Механика и электродинамика пристеночной плазмы





НазваниеМеханика и электродинамика пристеночной плазмы
страница1/4
Дата публикации19.04.2015
Размер0.56 Mb.
ТипАвтореферат
100-bal.ru > Физика > Автореферат
  1   2   3   4


На правах рукописи

КОТЕЛЬНИКОВ Михаил Вадимович


МЕХАНИКА И ЭЛЕКТРОДИНАМИКА ПРИСТЕНОЧНОЙ ПЛАЗМЫ


Специальность 01.02.05 - механика жидкости, газа и плазмы

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора физико-математических наук

Москва – 2008

Работа выполнена на кафедре «Прикладная физика» в Московском авиационном институте (государственном техническом университете)

Официальные оппоненты:

доктор физико-математических наук,

заслуженный деятель науки РФ,

профессор Алексеев Борис Владимирович,

доктор физико-математических наук,

заслуженный деятель науки и техники РФ,

профессор Киреев Владимир Иванович,

доктор технических наук,

профессор Ким Владимир Павлович

Ведущая организация: Центральный аэрогидродинамический институт

имени Жуковского Н.Е.

Защита диссертации состоится 26 сентября 2008 г. в 10-00 на заседании Диссертационного совета Д 212.125.14 при Московском авиационном институте (государственном техническом университете) по адресу: 125993, Москва, Волоколамское шоссе, д. 4, тел. (499) 158-58-62.
С диссертацией можно ознакомиться в библиотеке МАИ.


Автореферат разослан ____ ____________ 2008 г.

Просим принять участие в работе совета или прислать отзыв в одном экземпляре, заверенный печатью организации.

Ученый секретарь

Диссертационного совета Д 212.125.14 Гидаспов В.Ю.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность. Низкотемпературная плазма как четвертое состояние вещества играет всё возрастающую роль в нашей жизни. Она является рабочим телом в самых разнообразных приборах и устройствах. Плазма дугового разряда используется в различного типа технологических плазмотронах, предназначенных для сварки и резки металлов, напыления пленок со специальными свойствами, и, наоборот, распыления вредных пленок, инициирования плазмохимических реакций, изготовления интегральных схем и т.д. Плазма тлеющего разряда применяется в лампах дневного света, в некоторых типах лазеров и электронных приборов, в рекламных целях. Плазма СВЧ-разряда имеет место в различного назначения СВЧ-генераторах. В последние десятилетия для коррекции орбиты спутников применяются высоко эффективные движители малой тяги, рабочим телом для которых является плазма. В обозримом будущем более мощные плазменные движители (ПД) могут быть использованы как маршевые движители для полета на Марс и другие планеты солнечной системы.

С другой стороны низкотемпературная плазма может быть средой обитания для авиационно-космической техники. При движении сверхзвуковых самолетов и ракет в атмосфере Земли в головной ударной волне возникает слабоионизованная плазма, которая обтекает летательный аппарат (ЛА). С ростом скорости летательного аппарата растут концентрация и температура плазмы в пограничном слое. Соответственно возрастают тепловые потоки на поверхность аппарата, для нейтрализации которых применяется специальная тепловая защита. Пристеночная плазма может осложнять радиосвязь ЛА с наземными станциями слежения. Проблема электромагнитной совместимости плазменных струй, истекающих из ПД, и пристеночных плазменных образований с каналами радиосвязи является актуальной до настоящего времени. Искусственные спутники Земли и космические станции движутся в разреженной ионосферной плазме. Выходящие на орбиту ЛА и спускаемые с орбиты аппараты с неизбежностью вынуждены работать в окружении низкотемпературной плазмы. Плазма встречается и в природных условиях. Это искровой и коронный разряд (например, обычная молния), шаровые молнии и т.д. Пламя обычной ацетиленовой горелки, особенно при инжекции в него легко ионизируемых солей щелочных металлов, представляет собой слабоионизованную столкновительную плазму. Плазма возникает при взаимодействии лазерного и других типов излучения с веществом. Она широко используется в научных экспериментах при разработке техники будущего (плазма капиллярного разряда, искусственные образования типа шаровой молнии и др.).

Из приведенного далеко не полного обзора ясно, что исследование плазменного состояния вещества является актуальной задачей. Исследование осуществляется путем проведения физических и вычислительных экспериментов. Наиболее сложной областью для исследования является пристеночная плазма, поскольку в ней возникает возмущенная зона с достаточно сложным распределением потенциала, с отличными от максвеловских функциями распределения заряженных частиц. В пристеночной области возможны многочисленные элементарные процессы (рассеяние, отражение, поглощение, эмиссия, инжекция, сублимация, диссоциация, ионизация, рекомбинация, возбуждение и т.д.), существенно осложняющие физическую, математическую и вычислительную модели задачи. Комплексному исследованию методами вычислительного эксперимента (а иногда и физического эксперимента) пристеночных областей в плазме посвящена настоящая работа. В дополнение к сказанному отметим, что результаты исследований находят еще одну актуальную область применения – это развитие зондовых методов диагностики самой плазмы. В области механики и электродинамики пристеночной плазмы работало и работает огромное число исследователей, обзор работ которых приводится в начале каждой главы диссертации.

Цель работы

  • создать надежные методы расчета пристеночных слоев вблизи тел, обтекаемых низкотемпературной плазмой, в широком диапазоне изменения числа Кнудсена (0  Kn < );

  • исследовать структуру возмущенной зоны вблизи обтекаемых плазмой тел, включая область ближнего следа, в различных режимах течения;

  • на базе полученных зависимостей тока на тело от его потенциала разработать надежные методы зондовой диагностики плазменных потоков;

  • разработать теорию нестационарного зонда.

Научная новизна и значимость результатов исследования заключается в том, что впервые:

  1. С единых позиций сформулированы физические, математические и вычислительные модели механики и электродинамики пристеночной плазмы в достаточно общей постановке;

  2. С помощью созданного пакета прикладных программ получены функции распределения заряженных частиц вблизи заряженных тел, помещенных в поток бесстолкновительной плазмы как без магнитного поля, так и с магнитным полем. Показано их существенное отличие от аналогичных функций в покоящейся плазме;

  3. Получены распределения моментов функции распределения и самосогласованного электрического поля в лобовой, боковой и теневой областях заряженного цилиндра, обтекаемого потоком бесстолкновительной плазмы. Обнаружены и исследованы нелинейные эффекты, возникающие при совместном действии направленной скорости, электрических и магнитных полей;

  4. Дана физическая интерпретация обнаруженных новых нелинейных эффектов в пристеночных слоях плазмы в бесстолкновительном режиме;

  5. С помощью созданного пакета прикладных программ в режиме сплошной среды найдены области изменения характерных параметров задачи, в которых проявляется аномальная зависимость плотности тока от индукции магнитного поля (типа аномальной диффузии). Обнаружены также области, в которых плотность тока по обводу цилиндра проявляет немонотонность, в частности, ионный ток в теневой области может быть существенным;

  6. Исследован переходный режим с учетом всех возможных типов столкновений (ион-нейтрал, электрон-нейтрал, ион-ион, ион-электрон, электрон-электрон). Выявлено влияние столкновений на функции распределения заряженных частиц и их моменты;

  7. Получен достаточный для практики набор вольтамперных характеристик (ВАХ) цилиндрических зондов в поперечном потоке столкновительной и бесстолкновительной плазмы. Предложены новые методы обработки ВАХ;

  8. Разработана теория нестационарного зонда в столкновительном и бесстолкновительном режимах течения;

  9. Предложен и разработан метод расчета пристеночного слоя плазменного якоря электромагнитного ускорителя тел;

  10. Разработаны методы электромагнитного воздействия на параметры пограничного слоя;

  11. Предложена вычислительная модель расчета электромагнитного управления вектором тяги плазменного движителя.

Достоверность основных научных результатов подтверждается применением надежных математических моделей и проверенных вычислительных методов. Полученные в вычислительных экспериментах данные там, где это возможно, сравнивались с результатами других авторов и известными экспериментальными данными. Все сравнения дали положительный результат. Использованные математические и вычислительные модели в области механики и электродинамики пристеночной плазмы разработаны в рамках научной школы МАИ, которая исследует эти проблемы почти 50 лет.

Практическая ценность работы заключается в том, что

  1. Полученные функции распределения заряженных частиц в теневой области за спутником (в «следе») позволяют изучать взаимодействие данного спутника с другими телами, попавшими в его возмущенную зону;

  2. Расчет параметров собственной атмосферы вблизи спутника позволяет учитывать ее при проведении физических экспериментов на спутниках и космических станциях, что повысит точность и надежность таких экспериментов. Появляется также возможность проведения зондовых измерений в следе;

  3. Предложенные и количественно просчитанные варианты мягкого электромагнитного управления параметрами пограничного слоя позволяют решать ряд проблем, например, проблему создания радиопрозрачного канала;

  4. Предложенный метод расчета поворота плазменной струи в поперечном магнитном поле может быть полезен при разработке электромагнитных методов управления вектором тяги ПД;

  5. Разработанные достаточно строгие методы расчета пристеночных слоев в плазме могут быть полезны при расчете различных плазменных систем, в том числе и плазменных движителей;

  6. Используемый в численных моделях метод крупных частиц представляется весьма эффективным методом для расчета перемешивания и диспергирования многофазных проводящих смесей электромагнитными силами;

  7. Полученные в работе вольтамперные характеристики оказались важными для уточнения и расширения возможностей методов зондовой диагностики плазменных потоков.

Апробация работы. Основные результаты работы докладывались на 2-nd German-Russien conf. on Electric propulsion enqines and theiz technical applications (Moscow, Russia, 1993 г.); 24-th Int. Electric Propulsion conf. (Moscow, Russia, 1995); на международной конференции по вычислительной и прикладной механике (Россия, Москва, 1997 г); на Международной конференции по «Моделированию и исследованию сложных систем № 4, 5, 6, 7, 9, 10. (№ 4 Москва-Кашира, 1996; № 5 Севастополь, 1998; № 6 Севастополь, 1999; № 7 Севастополь, 2000; № 9 Севастополь, 2002; № 10 Севастополь, 2003; на Международной конференции по методам крупных частиц: теория и приложения (№9, 2000 г.; №10 2001 г.; №11, 2002 г.; №12, 2003 г.; №13, 2004 г.; №15, 2006 г.; №16, 2007 г.); на Международном симпозиуме «Динамические и технологические проблемы механики конструкций и сплошных сред» (Москва, 1999 г.), на 4-й и 6-й Международной конференции по Неравновесным процессам в соплах и струях (NPNJ, Санкт-Петербург, 2002 г., 2004 г.); на 12-й Международной конференции по вычислительной механике и современным прикладным программным средствам (Владмир, Россия, 2003); на 8-х Королёвских чтениях (Самара, Россия, 2005); на 33-й и 34-й Международной конференции по Физике плазмы и УТС (Звенигород, 2006, 2007); на XXXIII Гагаринских чтениях (Москва, 2007 г.).

Публикации. Основные результаты, вошедшие в диссертацию, опубликованы в 40 работах, в том числе 3-х научных монографиях, 10 научных статьях, 1 авторском свидетельстве на изобретение и 26 докладах и тезисах докладов на международных конференциях.

Структура диссертации. Изложение материала собственных исследований автора строится по единой схеме для каждого из возможных режимов течения: молекулярного, столкновительного и переходного. Сначала идет обзор работ предшествующих авторов и формулируется физическая модель задачи, затем формулируется математическая модель задачи и далее вычислительная модель. Заканчивается каждая из первых трех глав изложением полученных автором результатов и их обсуждением. В четвертой главе приведены примеры практических приложений результатов, полученных автором с использованием математических и вычислительных моделей, разработанных в первых трех главах.

Объем диссертации. Диссертационная работа состоит из введения, четырех глав, заключения, списка литературы и приложения. Она содержит 275 страниц машинописного текста, 155 иллюстрации, 146 наименований в списке цитируемой литературы.

КРАТКОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ.
Во введении обосновывается актуальность темы, формулируются цели и задачи исследования, раскрывается место данной работы среди других работ по механике и электродинамике пристеночной плазмы, излагается краткое содержание диссертации по главам.

Первая глава диссертации посвящена исследованию механики и электродинамики пристеночной плазмы в молекулярном режиме. В обзоре работ предшествующих авторов особое внимание уделено кинетическому уравнению Больцмана и обобщенной больцмановской кинетике, впервые предложенной Б.В. Алексеевым, а также уравнениям Максвелла.

С целью сокращения необходимых ресурсов ЭВМ и в то же время обеспечения достаточной общности в постановке задачи рассматриваются следующие геометрии тел, обтекаемых разреженной плазмой:

  1. Цилиндр радиуса rp и потенциала p, расположенный в движущемся со скоростью v поперечном потоке плазмы. Внешнее магнитное поле может быть направлено вдоль оси цилиндра. Такое тело можно рассматривать как элемент конструкции спутника, а в зондовой теории как цилиндрический зонд, расположенный поперек потока.

  2. Удлиненный проводящий прямоугольник шириной 2rp и потенциала p, расположенный на большой обтекаемой плазмой со скоростью V пластине. Вектор V параллелен плоскости пластины и направлен вдоль короткой стороны прямоугольника. Внешнее магнитное поле, если оно существует, параллельно удлиненной стороне прямоугольника. Такое тело можно рассматривать как элемент боковой поверхности спутника, а в зондовой теории как плоский пристеночный зонд ленточного типа.

Обе рассмотренные конструкции имеют практические приложения и в вычислительном плане существенно экономят ресурсы ЭВМ, так как оказываются четырехмерными в фазовом пространстве. Для сравнения, тело сферической геометрии в аналогичной постановке должно рассматриваться в пятимерном фазовом пространстве. Система уравнений Власова-Пуассона в случае цилиндрической геометрии тела имеет вид (при указанном выше расположении направленной скорости и магнитного поля)



(1)

; E = -,

(2)

где f - функции распределения ионов и электронов ( = i,e); vr, v - радиальная и азимутальная скорости частиц; E,  - напряженность и потенциал электрического поля; q, m - заряд и масса частиц. Концентрация, плотность тока частиц у поверхности цилиндра и интегральный ток на цилиндр единичной длины запишутся так:

,

(3)

,

(4)

.

(5)

В качестве начальной функции распределения будем рассматривать максвелловскую функцию распределения

f(0,r,,vr,v) = (n/)(m/(2kT))3/2exp[-m{(vr + Vcos)2 + (v - Vsin)2}/(2kT)],

(6)

где n - концентрация частиц в невозмущенной плазме, T - температура компоненты , V - вектор скорости набегающего потока.

Для решения уравнения Пуассона задается значение  при r = rp и его значение на внешней границе расчетной области, которое, как правило, считается нулевым. Функции распределения на внешней границе совпадают с (6), а на теле ставится условие идеальной каталитичности, т.е. ион, касаясь стенки, получает недостающий электрон, а электрон, коснувшись стенки, поглощается. Система (1)÷(6) составляет систему Власова-Пуассона вблизи заряженного цилиндра, обтекаемого поперечным потоком разреженной плазмы.

Выпишем теперь математическую модель Власова-Пуассона для плоского пристеночного электрода ленточного типа в декартовой системе координат (если B = 0):

,

(7)

, E = -,

(8)

,

(9)

.

(10)

Начальное условие для функции распределения

f(0,x,y,vx,vy) = (n/)(m/(2kT))3/2exp[-m{(vx + V)2 + Vy2}/(2kT)].

(11)

Граничные условия

(xp,yp) = p,

|внеш. граница = 0,

f|внеш. граница = (n/)(m/(2kT))3/2exp[-m{(vx + V)2 + vy2}/(2kT)].


(12)

Система (7)÷(12) составляет математическую модель для тела ленточной геометрии, расположенного на большой обтекаемой бесстолкновительной плазмой пластине.

Система (1÷6) и (7÷12) приводились к безразмерному виду с помощью следующей системы масштабов:

ML = rd = (okTi/ne2)1/2 - масштаб длины;

M = kTi/e - масштаб потенциала;

MV = (2kT/m)1/2,  = i,e - масштаб скорости.

(13)

Остальные масштабы получаются по формулам размерностей. Введем безразмерные параметры: r0 = rp/ML; 0 = p/M; V0 = V/; B0 = B/MB; j0 = j/Mj; I0 = I/MI (rp, p – радиус и потенциал тела, V - скорость потока плазмы, B – величина индукции внешнего магнитного поля, j – плотность тока на тело, I – интегральный ток, приходящийся на единицу длины тела).

Вычислительная модель задачи основана на методе установления, когда на тело подается импульс потенциала с достаточно крутым фронтом нарастания и моделируется переходный процесс от начального к конечному стационарному состоянию. Для решения уравнения Власова используется алгоритм метода крупных частиц Давыдова или метод характеристик, а уравнение Пуассона решается с использованием спектральных методов. С целью сокращения необходимых ресурсов ЭВМ проводилась оптимизация вычислительного алгоритма. По результатам методических расчетов размер расчетной области не превышал размера возмущенной зоны. Размер шага по времени не превышал t = 0,2. Число узлов расчетной сетки в задаче с цилиндром в большинстве расчетов составляло = 20503030, а в задаче с пристеночной лентой = 100401010.

Программа была составлена на алгоритмических языках Pascal и Cu++. В случае обтекания цилиндра использовалась цилиндрическая расчетная сетка, однако отдельные расчеты проводились в однородной декартовой системе координат, что позволило, во-первых, выявить ошибки, связанные с неоднородностью сетки, и, во-вторых, существенно продвинуться в область «следа», возникающего в теневой области за телом вследствие наличия направленной скорости. В процессе отладки вычислительного алгоритма V и B вначале полагались равными нулю, что позволяло сравнить результаты расчетов с имеющимися данными для покоящейся плазмы, полученными Лафрамбуазом и В.А. Котельниковым. Затем отдельно вводилось либо магнитное поле, либо направленная скорость и только на третьем этапе задача решалась в общем виде. Такой подход позволил отдельно выявить влияние каждого фактора и дать физическую интерпретацию полученным результатам. Введенный в программу графический блок дал возможность на каждом временном слое следить за ходом решения, выявлять колебательные процессы, немонотонности в ходе кривых, отличия от прогнозируемого хода решения. На экран монитора выводились трехмерные функции распределения, поля скоростей, концентраций и потенциалов, плотности токов, интегральные токи и другая информация. Разработанный и внедренный графический блок позволил существенно упростить физический анализ результатов математического моделирования.

Функции распределения заряженных частиц (ФР) дают исходную информацию для расчета всех процессов переноса в пристеночной плазме. На рис. 1 приведены функции распределения ионов вблизи цилиндра при V = 0 и B = 0. Они имеют характерный подковообразный вырез, отмеченный еще в более ранних работах и связанный с отсутствием потока ионов вдоль радиуса от тела. По мере удаления от стенки цилиндра вырез сокращается, так как уменьшается влияние стенки, и у внешней границы расчетной области ФР становятся максвелловскими. По мере приближения к поверхности цилиндра концентрация ионов падает, что выражается в уменьшении объема под куполом ФР. Кроме того ФР смещается в сторону отрицательных радиальных скоростей, так как происходит рост скоростей ионов под действием электрического поля в слое объемного заряда. По направлению азимутальной координаты ФР растягивается, что связано с увеличением скорости ионов, движущихся мимо цилиндра по направлениям, близким к касательной к нему. В случае движущейся плазмы начальные и граничные ФР ионов в лобовой, боковой и теневой областях отличаются одна от другой своим положением центра тяжести, который смещается от начала координат на величину скорости потока V, а направление смещения зависит от угловой координаты  (рис. 2).





Рис. 1. Зависимость функции распределения ионов от расстояния до стенки цилиндра

(r0 = 3; 0 = -6; V0 = 0;  = 1; B0 = 0)

1 – r = 0,3; 2 – 1,5; 3 – 3.


Рис.2. Начальная функции распределения ионов (V0 = 5);1 –  = 0; 2 – /2; 3 – ; 4 - 3/2.


На рис. 3. даны профили ФР ионов после установления решения в теневой области за телом (в следе) на различных расстояниях от стенки цилиндра. ФР состоит из двух частей и симметрична относительно плоскости симметрии задачи. Левая часть ФР соответствует частицам, огибающим цилиндр с одной стороны, а правая – частицам, огибающим цилиндр с другой стороны. Провал между отдельными частями ФР связан с отсутствием частиц, движущихся от поверхности цилиндра.

На рис. 4. представлена зависимость ФР ионов от угловой координаты . Если при  =  обе части ФР симметричны, то по мере смещения влево или вправо высота одной части растет, другой – уменьшается. В итоге, выйдя за границу следа, получаем классическую ФР, по форме напоминающую максвелловскую. Это объясняется тем, что пропадает эффект, связанный с появлением двух потоков, идущих с одной и другой стороны от цилиндра.

ФР ионов в боковой и лобовой части, а также ФР электронов существенных отличий от прогнозируемых профилей не показали.






Рис.3. Зависимость функции распределения ионов от расстояния до стенки цилиндра

(r0 = 3; 0 = -6; V0 = 5;  = 1; B0 = 0;  = ), 1 – r/ML = 1,8; 2 – 5,4; 3 – 10,8.







Рис.4. Зависимость функции распределения ионов от  (r0 = 3; 0 = -6; V0 = 5;  = 1; B0 = 0; r = 6 rD)

1 –  = 180; 2 – 172; 3 – 164; 4 - 156; 5 - 148.


Включение осевого магнитного поля оказывает существенное влияние на ФР ионов, начиная с величины B0=(B/MB)>0,1, когда ионы начинают замагничиваться. В качестве характерного примера на рис. 5,6 приведена ФР ионов и ее изолинии при B0 = 0,5. Точка геометрического пространства, в которой получена ФР, имеет координаты (r = 6,  = /2). ФР ионов опять оказывается состоящей из двух частей. Часть ФР «а» (см. рис) расположена в отрицательной области азимутальных скоростей, причем, её центр тяжести близок к нулевой координате Vr. Часть ФР «б» оказывается в положительной области по обеим координатам Vr и V.

Для понимания такого характера ФР на рис. 7 построены траектории фазовых частиц, соответствующих центрам тяжести частей ФР «а» и «б». Из рисунка следует, что часть ФР «а» соответствует потоку ионов, которые под действием силы Лоренца и электрического поля цилиндра двигались по дугообразной траектории вокруг цилиндра. Такие частицы попадают в исследуемую точку с отрицательными V и близкими к нулю Vr. Частицы, образовавшие часть ФР «б», под воздействием тех же сил двигались по другую сторону цилиндра и приобрели положительные значения Vr и V. Ионы, которые двигались по фазовым траекториям между указанными потоками, попали на цилиндр и внесли вклад в интегральный ток. Если продлить траектории этих попавших на тело частиц, то попадем в пространство между частями «а» и «б».






Рис. 5. Функция распределения ионов

(r0 = 3; 0 = -6; V0 = 5;  = 1; B0 = 0,5; r = 6 rD;  = /2).

Рис. 6. Изолинии ФР ионов

1 – fi/= 0,005; 2 – 0,01; 3 – 0,015.





Рис. 7. Траектории движения фазовых частиц.

1 – траектория, соответствующая части ФР (a);

2 - траектория, соответствующая части ФР (б).
Полученные достаточно сложные профили ФР заряженных частиц были использованы для получения интегральных характеристик в возмущенной зоне вблизи заряженного цилиндра.

На рис. 8 даны типичные распределения концентраций ионов и электронов вокруг цилиндра радиуса r0 = 5 при потенциале 0 = -6 и скорости потока V0 = 5. Лобовая часть незначительно обеднена ионами за счет их поглощения и в значительно большей степени электронами вследствие их отталкивания. В теневой части формируется «след». Ионный след уже электронного, так как пролетая мимо цилиндра, ионы притягиваются, а электроны отталкиваются. Для ионов формирование следа является следствием направленной скорости плазмы (направленная скорость сравнима с хаотической скоростью ионов). На электроны фактор направленной скорости оказывает незначительное влияние, поскольку для электронов направленная скорость много меньше хаотической. Причина возникновения электронного следа - самосогласованное электрическое поле. Электроны заполняют ионный след, там возникает объемный отрицательный заряд, в результате чего поле меньше экранируется и глубже проникает в плазму в области следа. Это приводит к падению концентрации электронов в следе.

На рис. 9а,б приведены распределения ni,e(r) и (r) в лобовой, боковой и теневой областях для того же набора параметров. Зависимость ni,e() приводит к появлению азимутального электрического поля, которое достигает максимума при  ~(3/4) и (5/4).





Рис. 8. Концентрация ионов и электронов вблизи цилиндра (r0 = 3; V0 = 5; 0 = -6;  = 1; B0 = 0).






Рис. 9а. Распределение концентраций ионов и электронов по радиусу

(r0 = 3; V0 = 5; 0 = -6;  = 1; B0 = 0)

1- ионы,  = 0; 2- ионы,  = /2; 3- ионы,  = ; 4- электроны,  = 0; 5- электроны,  = /2;

6- электроны,  = .

Рис. 9б. Распределение потенциала по радиусу

(r0 = 3; V0 = 5; 0 = -6;  = 1; B0 = 0)

1-  = 0; 2- /2; 3- ;

На рис. 10 представлены поля скоростей ионов при r0=3, 0=-6 и двух значениях направленной скорости V0=1 и 5. Если при V0=1 влияние электрического поля цилиндра существенно, то при V0=5 фактор направленной скорости превалирует над электростатическим притяжением.



v0 = 1



v0 = 5

Рис. 10. Поле скоростей ионов (0 = -6; r0 = 3;  = 1; B0 = 0).









Рис. 11а. Распределение плотности ионного тока по обводу цилиндра при различных значениях v0 (r0 = 3; 0 = -6;  = 1; B0 = 0)

1- V0 = 0; 2- 0,5; 3- 1; 4- 3; 5- 5.

Рис. 11б. Зависимость средней плотности тока ионов от его потенциала ( = 1)

1 - r0 = 3; 2 – 10; 3 – 30.




На рис. 11а,б даны распределения плотности ионного тока по обводу цилиндра и зависимость средней плотности тока ионов от его потенциала. Как следует из рисунков 11а,б, при наличии направленной скорости максимальная плотность тока имеет место в лобовой области и она растет с увеличением скорости, а минимальная – в теневой. При V03 ток в теневой области становится незначительным и в масштабах рис. 11а совпадает с нулевой линией. Интегральный ток на единицу длины цилиндра с ростом V0 (при V03) растет, что связано с ростом плотности тока на лобовую область.

Последний раздел главы 1 посвящен влиянию осевого магнитного поля на структуру возмущенной зоны и интегральные характеристики. В качестве примера представлены расчеты при следующих параметрах задачи: r0=3, 0=-6, V0=5, =1. Безразмерная величина индукции магнитного поля менялась с пределах 0B00,9.




Рис.12. Зависимость интегрального тока от величины магнитной индукции

(r0 = 3; 0 = -6; V0 = 5).
Зависимость интегрального тока ионов на единицу длины цилиндра I0 от B0 существенно нелинейная и имеет области, как с отрицательной, так и с положительной производной (рис. 12). На первом этапе 0B00,05 электроны замагничены, а ионы – нет. Электроны, которые раньше участвовали в тепловом хаотическом движении, под действием силы Лоренца поворачивают, начинают попадать на боковую поверхность и поглощаются. Вследствие этого растет положительный объемный заряд в пристеночной зоне, который частично экранирует поток ионов, поэтому ток ионов I0 уменьшается на 20÷30%. Во второй области 0,05B00,5 ионы начинают замагничиваться и поворачивают свой вектор скорости в сторону боковой части цилиндра – их ток растет с ростом B0. При B0>0,5 степень замагниченности ионов настолько возрастает, что ионы уже частично не попадают на цилиндр вследствие ларморовского движения и интегральный ток начинает постепенно падать. В численных экспериментах было обнаружено, что ионный след за телом с ростом B0 поворачивает по угловой координате и при B0=0,5 угол поворота достигает 90. Плотность ионного тока по обводу тела также проявляет ряд нелинейных особенностей в магнитном поле. Если без поля максимум плотности тока достигается в лобовой области, а максимум – в теневой, то в продольном магнитном поле с ростом B0 этот максимум уменьшается по величине и смещается по угловой координате от 2 до 3/2 при увеличении B0 от 0 до 0,9. Площадь под кривой j=j(B0) дает значение полного тока по обводу, который меняется в соответствии с рис. 12.
  1   2   3   4

Добавить документ в свой блог или на сайт

Похожие:

Механика и электродинамика пристеночной плазмы iconX XXVI международная (Звенигородская) конференция по физике плазмы...
Международная (Звенигородская) конференция по физике плазмы и утс, 9 – 13 февраля 2009 г
Механика и электродинамика пристеночной плазмы iconПрограмма по формированию навыков безопасного поведения на дорогах...
Курс физики структурируется на основе физических теорий: механика, молекулярная физика, электродинамика, электромагнитные колебания...
Механика и электродинамика пристеночной плазмы iconДинамика неизотермических взвесей в вибрационных полях 01. 02. 05...
В книгу вошло также собрание афоризмов Нассима Талеба — блестящая квинтэссенция его оригинальных идей
Механика и электродинамика пристеночной плазмы iconПрограмма по формированию навыков безопасного поведения на дорогах...
Ы программы традиционны: механика, молекулярная физика и термодинамика, электродинамика, квантовая физика (атомная физика и физика...
Механика и электродинамика пристеночной плазмы iconПрограмма по формированию навыков безопасного поведения на дорогах...
Оборудование урока: компьютерный класс, демонстрационное оборудование «Электродинамика», лабораторное оборудование «Электродинамика»...
Механика и электродинамика пристеночной плазмы iconРабочая программа для аспирантов специальности 01. 02. 05 Механика...
Рассмотрено на заседании кафедры механики многофазных систем «03» сентября 2011 г., протокол №2
Механика и электродинамика пристеночной плазмы iconУчебно-методический комплекс рабочая программа для студентов очной формы обучения
Шармин Д. В. История развития математической науки. Учебно-методический комплекс. Рабочая программа для студентов очной формы обучения,...
Механика и электродинамика пристеночной плазмы iconУчебно-методический комплекс рабочая программа для аспирантов специальностей
Физико-математические науки: 01. 01. 01 Вещественный, комплексный и функциональный анализ, 01. 02. 05 Механика жидкости, газа и плазмы,...
Механика и электродинамика пристеночной плазмы iconЭкспериментальное исследование детонации в сверхзвуковом потоке реагирующей...
Программа «Мы и окружающий мир» разработана в соответствии с психолого-педагогическими основами системы обучения, нацеленной на...
Механика и электродинамика пристеночной плазмы iconПрограмма кандидатского экзамена по специальности 05. 27. 03 «Квантовая...
В основу настоящей программы положены следующие дисциплины: электродинамика; квантовая механика; физическая оптика; физика твердого...
Механика и электродинамика пристеночной плазмы iconШаблон рабочей программы дисциплины Общий физический практикум Лекторы
Общий Физический Практикум является неотъемлемой частью курса "Общая Физика". Основные разделы: механика; молекулярная физика; электродинамика;...
Механика и электродинамика пристеночной плазмы iconРабочая программа по физике разработана для 10 классов на основе...
Рабочая программа по физике разработана для 10 классов на основе программы вс данюшенков,О. В. Коршунова. Данная программа содержит...
Механика и электродинамика пристеночной плазмы iconРабочая программа дисциплины
Программа курса основной образовательной программы магистратуры 010900. 68 Механика деформируемого твердого тела направления механика...
Механика и электродинамика пристеночной плазмы iconУчебник по физике. Представлены разделы физики в теории, примерах...
Открытого колледжа" "Физика". Включает прекрасно иллюстрированный учебник "Открытая физика 5" (все разделы, от Механики до Физики...
Механика и электродинамика пристеночной плазмы iconXlii международная (Звенигородская) конференция по физике плазмы...
Международная (Звенигородская) конференция по физике плазмы и утс, 9 – 13 февраля 2015 г
Механика и электродинамика пристеночной плазмы iconПрограмма по формированию навыков безопасного поведения на дорогах...
Введение. Что такое механика Классическая механика Ньютона и границы ее применимости


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск