«История электроэнергетики»





Название«История электроэнергетики»
страница1/58
Дата публикации03.01.2015
Размер8.43 Mb.
ТипДокументы
100-bal.ru > Физика > Документы
  1   2   3   4   5   6   7   8   9   ...   58
СОДЕРЖЕНИЕ:



ТИТУЛЬНЫЙ ЛИСТ 2

ЭНЕРГИЯ. РЕСУРСЫ. МЕТОДЫ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ. СООТНОШЕНИЯ ЕДИНИЦ ИЗМЕРЕНИЯ. 3

ЭНЕРГЕТИКА И ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ. ТЕРМИНЫ. 19

ЭНЕРГОСБЕРЕЖЕНИЕ. ТЕРМИНЫ И ПОНЯТИЯ. 28

ЭНЕРГЕТИЧЕСКАЯ ЭФФЕКТИВНОСТЬ. СОСТАВ ПОКАЗАТЕЛЕЙ. 34

ЭНЕРГОСБЕРЕЖЕНИЕ В ЗДАНИЯХ. ОСНОВНЫЕ ТЕРМИНЫ. 43

ЭНЕРГЕТИКА И ЭКОНОМИКА. ТЕРМИНЫ. 59

ЭНЕРГОБАЛАНС ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ. 68

ГАЗОВОЕ ХОЗЯЙСТВО. СОЛНЕЧНАЯ ЭНЕРГИЯ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ. 72

СОЛНЕЧНАЯ ЭНЕРГИЯ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ. 76

ВЕТРОЭНЕРГЕТИКА. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ. 85

ТЕОРИЯ РАЗВИТИЯ БИОСФЕРЫ. 139

ОБ ИТОГАХ ХХ ВЕКА. 168

ИСТОРИЯ ЭНЕРГОСБЕРЕЖЕНИЯ В ЛИЦАХ. 178

ЭНЕРГЕТИЧЕСКИЕ ЗАКОНЫ, ЗАКОНОМЕРНОСТИ, ПРАВИЛА. 184

ФОРМИРОВАНИЕ И РЕАЛИЗАЦИЯ ПОЛИТИКИ ЭНЕРГОСБЕРЕЖЕНИЯ. 189

НОРМАТИВНО-ПРАВОВАЯ БАЗА ЭНЕРГОСБЕРЕЖЕНИЯ В РОССИИ. 194

ОТРАСЛЕВОЕ ЭНЕРГОСБЕРЕЖЕНИЕ. 208

ДОМАШНЯЯ ЭНЕРГЕТИКА. 251

МЕТОДЫ И СРЕДСТВА ОПТИМИЗАЦИИ ЭНЕРГОПОТРЕБЛЕНИЯ В НЕРЕГУЛИРУЕМОМ ПРОМЫШЛЕННОМ ЭЛЕКТРОПРИВОДЕ ПЕРЕМЕННОГО ТОКА. 267

ЧАСТОТНО-РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД ПЕРЕМЕННОГО ТОКА. 268

СПЕЦИАЛЬНЫЕ СРЕДСТВА АВТОМАТИЗАЦИИ, КОНТРОЛЯ И УПРАВЛЕНИЯ УРОВНЕМ ЭНЕРГОПОТРЕБЛЕНИЯ В ПРОМЫШЛЕННОМ ОБОРУДОВАНИИ. 276

ЭНЕРГОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ В КОММУНАЛЬНОЙ СФЕРЕ. 276

ЭНЕРГЕТИЧЕСКИЕ ОБСЛЕДОВАНИЯ НА ПРЕДПРИЯТИИ. 276

ЭФФЕКТИВНОСТЬ ЭНЕРГОИСПОЛЬЗОВАНИЯ. 293

ЭНЕРГЕТИЧЕСКИЙ ПАСПОРТ ПРЕДПРИЯТИЯ. 306

КОНТРОЛЬ КАЧЕСТВА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ. 318

ВЛИЯНИЕ КАЧЕСТВА ЭЛЕКТРОЭНЕРГИИ НА РАБОТУ ЭЛЕКТРОПРИЕМНИКОВ. 331

СТИМУЛИРОВАНИЕ ЭНЕРГОСБЕРЕЖЕНИЯ. 359

ЦЕНЫ И ТАРИФЫ НА ЭЛЕКТРОЭНЕРГИЮ. 368

ЭНЕРГОСБЕРЕЖЕНИЕ – НОВОЕ ЯВЛЕНИЕ ОБЩЕСТВЕННОЙ ЖИЗНИ. 374

УПРАВЛЕНИЕ ЭНЕРГОСБЕРЕЖЕНИЕМ В РЕГИОНЕ. 392

АНАЛИЗ ЭНЕРГЕТИЧЕСКОГО БАЛАНСА. 418

ОЦЕНКА ПОТЕНЦИАЛА ЭНЕРГОСБЕРЕЖЕНИЯ. 432

РАЗРАБОТКА ПРОГРАММ ЭНЕРГОСБЕРЕЖЕНИЯ. 440

ФОРМИРОВАНИЕ КОМПЛЕКСА ЭНЕРГОСБЕРЕГАЮЩИХ МЕРОПРИЯТИЙ. 446

НЕДОУЧЕТ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ И КОММЕРЧЕСКИЕ ПОТЕРИ. 453

АНАЛИЗ ПОТЕРЬ И МЕРОПРИЯТИЙ ПО ИХ СНИЖЕНИЮ. 459

НОРМИРОВАНИЕ ПОТЕРЬ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ. 468



ТИТУЛЬНЫЙ ЛИСТ


Министерство образования Российской Федерации

Омский государственный технический университет

Кафедра ЭсПП

РЕФЕРАТ

по дисциплине «История электроэнергетики»

на тему:

________________________________________________

Выполнил студент группы __________
_________________________________

Проверил
_________________________________


Омск 2006

ЭНЕРГИЯ. РЕСУРСЫ. МЕТОДЫ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ. СООТНОШЕНИЯ ЕДИНИЦ ИЗМЕРЕНИЯ.


Энергия (от греч. energeiaдействие, деятельность), общая коли­чественная мера различных форм движения материи. Вследствие су­ществования закона сохранения энергии, понятие энергии связывает воедино все явления природы.

Приведем одну из классификаций видов энергии.

1. Аннигиляционная энергия — полная энергия системы «вещество — антивещество», освобождающаяся в процессе их соединения и анни­гиляции (взаимного уничтожения, т.е. слияния и «исчезновения») в различных видах.

2. Ядерная энергия — энергия связи нейтронов и протонов в ядре, освобождающаяся в различных видах при делении тяжелых и синте­зе легких ядер; в последнем случае ее называют «термоядерной».

3. Химическая (логичнее — атомная) энергия — энергия системы из двух или более реагирующих между собой веществ. Эта энергия освобождается в результате перестройки электронных оболочек ато­мов и молекул при химических реакциях.

4. Гравистатическая энергия — потенциальная энергия ультрасла­бого взаимодействия всех тел, пропорциональная их массам. Прак­тическое значение имеет энергия тела, которую оно накапливает, преодолевая силу земного притяжения.

5. Электростатическая энергия — потенциальная энергия взаи­модействия электрических зарядов, то есть запас энергии электрически заряженного тела, накапливаемый в процессе преодоления им сил электрического поля.

6. Магнитостатическая энергия — потенциальная энергия взаи­модействия «магнитных зарядов», или запас энергии, накапливаемый телом, способным преодолевать силы магнитного поля в процессе перемещения против направления действия этих сил. Источником магнитного поля может быть постоянный магнит, электрический ток.

7. Нейтриностатическая энергия — потенциальная энергия слабого взаимодействия «нейтринных зарядов», или запас энергии, накапливаемый в процессе преодоления сил р-поля — «нейтрин­ного поля». Вследствие огромной проникающей способности ней­трино накапливать энергию таким способом практически невоз­можно.

8. Упругостная энергия — потенциальная энергия механически упруго измененного тела (сжатая пружина, газ), освобождающаяся при снятии нагрузки чаще всего в виде механической энергии.

9. Тепловая энергия — часть энергии теплового движения частиц тел, которая освобождается при наличии разности температур меж­ду данным телом и телами окружающей среды.

10. Механическая энергия — кинетическая энергия свободно дви­жущихся тел и отдельных частиц.

11. Электрическая (электродинамическая) энергия — энергия элек­трического тока во всех его формах.

12. Электромагнитная (фотонная) энергия — энергия движения фотонов электромагнитного поля.

13. Мезонная (мезонодинамическая) энергия — энергия движения мезонов (пионов) — квантов ядерного поля, путем обмена которыми взаимодействуют нуклоны (теория Юкавы, 1935 г.).

14. Гравидинамическая (гравитонная) энергия — энергия движе­ния гипотетических квантов гравитационного поля — гравитонов.

15. Нейтринодинамическая энергия — энергия движения всепроникающих частиц β-поля - нейтрино.

Таковы «лица» многоликой царицы — Энергии. А нельзя ли чис­ло их увеличить или убавить? Теоретически можно, но для этого нуж­ны веские аргументы.

Так, иногда выделяют еще «колебательную» и «инерционную» энергии. Однако и колебательный характер движения, и инерция свой­ственны различным видам материи и движения (например, «звуко­вая энергия» есть разновидность механической), а потому уже вклю­чены в классификацию.

Часто в особый вид энергии выделяют биологическую. Но биоло­гические процессы — всего лишь особая группа физико-химических процессов, в которых участвуют те же виды энергии, что и в других. Обычно в растениях электромагнитная энергия солнечного излуче­ния превращается в химическую энергию, а в организмах животных химическая энергия пищи превращается в тепловую, механическую, электрическую, а иногда и в световую (электромагнитную). Поэтому правильнее говорить не о биологической энергии, а о биологических преобразователях энергии — растениях и животных.

А существует ли «психическая энергия»? Большинство специалистов считают, что пока нет оснований ее выделять, так как неясно, каким материальным носителям, формам движения и видам взаимодействия можно сопоставить эту энергию. Однако ни один акт человеческой дея­тельности не может произойти без мотивационного, а значит, и «психо­энергетического» обеспечения, источником которого служит физико-химическая энергия организма. А на что еще можно рассчитывать в будущем? Эксперименты на мощных ускорителях элементарных частиц свидетельствуют, что считавшиеся неделимыми нейтрон и протон, ве­роятно, состоят из еще более «элементарных» частиц, чему, возможно, соответствует какой-то новый вид или виды энергии.

Использование видов энергии.

Из перечисленных выше 15 видов энергии практическое значение имеют пока только 10: ядерная, химическая, упругостная, грависта-тическая, тепловая, механическая, электрическая, электромагнитная, электростатическая и магнитостатическая.

При этом непосредственно используется всего четыре вида: теп­ловая (около 70-75%), механическая (около 20-22%), электрическая (около 5-3%) и электромагнитная — световая (менее 1%). Причем так широко вырабатываемая, подводимая по проводам в каждый дом и к каждому станку электрическая энергия выполняет в основном роль переносчика энергии.

Практически в любом технологическом процессе используется несколько видов энергии. Топливно-энергетические балансы при этом составляются обычно по видам используемых топлив, видов энергии для каждого технологического цикла (передела) отдельно. Это не позволяет провести объективное сравнение различных технологических процессов. Для производства одного и того же вида продукции. Для энергоемкости какого-либо технологического продукта было предложено все виды энергии классифицировать на три группы:

1. Первичная энергия Э1 — химическая энергия ископаемого пер­вичного топлива, с учетом энергетических затрат на добычу, подго­товку (обогащение), транспортировку и т.д.

2. Производная энергия Э2 — энергия преобразованных энерго­носителей, например: пар, горячая вода, электроэнергия, сжатый воз­дух, кислород, вода и др., с учетом затрат на их преобразование.

3. Скрытая энергия Э3 — энергия, израсходованная в предшеству­ющих технологиях и овеществленная в сырьевых исходных материа­лах процесса, технологическом, энергетическом и т.п. оборудовании, капитальных сооружениях, инструменте и т.д.; к этой же форме энер­гии относятся энергозатраты по поддержанию оборудования в рабо­тоспособном состоянии (ремонты), энергозатраты внутри- и межза­водских перевозок и других вспомогательных операций.

Для многих массовых видов продукции величина энергетических затрат в виде скрытой энергии, то есть вносимой оборудованием и капитальными сооружениями, является относительно незначительной по сравнению с другими двумя видами энергии и поэтому в первом приближении может включаться в расчет по примерной оценке.

Суммарные энергозатраты на производство единицы какой-либо продукции в этом случае можно записать в виде:

Эсум1234,

где Э4 — энергия вторичных энергоресурсов, которая вырабатывает­ся в процессе производства данной продукции, но передается для ис­пользования в другой технологический процесс.

Суммарные энергозатраты называют также технологическим топ­ливным числом (ТТЧ) конкретного вида продукции (стали, кирпича и др.).

Энергетические ресурсы Земли.

Почти вся энергия поступает на поверхность земли от солнца, за исключением небольшого количества теплоты за счет радиоактив­ности земной коры, наличия раскаленного земного ядра, а также гра­витационной энергии взаимодействия земли с луной и солнцем. Даже органическое топливо, используемое сегодня, обязано своим проис­хождением фотосинтезу растительности болот доисторической эпохи. Однако не весь поток энергии солнечного излучения, интенсив­ность которого составляет примерно 1,4 кВт/м2, утилизируется; при­мерно 30-40% этого потока энергии рассеивается прямым отражени­ем. Коэффициент отражения (альбедо) зависит от характерных особенностей поверхности, на которую падают лучи солнца, т.е. от того, является ли она песчаной пустыней, снежной равниной, водной гладью, облачностью и т.д.

Проблема обеспечения возрастающих потребностей в электроэнер­гии намного облегчилась бы, если бы стало возможным эффективное прямое преобразование солнечной энергии в электрическую. Такое преобразование может осуществляться и уже осуществляется, но его КПД очень низкий, и получаемая при таком КПД энергия служит лишь незначительным добавлением к основному количеству энергии, производимой с помощью органического топлива, геофизических ис­точников и ядерных реакторов деления.

Органические топлива (первичная энергия).

Органические топлива, т. е. уголь, нефть и природный газ, состав­ляют сейчас и будут составлять в перспективе подавляющую часть всего энергопотребления. Образование органических топлив являет­ся результатом теплового, механического и биологического воздей­ствия в течение многих столетий на останки растительного и живот­ного мира, откладывавшиеся во всех геологических формациях. Все эти топлива имеют углеродную основу, и энергия высвобождается из них, главным образом, в процессе образования двуокиси углерода (диоксида углерода).

Нефтяное топливо.

Сырая нефть, поступающая из скважин, представляет собой смесь углеводородов от летучих газолинов (не путать с автомобильным бензином) до очень вязких гудронов. Она обычно представляет со­бой смесь молекул из трех основных углеводородных групп: парафи­нов, циклопарафинов или лигроинов и ароматических смол. В неболь­ших количествах в ней содержатся также другие элементы, химически связанные с молекулами углеводородов: сера (до 6%), кислород (до 4%), азот (до 1%) и следы некоторых металлов. Кроме основных уг­леводородных молекулярных структур в нефти присутствует много компаундов со значительно большей молекулярной массой, образо­ванных удлинениями или соединениями основных молекулярных блоков. Например, в одной из проб сырой нефти было обнаружено бо­лее 300 различных углеводородов.

Нефть в сыром виде не находит широкого применения, но она может быть превращена в исключительно ценные нефтепродукты путем ее переработки. Это общее понятие включает три основных процесса: физическое разделение смеси, риформинг и ректификацию. Производство различных видов продукции из нефти должно регули­роваться в соответствии с потребностью в них в зависимости от сезо­на, колебания спроса и их расходом в качестве сырьевых материа­лов. Большинство перерабатывающих заводов сооружается для переработки какого-либо одного определенного вида сырья, и сырье других сортов, имеющее иные характеристики, например повышен­ное содержание серы, для них не подходит.

Именно благодаря столь широкому разнообразию исходных ма­териалов, содержащихся в сырой нефти, последняя стала высоко це­ниться. Однако, несмотря на исключительно широкий ассортимент продукции, получаемой из нефти и имеющей широкий спрос на рын­ке, — от нейлона до красителей, от медикаментов до пластиков, — доля нефти, используемой в качестве сырья для нефтехимии, состав­ляет менее 3% ее суммарной добычи. Большая часть произведенных из нефти продуктов сжигается. Представляется, что в ближайшем будущем такое положение сохранится, — по крайней мере, до того, пока затраты на энергию, получаемую таким путем, будут ниже, чем на энергию, получаемую на базе других источников.

Природный газ.

Природный газ, в основном метан, обнаруживается вместе с мес­торождениями нефти в пропорции примерно 1300 м3 газа на 1 т сы­рой нефти или в отдельных месторождениях газа.

Новейшие достижения в области энергетики, а также создание га­зопроводов большого диаметра и больших океанских танкеров, в которых можно поддерживать достаточно низкую температуру, что­бы перевозить сжиженный газ, обеспечивают хорошие перспективы для использования большей части всего имеющегося в недрах Земли газа. Используя приведенное выше соотношение и оценки мировых конечных ресурсов нефти, для предельной добычи газа Q получим диапазон от 235 до 380 трлн. м3.

Более тяжелые компоненты природного газа — этан, бутан, про­пан и другие — при нормальных температуре и давлении (т.е. 20°С и 0,1 МПа) находятся в жидком состоянии. При выходе природного газа из скважины они удаляются из газового потока для того, чтобы их конденсат не затруднял передачу газа; добыча газового конденса­та регистрируется в газовой промышленности отдельно. В среднем по США соотношение добычи газового конденсата и сырой нефти составляет 220 кг конденсата на 1 т сырой нефти.

Уголь.

Уголь имеет принципиально иное происхождение, чем нефть. Про­исхождение последней связывают с осадочными отложениями в мор­ской воде, в то время как уголь образовался из осадков органических веществ в пресной воде доисторических болот. Уголь обнаруживает­ся в пластах всех геологических эпох — от нижнего палеозоя (350 млн. лет тому назад) до сравнительно недавнего четвертичного периода (1 млн. лет тому назад). Последовательность возникновения угля (торф, лигнит, бурый уголь, суббитуминозный и битуминозный уголь, антрацит) — от недавних растительных образований до наиболее твердых, с высоким содержанием углерода, сортов угля.

Высокая теплота сгорания угля определяется высоким содержа­нием в нем водорода и количеством углерода. Поскольку содержа­ние водорода до какой-то степени зависит от содержания углерода, очевидно, что воздействие бактерий разрушает углеводородные мо­лекулярные структуры, составляя химически активный водород и уг­лерод. Следовательно, чем дольше происходит это воздействие, тем вероятнее повышение теплоты сгорания угля. Вообще, чем старее уголь, тем выше его качество (или сортность, если использовать тер­минологию, принятую в промышленности). Большая разница в теп­лоте сгорания различных сортов угля очень затрудняет оценку уголь­ных ресурсов, поскольку нужно знать не просто количество извлекаемого угля, но, что важнее, количество энергии, которое мож­но получить из него.

Уголь добывается более 1000 лет, а его использование в крупных масштабах насчитывает, по меньшей мере, 200 лет. Хорошо изучено и расположение угольных пластов. Задача оценки извлекаемого объе­ма угля значительно проще, чем аналогичная задача для нефти. Но, как и для нефти, процессы, происходящие в недрах, не изучены и ни­когда не смогут быть изучены полностью. Как следствие, оценки за­пасов угля по прошествии определенного периода времени по мере поступления новой информации должны пересматриваться в сторо­ну их повышения.

Древесное топливо.

Состоит в основном из клетчатки С6Н10О5 (50-70%) и межклеточного вещества лигнина (20-30%). Ценность древес­ного топлива состоит в малой зольности (до 1%), отсутствии серы и большом содержании горючих летучих (до 85%). Возможная значи­тельная влажность (Wp до 60%) существенно снижает его теплотвор­ную способность. Иногда для дров вводят понятие абсолютной влаж­ности, определяемой по формуле:
W=(G-G1)100/G1,%,

где G и G1, — вес влажной и высушенной до постоянного веса при Т= 100-105°С древесины, кг.

Соответственно по этой влажности дрова подразделяются на:

1. Воздушно-сухие с содержанием влаги до 25%.

2. Полусухие с содержанием влаги от 26 до 30%.

3. Сырые с содержанием влаги более 50%.

Отходы растениеводства.

По своей структуре и топливным харак­теристикам близко подходят к древесине. Большинство из них отличается относительно высокой теплотворной способностью (табл.). Для сравнения приведены данные по городскому мусору.

Средние значение QMP для растительных отходов, ккал/кг.

Солома

Костра льняная

Коробочки хлопчатника

Стебли хлопчатника

Подсолнечная лузга

Рисовая шелуха

Городской мусор

3750

3860

3410

3470

3685

3180

1000


Геофизическая энергия (возобновляемая энергия).

Для того чтобы узнать, какие источники энергии относятся к аль­тернативным, следует вначале тщательно проанализировать схему энергетического баланса Земли. Рассмотрим сначала геотермальную, гравитационную и солнечную энергии; эти источники энергии назо­вем геофизическими. По сравнению с органическим топливом коли­чество энергии, которое можно получить от этих трех источников, относительно легко оценить. Проанализируем методы, с помощью которых геофизическая энергия может быть преобразована в полез­ную работу, оценим конечные ресурсы каждого вида энергии.

Гидроэнергия.

Преобразование потенциальной энергии воды, накопленной в водоемах, в механическую энергию вращения с целью приведения в действие мельниц и других механизмов применялось со времен Римс­кой империи. Преобразование гидроэнергии в электрическую энер­гию стало возможным в конце XIX в. благодаря открытиям физики и техническому прогрессу. Крупные гидроэлектростанции начали по­являться на рубеже XIX и XX вв.

Физические принципы процесса преобразования энергии падаю­щей воды в электроэнергию в действительности просты, однако тех­нические детали достаточно сложные. Вода под напором, создавае­мым плотиной, направляется в водовод, который заканчивается турбиной. Турбина вращает вал, к которому присоединен ротор ге­нератора, вращающийся в магнитном поле статора. Выработка элек­троэнергии зависит от потенциальной энергии воды, запасенной в водоеме, и КПД ее преобразования в электроэнергию.

Мощность гидроэлектростанций (ГЭС) зависит как от количества воды, так и от перепада между водной поверхностью водохранилища и уровнем установки гидроагрегата; этот перепад называется на­пором. Вода, поступающая на турбину под высоким напором, имеет большую потенциальную энергию, чем при малом напоре, и поэтому на высоконапорной электростанции требуется меньший расход воды для получения одинаковой мощности. Чем выше напор, тем меньше необходимые габариты турбины, что удешевляет стоимость всего сооружения. Но высокий напор не всегда удается создать; мощность ГЭС и количество вырабатываемой ею электроэнергии в основном зависят от топографических условий в районе размещения водохра­нилища и ГЭС.

Водохранилища, образованные плотинами, могут оказывать вред­ное воздействие на окружающую среду. Они могут приводить к унич­тожению уникальной флоры и фауны, сокращению стока реки, пре­кращению сезонных паводков (Асуанский гидроузел), нанесению ущерба ландшафту района расположения водохранилища. Кроме того, все водотоки несут с собой наносы, которые, оседая в водохра­нилищах, снижают их полезную емкость. Поэтому полезное исполь­зование водохранилищ продолжается всего от 50 до 200 лет. Многие гидроэлектростанции были построены в засушливых районах. Созда­ние в таких районах крупных водных поверхностей в долгосрочной перспективе должно вызывать климатические изменения, иногда же­лательные. И наконец, образование крупного водохранилища созда­ет очень большое давление на малый участок поверхности земли. Об­разующиеся в результате этого напряжения в породах, слагающих дно водохранилища, если их не снимать, могут создать потенциаль­ную угрозу землетрясения.

Поэтому целесообразно развитие ГЭС малой мощности, в основ­ном на уже существующих водохранилищах.

Вместе с тем существуют и другие возможности использования водной энергии — приливные гидростанции (ПЭС). В некоторых районах мирового океана наблюдается очень большая амплитуда приливной волны и разность между верхней и нижней отметками прилива достигает 10 м. Если открыть шлюз в дамбе в то время, ког­да приливная волна набирает высоту, дать возможность заполнить­ся водохранилищу и затем в высшей точке прилива шлюз закрыть, то накопленную воду можно во время отлива пропустить через турби­ны и таким образом выработать электроэнергию. Еще лучше, если турбины могут быть сконструированы реверсивными; в этом случае они будут работать как при заполнении водохранилища, так и при его опорожнении. Совершенно очевидно, однако, что выработка элек­троэнергии на ПЭС возможна лишь в определенное время суток, и это затрудняет использование приливной энергии в крупной энерго­системе.

Значение суммарного энергетического потенциала приливов ми­рового океана по оценке составляет 13 ГВт, что очень немного по сравнению с гидроэнергетическим потенциалом речного стока. Ко­нечно, данная оценка может иметь серьезные погрешности, но мало­вероятно, чтобы их устранение внесло принципиальные изменения в вывод о том, что приливная энергия не может внести существенного вклада в покрытие энергетических потребностей человечества в бу­дущем. Вместе с тем следует отметить, что использование энергии приливов в целях выработки электроэнергии для местных нужд име­ет явные преимущества.

Энергия приливов не образует вредных отходов и не растрачива­ет невосполнимых минеральных ресурсов, наносимый ущерб эколо­гии и эстетике местности невелик. Представляется логичным осваи­вать энергию приливов там, где сочетание топографического и энергетического факторов делает это экономически целесообразным и технически возможным.

Ветровая энергия.

Ветровая энергия продолжительное время использовалась в мо­реплавании, а также для приведения в движение мельничных колес. В последнее время она начала использоваться для выработки электро­энергии. Большинство ветроэнергетических установок имеет мощ­ность несколько киловатт, и используются они в отдаленных местах, например на морских маяках.

Со времени энергетического кризиса 1973-1974 гг. в развитие вет­ровой энергетики были вложены значительные средства. Было пост­роено несколько экспериментальных установок разной конструкции. Стоимость электроэнергии, вырабатываемой ветроэнергетическими установками, все еще высока по сравнению с электроэнергией, полу­чаемой на базе органического топлива. Кроме того, выявились неко­торые проблемы, связанные с электрическими помехами. Тем не менее ветровую энергию следует рассматривать как энергетический ресурс.

Ветроэнергетическая установка предназначена для того, чтобы превращать кинетическую энергию ветра в энергию вращении рото­ра генератора, который и вырабатывает электроэнергию. Выходная мощность установки пропорциональна площади лопастей ветрово­го ротора и скорости ветра (в кубе). Поэтому ветроэнергетические установки большой мощности, в мегаваттном диапазоне, должны быть по своим габаритам очень крупными, поскольку скорость вет­ра в среднем не бывает очень большой.

Одной из самых сложных проблем, препятствующих широкому распространению ветроэнергетических установок, является постоян­но меняющаяся скорость ветра. Даже высоко в горах нельзя рассчи­тывать на стабильную скорость ветра. Кроме того, электроэнергия начинает вырабатываться этими установками тогда, когда дует ве­тер, а не тогда, когда она необходима. К сожалению, удобного, эф­фективного и экономичного способа запасать электроэнергию в боль­шом количестве еще нет.

Отношение к ветроэнергетическим установкам до сих пор неодноз­начно. Считается, что широкое развитие ветровой энергии может привести к заметным климатическим изменениям.

Геотермальная энергия.

Этот вид энергии некоторые причисляют к неисчерпаемому, эко­логически чистому источнику энергии будущего. Чтобы понять, на­сколько это соответствует действительности, необходимо вниматель­но проанализировать принципы использования геотермальной энергии. Принцип вы­работки электроэнергии на современной геотермальной электростанции (ГеоТЭС) тот же, что и на ТЭС, работающей на орга­ническом топливе: теплота, получаемая в данном случае из недр Зем­ли, используется для выработки пара, который вращает турбоагрегат. КПД ГеоТЭС из-за низкой температуры пара меньше, чем ТЭС на органическом топливе. Кроме того, пар, поступающий из недр Зем­ли, загрязнен, иногда значительно, растворенными в нем солями.

Для удаления нежелательных химических примесей в схеме ГеоТЭС предусмотрен сепаратор пара. В последующем эти химические веще­ства могут быть использованы в качестве промышленного сырья. Из конденсатора поступает чистая вода, которая может использоваться в хозяйственных целях. Для конденсации отработавшего пара исполь­зуется внешнее охлаждение — возможно охлаждение с помощью гра­дирен, а получаемая вода может вновь закачиваться через скважины в недра Земли для ее дальнейшего включения в процесс теплообмена. В более простых схемах отдельные компоненты могут отсутствовать.

Если бы земная кора, мантия и ядро были однородными, тепло­вой поток повсюду был бы равномерным, тепловое излучение земно­го ядра было бы непригодно для использования. Однако земная кора неоднородна, и вулканическая деятельность и наличие горячих ис­точников во многих районах служат доказательством того, что маг­ма в этих местах относительно близко подступает к поверхности зем­ли. В отдельных районах, где магма близко подходит к водонесущим породам, которые к тому же сверху перекрыты непроницаемой скаль­ной породой, создаются благоприятные условия для образования пара. Путем бурения скважин этот пар, часто имеющий температуру от 100 до 300°С, можно извлекать из недр земли для использования. Иногда такой пар через естественные трещины или расщелины вы­ходит на поверхность в форме гейзеров. Эта гипотеза образования пара не доказана, поскольку еще не проводились соответствующие исследования процесса теплообмена между источником теплоты и водоносными пластами.

Оценить ресурсы геотермальной энергии — задача трудная; лю­бая количественная оценка на сегодняшний день, вероятно, неточна, однако не настолько, чтобы серьезно изменить сделанные выводы. Использованный метод оценки состоял в обследовании всех извест­ных в мире районов геотермальной активности и определении коли­чества теплоты, содержащейся в этих районах на глубине до 19 км. При этом методе геотермальные ресурсы были оценены в 4∙1022 Дж. Допустим, что из этого количества энергии 1% может быть преобра­зован в электроэнергию при КПД = 25%. В этом случае общее произ­водство электроэнергии составит 1020 Дж. Для выработки такого ко­личества электроэнергии, скажем за 50 лет, понадобилось бы построить геотермальные электростанции общей установленной мощ­ностью 60 ГВт. Однако эта мощность одного порядка с мощностью, которую можно получить при освоении всего потенциала прилив­ной энергии.

Чтобы приступить к освоению этого относительно небольшого источника энергии, необходимо сначала решить несколько техноло­гических и экологических проблем. Широкое освоение геотермаль­ной энергии будет возможно, когда она станет конкурентоспособ­ной по сравнению с другими энергоресурсами. Большая часть затрат на ее освоение связана в настоящее время с бурением скважин, необ­ходимых для извлечения из недр пара или горячей воды. Эти скважи­ны не столь глубокие, как нефтяные, однако их диаметр больше (до­стигает 60 см). Высокое содержание солей в геотермальной воде приводит к тому, что через несколько лет работы происходит заку­порка скважин. В результате их необходимо прочищать или требует­ся пробуривать новые скважины в другом месте, что связано с допол­нительными расходами. По большинству скважин поступает не пар, а горячая вода; в этом случае КПД процесса выработки электроэнер­гии меньше. Отбор теплоты из геотермального источника происхо­дит обычно быстрее, чем ее возмещение за счет естественного про­цесса. В результате со временем температура пара или горячей воды начинает снижаться, уменьшается также их поступление на поверх­ность. Это означает, что наступает исчерпание источника геотермаль­ной энергии. Чтобы предотвратить этот процесс, под землю под вы­соким давлением должна закачиваться вода, что связано с определенным риском. Такая закачка вызывала сдвиги земной коры вдоль линий разрывов.

На пути к широкомасштабному использованию геотермальной энергии стоит много нерешенных проблем, которые необходимо пре­одолеть до того, как будут сделаны крупные капитальные вложения в освоение этого источника энергии. Руководствуясь историческими фактами, можно прийти к выводу, что если крупные капиталовложе­ния будут сделаны, то эксплуатация геотермального источника бу­дет осуществляться вне зависимости от того, какими будут послед­ствия для окружающей среды.

Солнечная энергия.

Рассмотренные выше геофизические источники энергии могут обеспечить в последующие десятилетия лишь незначительную часть потребностей в энергии и оказаться неприемлемыми для освоения в крупных масштабах. Органическое топливо, рассмотренное ранее, является невозобновляемым ресурсом, и его использование связано с нанесением значительного ущерба окружающей среде.

Необходимо располагать неисчерпаемым дешевым и возобновля­емым источником энергии, не загрязняющим окружающую среду. Таким источником является Солнце. Поток солнечного излучения со­ставляет около 3,8∙1026 Вт и представлен всем спектром электромаг­нитных волн. Однако основная его масса приходится на ультрафио­летовую, видимую и инфракрасную части спектра. Энергетическая освещенность земной атмосферы составляет примерно 1,4 кВт/м2, а поверхности Земли — около 1 Вт/м2. Пока не существует экономич­ного способа преобразования этой энергии в электрическую. Прохо­дят испытания нескольких установок для отработки такой техноло­гии преобразования.

Наиболее подходящим направлением преобразования солнечной энергии в полезную работу является ее использование для замещения органического топлива при получении теплоты в парогенераторе. Од­нако, как и при применении органического топлива, КПД преобра­зования ограничивается диапазоном температуры рабочего тела, в данном случае — пара. Поскольку создание и эксплуатация очень крупных коллекторных систем для концентрации солнечных лучей является делом сложным, в настоящее время в таких системах удает­ся получить пар, как правило, с относительно небольшой температу­рой. Как следствие, КПД преобразования солнечной энергии в элек­троэнергию в таких установках может составлять около 10%. Чтобы получить 1 ГВт электрической мощности, потребовалось бы 10 ГВт мощности солнечного излучения.

В создании системы таких масштабов и связанного с ней другого оборудования имеются определенные технические трудности. Кроме того, непомерно высока ее стоимость по сравнению с ТЭС на органи­ческом топливе и даже АЭС. Подсчитано, что стоимость электроэнер­гии, производимой опытной солнечной установкой башенного типа в Барстоу, почти в 10 раз превышает стоимость электроэнергии, про­изводимой ТЭС на органическом топливе.

Ядерная энергия.

Если предположить, что начнется более широкое использование угля, то органических топлив, возможно, хватит на четыре-пять де­сятилетий для обеспечения потребностей человечества в энергии. После этого периода основным энергоресурсом может стать или не стать солнечная энергия. Практически уже сейчас ощущается необ­ходимость иметь источник энергии на этот переходный период, при­чем этот источник должен быть практически неисчерпаемым, деше­вым, возобновляемым и не загрязняющим окружающую среду. И хотя ядерная энергия не отвечает полностью всем перечисленным требованиям, она продолжает развиваться. Вероятно, что именно она будет этим «переходным» источником энергии по той простой причи­не, что никакой другой вид энергии, который был бы столь же дос­тупным, пока не найден.

Освобождение и использование ядерной (у нас в стране сложилось название «атомной») энергии является одним из крупнейших дости­жений науки в XX в.

Это великое открытие, к сожалению, было прежде всего исполь­зовано в военных целях (вспомним о взрывах американских атомных бомб 6 и 9 августа 1945 г. над японскими городами Хиросимой и На­гасаки) и только позднее в мирных.

Современная атомная энергетика зиждется на экспериментально установленном факте деления тяжелых ядер элементов (урана, плу­тония, тория) в результате попадания в ядро нейтрона, благодаря чему развивается цепная реакция с выделением огромного количества энер­гии (тепла).

Интересно отметить, что один из трех названных элементов — плутоний — практически на Земле не встречается. Это не помешало, однако, добытому в ядерных реакторах плутонию, 239Р и, стать наря­ду с ураном важнейшим ядерным топливом.

Важно заметить, что масса тяжелого ядра (урана, плутония или тория) до ядерной реакции несколько больше суммы масс продук­тов, получаемых в результате, т. е. мы имеем здесь дело с так называ­емым дефектом массы — явлением, связанным с огромным энерго­выделением.

Ядерные реакции с огромным энерговыделением могут происхо­дить и в результате синтеза ядер элементов, обладающих малым атом­ным весом, например изотопов водорода — дейтерия и трития. Но это уже термоядерная реакция,

Существенно отметить, что число нейтронов, являющихся истин­ными инициаторами реакции деления тяжелых ядер, в результате ре­акции увеличивается, во всяком случае, оно больше единицы. Это и создает возможность цепной реакции.

В настоящее время в качестве ядерного топлива в реакции деления ядер используются обогащенный природный уран и искусствен­но полученный плутоний. Что касается тория, то он пока не получил применения в ядерной энергетике, хотя его запасы, по-видимому, больше, чем урана, и многие специалисты рассматривают торий как перспективное ядерное топливо.

Производная энергия.

Как уже отмечалось, к производной энергии относятся энергоно­сители в виде пара, горячей воды (тепловой энергии), сжатого возду­ха, электроэнергии, кислорода и др., которые широко используются в самых различных технологических процессах, а также в быту. Для их производства применяются, как правило, первичная энергия (топ­ливо), а также соответствующие виды производной (преобразован­ной) энергии. Для производства преобразованной энергии служат различные энергоисточники:

• традиционные (тепловые электрические станции — ТЭС, атом­ные (ядерные) электрические станции — АЭС, котлы, компрессор­ные установки и т.д.);

• установки на вторичных ресурсах (котлы-утилизаторы, тепло­вые насосы, холодильники и т.п.);

• нетрадиционные (альтернативные) — ветроэнергоустановки, биореакторы, гелиоподогреватели и др.

Работоспособность (или, иначе говоря, энтальпию, т.е. теплосо­держание) любого из этих теплоносителей определяет сумма их внут­ренней энергии и потенциальной энергии источника.

Дадим краткую характеристику основных видов энергоносителей.

Пар водяной. Это вода в газообразном состоянии. Различают на­сыщенный пар, находящийся в термодинамическом равновесии с жидкостью (водой), и перегретый пар, имеющий температуру ТП боль­ше температуры насыщения ТИ для данного давления. Водяной пар — рабочее тепло паровых турбин и машин. Пар также широко исполь­зуется как высокотемпературный теплоноситель для сушилок, тер­мической обработки и др.

Для равновесной термодинамической системы существует функ­циональная связь между параметрами состояния, которая называет­ся уравнением состояния. Такие параметры простейших систем, ко­торыми являются газы, пары и жидкости, связаны термическим уравнением состояния вида:

f(p,u,T) = 0.

На основании теории, разработанной М.П. Вукаловичем и др., было получено численное уравнение состояния водяного пара, на основании которого составлены таблицы и диаграммы свойств во­дяного пара для различных температур и давлений. Эти диаграммы и таблицы нужны для практических расчетов всех теплоэнергетиче­ских процессов, в которых используется водяной пар.

Вода. Жидкость без запаха, вкуса, цвета, химическая формула Н2О. Плотность 1000 кг/м3 при температуре 3,98°С. При 0°С пре­вращается в лед, при 100°С — в пар. Вода — обязательный компо­нент практически всех технологических процессов, как промышлен­ных, так и сельскохозяйственных. Особенно широко вода применяется в теплотехнике как энергоноситель для производства и переноса тепловой энергии.

В нашей стране с использованием го­рячей воды разработаны и реализованы многочисленные центра­лизованные системы теплоснабжения для отопления и горячего во­доснабжения жилых, социальных и производственных зданий и технологических потребителей. Распространенный источник тепло­снабжения теплоэлектроцентрали (ТЭЦ) и отопительные и про­изводственно-отопительные котельные.

Электрическая энергия (электричество). Определяют как совокуп­ность явлений, в которых проявляется существование, движение и взаимодействие (посредством электромагнитного поля) заряженных частиц. Электрическая энергия имеет ряд неоспоримых преимуществ по сравнению с другими видами производной энергии — возможность получения практически любых количеств энергии как от элемента размером со спичечную головку, так и от турбогенераторов мощнос­тью более 1000 МВт, сравнительная простота ее передачи на рассто­яние и легкость преобразования в энергию других видов. Основная проблема — это ее хранение. Здесь возможности ограничены.

В настоящее время трудно представить себе жизнь без электроэнер­гии. Так, в США на долю электроэнергии приходится около 45% про­изводимой энергии. Электроэнергия находит применение и в электро­мобилях, и в производстве водородного топлива, в том числе и из воды.

Воздух. Это смесь газов, из которых состоит атмосфера Земли: азот (78,08%), кислород (20,95%), инертные газы (0,94%), углекислый газ (0,03%). Плотность 1,293 кг/м3, растворимость в воде 29,18 см3/л. Благодаря кислороду, содержащемуся в воздухе, он используется как химический агент в различных процессах (сжигание топлива, вып­лавка металлов из руд, получение многих химических веществ). Воздух важнейшее промышленное сырье для получения кислорода, азота, инертных газов. Используется как теплоизоляционный и зву­коизоляционный материал.

Кроме этого сжатый воздух рабочее тепло для совершения ме­ханической работы (пневматические устройства, струйные и распы­лительные аппараты и др.).

Кислород. Химический элемент, в свободном виде встречается в двух модификациях — О2 («обычный») и О3(озон). О2— газ без цвета и запаха, плотность — 1,42897 кг/м3. В химической практике самый активный неметалл. С большинством других элементов (водородом, многими металлами и др.) кислород как окислитель взаимодейству­ет непосредственно и с выделением энергии. Процесс окисления по мере повышения температуры и роста скорости реагирования пере­ходит в режим горения. Разновидностью последнего можно назвать взрыв (детонация). Кислород (или обогащенный им воздух) приме­няется в металлургии, химической промышленности, при космичес­ких полетах, подводном плавании, в медицине. Жидкий кислород — окислитель ракетного топлива.

Использование кислорода в качестве окислителя вместо воздуха многократно увеличивает скорость горения (окисления), снижает объем образующихся продуктов горения.

Соотношения между некоторыми физическими и энергетическими величинами.

В настоящее время употребляются следующие единицы вторичной энергии;

Тепловая энергия — джоуль (Дж, j), калория (кал.)

Тепловая мощность — кВт, Вт, ккал/час

Электрическая энергия — киловатт час, кВт∙ч

Электрическая мощность — киловатт, кВт.

1Дж = 0,239кал = 0,278∙106 кВт ч.

1ккал = 4187 Дж = 1,163∙10-3 кВт ч.

1 кВт = 3,6∙106 Дж = 860 ккал.

1 тыс. кВт∙ч = 0,86 Гкал.

Первичные энергоносители — уголь, нефть, газ, гидроресурсы, биомасса и др. — измеряются в единицах объема или массы: т., м3.

Энергетическая ценность первичных энергоносителей может вы­ражаться в единицах вторичной энергии (тепла или электричества) или в единицах специальных эквивалентов — условном топливе (СССР, Россия, СНГ) или нефтяном эквиваленте (США, ОЭСР)

1 т условного топлива соответствует 7∙106 ккал

1 т нефтяного эквивалента соответствует 10∙10б ккал

1 т.у.т. = 7 млн. ккал = 29,31 млн. кДж.

1 т.н.э. = 10 млн. ккал = 41,9 млн. кДж.

1000 м3 газа = 1,14 т.у.т. = 0,8 т.н.э.

в случае приведения электрической энергии гидравлических и атомных электростанций к условному эквиваленту пользуются либо методикой ООН - вычисление физического эквивалента:

1 кВт • ч = 0,125 кг у.т.,

либо методикой МИРЭК, исходящей из замещения гидравлической и атомной энергии энергией вытесняемых тепловых электростанций:

1 кВт-ч = 312 г у.т. Поэтому в странах UNIPEDE:

1 МВт • ч = 0,222 т.н.э.,

а в странах ОЭСР и МИРЭК:

1 МВт • ч = 0,086 т н.э.

Другие физические и энергетические соотношения:

1 ПДж = 23,9 т н.э.

1 м3 нефти = 0,86 т нефти

1 т нефти = 42 ГДж

1 нефтяной баррель = 159 л = 0,159 м3

1 кДж = 0,9478 БЕТ

1 кВт∙ч = 3412 БЕТ.

Британская тепловая единица — БЕТ (BTU) — широко использу­ется в Великобритании и странах, традиционно с нею связанных.

1 БЕТ = 0,252 ккал.

Метрическая тепловая единица МТБ:

1 МТЕ = 1 БЕТ = 0,453 ккал.

В конкретных энергосистемах и на электростанциях при исполь­зовании тепловой и электрической энергии пользуются отчетными материалами по удельным расходам топлива. При отсутствии этих данных расчеты ведутся приближенно при следующих значениях удельных расходов топлива, соответственно по электроэнергии

320 г у.т./кВт • ч

и по тепловой энергии

172 кг у.т./Гкал .

Диаграмма перевода некоторых видов топлива и других энерго­ресурсов в условное топливо приведена на рисунке.

Потребности в отоплении в соответствии с действующими на тер­ритории России и стран СНГ нормативами, устанавливаемыми СН 2.01.01-82 «Строительная климатология», проектируются по следу­ющим климатологическим характеристикам:

— среднемесячная температура наружного воздуха, °С;

— среднегодовая температура наружного воздуха, °С;

— абсолютная минимальная температура, °С;

— абсолютная максимальная температура, °С;



Диаграмма перевода различных энергоносителей в условное топливо

— средняя максимальная температура наиболее жаркого месяца, °С;

— средняя температура наиболее холодных суток, °С;

— средняя температура наиболее холодной пятидневки, °С;

— продолжительность периода со средней суточной температу­рой воздуха ниже 8°С;

— средняя температура периода со средней суточной температу­рой воздуха ниже 8°С;

— продолжительность периода со средней суточной температу­рой воздуха ниже 10°С;средняя температура наиболее холодного периода, °С;

— продолжительность периода со среднесуточной температурой воздуха ниже 0°С, сут.

  1   2   3   4   5   6   7   8   9   ...   58

Добавить документ в свой блог или на сайт

Похожие:

«История электроэнергетики» iconИстория развития электроэнергетики и электромеханики в россии учебное пособие
История развития электроэнергетики и электро­механики в россии: Учебное пособие / А. С. Соловьев, А. Е. Козярук; Санкт-Петербургский...
«История электроэнергетики» icon«История электроэнергетики»
Реферат – это текстовый документ, в котором отражены все основные вопросы изучаемой темы
«История электроэнергетики» iconКалендарный план изучения дисциплины «История электроэнергетики»...
Пособие по организации дистанционного обучения призвано дать студенту представление о стиле и характере обучения без непосредственного...
«История электроэнергетики» iconДоклад Министра энергетики РФ а. В. Новака «Об итогах прохождения...
Доклад Министра энергетики РФ а. В. Новака «Об итогах прохождения осенне-зимнего периода 2013/14 годов субъектами электроэнергетики»....
«История электроэнергетики» iconПрограмма развития электроэнергетики неизбежно придаст импульс роста...

«История электроэнергетики» iconМосковский энергетический институт (технический университет) институт электроэнергетики (иээ)

«История электроэнергетики» iconПрограмма VIII всероссийской конференции с международным участием «горение твердого топлива»
Корректировка программы Минэнерго РФ развития электроэнергетики страны на 2012-2018гг
«История электроэнергетики» iconПрограмма по формированию навыков безопасного поведения на дорогах...
...
«История электроэнергетики» iconМониторинг средств массовой информации 27 августа 2013 года
Путин 27 августа проведет на сш гэс совещание о развитии электроэнергетики Сибири и Дальнего Востока 3
«История электроэнергетики» iconМосковский энергетический институт (технический университет) институт электроэнергетики (иээ)
По завершению освоения данной дисциплины студент будет обладать следующими компетенциями
«История электроэнергетики» iconМосковский энергетический институт (технический университет) институт электроэнергетики
...
«История электроэнергетики» iconМосковский энергетический институт (технический университет) институт электроэнергетики
...
«История электроэнергетики» iconМосковский энергетический институт (технический университет) институт электроэнергетики
...
«История электроэнергетики» iconМосковский энергетический институт (технический университет) институт электроэнергетики (иээ)
Целью дисциплины является изучение конструктивной части воздушных линий и методов механического расчета проводов
«История электроэнергетики» iconМониторинг средств массовой информации 16 апреля 2012 года
Оао «фск еэс» в рамках пмэф-2012 проведет круглый стол «Интеграция электроэнергетики: в поисках новой парадигмы» 4
«История электроэнергетики» iconБ. И. Кудрин электрика как развитие электротехники и электроэнергетики третье издание томск 1998
Першинский филиал ОАО нпо «Наука» осуществляет производство и отпуск тепловой энергии в виде теплоносителя (горячая вода)


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск