются успехом у человечества генераторы переменного тока и ферромагнетики (это составляющие создания и распространения тока по всё квартирам. История науки – долговечна. Открытия не бывают случайными. Для торжества нового в науке нужны талант, знания, непредвзятость мнений, умение удивиться новому, трудолюбие, смелость в отстаивании своих убеждений. Наука и общество должны по меньшей мере созреть, чтобы принять новое открытие, а еще лучше – они должны остро нуждаться в нем.


Список прочитанной литературы:


  1. В.З. Озерников «Неслучайные случайности. Рассказы о великих открытиях и выдающихся ученых». – М.: Высшая школа, 1987г

2 Детлаф А.А., Яворский Б.М. "Курс общей физики". - М.: Высшая школа, 1989г.

3 В.В.Пасынков «Практическое использование магнитов».-М.: Высшая школа, 1986г

  1. М.И.Блудов «Беседы по физике». – М.: Высшая школа, 1981г


  2. Ю.А.Холодов «Человек в магнитной паутине»- М.: Знание Москва, 1988г

  3. Интернет Википедия- свободная энциклопедия




Добавить документ в свой блог или на сайт

Похожие:

Реферат Основы физики магнитных явлений iconФизика магнитных явлений, часть IV
Принята на заседании кафедры государственные и муниципальные финансы от 2012г
Реферат Основы физики магнитных явлений iconКалендарно-тематическое планирование № п./п
Демонстрация примеров механических, электрических, тепловых, магнитных и световых явлений
Реферат Основы физики магнитных явлений iconПримерная программа дисциплины основы теоретической физики рекомендуется...
Дисциплина «Основы теоретической физики» играет решающую роль в завершении формирования целостных представлений о современной физической...
Реферат Основы физики магнитных явлений iconРеферат на тему: «Материальные и информационные модели»
Моделирование — исследование объектов познания на их моделях; построение и изучение моделей реально существующих объектов, процессов...
Реферат Основы физики магнитных явлений iconФизика магнитных явлений, часть III 5 курс, 9 семестр, 36 часов Цель курса
Методические рекомендации предназначены для медицинских работников, оказывающих первичную медико-санитарную помощь: врачей стоматологического...
Реферат Основы физики магнитных явлений iconТехнологий Кафедра менеджмента и корпоративной культуры Накопители информации
В качестве внешней памяти пэвм используются накопители на магнитных дисках (нмд), накопители на магнитных лентах (нмл) стриммеры...
Реферат Основы физики магнитных явлений iconРадиофизический факультет
Цель курса атомной физики состоит в формировании у студента целостной системы знаний по основам современной физики атомов и атомных...
Реферат Основы физики магнитных явлений iconКонспект урока физики «Путешествие в мире физических явлений»
Конспект составила Степанова Ольга Николаевна, учитель математики и физики высшей категории моу «Средняя общеобразовательная школа...
Реферат Основы физики магнитных явлений iconПрограмма дисциплины «Магнетизм в наноструктурах и спинтроника» ...
Целью дисциплины является изучение взаимодействия собственных магнитных моментов электронов (спинов) с электромагнитными полями для...
Реферат Основы физики магнитных явлений iconОбразовательный стандарт основного общего образования по физике изучение...
Физика – наука о природе. Наблюдение и описание физических явлений. Физический эксперимент. Измерение физических величин. Погрешности...
Реферат Основы физики магнитных явлений iconСборник рефератов докладов сотрудников рфяц-внииэф, представленных...
А. И. Быков Лаборатория сверхсильных магнитных полей нтцф рфяц-внииэф//Встреча с представителями Института физики жидкостей (каиф),...
Реферат Основы физики магнитных явлений iconРеферат по теме «Межпредметные взаимосвязи физики и математики в курсе основной школы»
Работу выполнила Колобова Елена Николаевна, учитель физики средняя общеобразовательная школа N12 г. Пушкино
Реферат Основы физики магнитных явлений iconРеферата заглавными буквами реферат по дисциплине «Основы физики»
Внимание! Все пункты списка даются сплошной нумерацией. Источники перечисляются по алфавиту, далее список научной литературы оформляется...
Реферат Основы физики магнитных явлений iconРуководством учителя физики подготовлен реферат по теме «Взлет по вертикали»
Уважаемые члены жюри! Меня зовут Никитин Константин, я обучаюсь в 29 школе в 10 классе. Мною под руководством учителя физики подготовлен...
Реферат Основы физики магнитных явлений iconРоссийской федерации
В рамках данной дисциплины рассматриваются основные принципы и законы физики и биофизики, методы наблюдения и экспериментального...
Реферат Основы физики магнитных явлений iconРабочая программа Современные проблемы
Целью курса является изучение основных физических явлений, фундаментальных понятий, законов и теории классической и современной физики,...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск