Патентам и товарным знакам (19)





Скачать 83.56 Kb.
НазваниеПатентам и товарным знакам (19)
Дата публикации05.04.2015
Размер83.56 Kb.
ТипДокументы
100-bal.ru > География > Документы













РОССИЙСКАЯ ФЕДЕРАЦИЯ

ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ


(19)

RU

(11)

85392

(13)

U1




(51)  МПК

B25J13/00   (2006.01)

(12) ПАТЕНТ НА ПОЛЕЗНУЮ МОДЕЛЬ

Статус: по данным на 17.12.2009 - действует













(21), (22) Заявка: 2009102493/22, 26.01.2009

(24) Дата начала отсчета срока действия патента:
26.01.2009

(46) Опубликовано: 10.08.2009

Адрес для переписки:
346428, Ростовская обл., г. Новочеркасск, ул. Просвещения, 132, ГОУ ВПО

(72) Автор(ы):
Булгаков Алексей Григорьевич (RU),
Саад Загхлюл Саид Ал-Кхаиит (IQ)


(73) Патентообладатель(и):
Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт) (RU)

(54) СИСТЕМА УПРАВЛЕНИЯ ГИБКИМ ЗВЕНОМ РОБОТА-МАНИПУЛЯТОРА

(57) Реферат:

Применение полезной модели включает: манипуляторы в ядерной промышленности, которые должны быть достаточно длинными и тонкими, чтобы достигать сердцевины реактора, чтобы заменять топливные элементы, манипуляторы в лесной промышленности, чтобы оперировать с деревьями на расстоянии без необходимости привлечения тяжелого оборудования, гидроэлектрические компании, использующие длинные и тонкие манипуляторы, чтобы поддерживать силовые линии, которые могут быть трудны в достижении другими средствами. Задача изобретения - повышение точности и скорости позиционирования концевой точки упругого звена робота-манипулятора, компенсация деформаций звена и демпфирование колебаний. В предлагаемом изобретении использована адаптивная нейросеть с техникой обучения по сигналу обратной связи для управления положением рабочего органа гибкого звена. Нейросеть с радиальной базисной функцией с минимальным ресурсным распределением использована для расчета сигнала управления по возмущению. Четыре входных сигнала, используемые в нейросети это заданные и действительные положения и скорости в шарнире. Полное перемещение концевой точки рабочего органа использовано в расчетах пропорциональной части ПД-регулятора. Дифференциальная часть ПД-регулятора построена на ошибке между заданной и действительной скоростями в шарнире. Для управления использована величина полного перемещения упругого звена.

Полезная модель относится к области управления гибкими роботами-манипуляторами, в частности для компенсации деформаций и демпфирования колебаний.

Известна система управления гибким роботом-манипулятором, состоящая из ПИД-регулятора и нейросети, соединенных таким образом, что выход ПИД-регулятора служит величиной ошибки при обучении нейросети и в то же время, предварительно просуммированный с выходом нейросети, соединен с входом робота-манипулятора. Данная система управления реализована в работе Rios Neto W., Nascimento Júnior Cairo L., Góes L. C. Positional Control of a Flexible Structure using Neural Networks // Proceedings of the 4th Brazilian Conference on Neural Networks, 1999. - P.378-383.

Недостатком данной системы управления является необходимость использования временного лага и большое количество нейронов, используемое в структуре нейросети, в результате чего, система не может работать в режиме реального времени.

Наиболее близким по структуре и достигаемому результату к заявленному является система управления, состоящая из ПИД-регулятора, нейросети с использованием методики обучения по сигналу обратной связи, соединенных таким образом, что выход ПИД-регулятора служит величиной ошибки при обучении нейросети и в то же время, предварительно просуммированный с выходом нейросети, соединен со входом робота-манипулятора. В этой системе использована нелинейная нейросеть с многослойным персептроном, с входным и одним скрытым и выходным слоем, обучаемая методом обратного распространения. Скрытый и выходной слои используют гиперболический тангенс и линейную активационные функции соответственно. Данная система управления реализована в работе Neto А., Neto W. Feedback Error Learning for Controlling a Flexible Link // Sixth Brazilian Symposium on Neural Networks, 2000. - P.273-278.

Недостатком этой системы управления является большое количество нейронов в нейросети и необходимость предварительного обучения нейросети. Полученные результаты приведены в фиг.1.

Задача полезной модели - повышение точности и скорости позиционирования концевой точки упругого звена робота-манипулятора, компенсация деформаций звена и демпфирование колебаний.

Поставленная задача решается тем, что предлагается структура системы управления гибким звеном робота-манипулятора, которая использует ПД-регулятор для стабилизации системы и нейросеть, обучаемую в режиме реального времени для компенсации нелинейности, например трения, инерционных и Кориолисовых сил и силы тяжести. Вход ПД-регулятора соединен с выходом робота, а выход соединен с нейросетью, выход нейросети соединен с входом робота-манипулятора, выход которого в свою очередь соединен с входом нейросети, так, что вход ПД-регулятора соединен: с сигналом разности между заданным и действительными сигналами полного перемещения концевой точки звена, причем в действительном сигнале принято отклонение концевой точки в обратную сторону, с сигналом разности между заданным значением и действительным значением скорости поворота в шарнире, выход ПД-регулятора соединен одновременно с нейросетью, где используется в качестве величины ошибки при обучении нейросети и входом робота-манипулятора, предварительно суммированный с сигналом выхода нейросети, вход нейросети соединен с сигналами: заданное значение угла поворота в шарнире, заданное значение скорости поворота в шарнире, действительное значение угла поворота в шарнире, действительное значение скорости поворота в шарнире, причем в качестве активационной функции нейрона принята функция Гаусса, количество нейронов нейросети изменяется в зависимости от активности каждого нейрона, алгоритм обучения нейросети работает по правилу «победитель получает все».

В предлагаемой полезной модели использована адаптивная нейросеть с техникой обучения по сигналу обратной связи для управления положением рабочего органа гибкого звена. Нейросеть с радиальной базисной функцией с минимальным ресурсным распределением использована для расчета сигнала управления по возмущению. Четыре входных сигнала, используемые в нейросети это заданные и действительные положения и скорости в шарнире. Полное отклонение рабочего органа использовано в расчетах пропорциональной части ПД-регулятора. Дифференциалная часть ПД-регулятора построена на ошибке между желаемой и действительной скоростями в шарнире. Для управления использована величина полного перемещения упругого звена.

На фиг.1 представлены результаты работы системы управления, выбранной прототипом данного изобретения.

На фиг.2 представлена заявленная схема управления гибким звеном робота-манипулятора.

На фиг.3 представлен алгоритм работы системы управления гибким звеном робота-манипулятора.

На фиг.4 представлены положения шарнира упругого звена робота-манипулятора.

На фиг.5 представлены полные перемещения концевой точки упругого звена робота-манипулятора.

Система управления состоит из ПД-регулятора 1, нейросети 2 и робота-манипулятора 3. Вход ПД-регулятора 1 соединен: с сигналом 4 разности между заданным 5 и действительным 6 сигналами полного перемещения концевой точки звена робота-манипулятора 3, причем в действительном 6 сигнале принято отклонение 7 концевой точки звена гибкого робота манипулятора 3 в обратную сторону; с сигналом разности 8 между заданным значением 9 и действительным значением 10 скорости поворота в шарнире, выход 11 ПД-регулятора 1 соединен одновременно с нейросетью 2, где используется в качестве величины ошибки при обучении нейросети и входом 12 робота-манипулятора

3, предварительно суммированный с сигналом выхода 13 нейросети 2; входы нейросети 2 соединены с сигналами: заданное значение угла поворота в шарнире 14, заданное значение скорости поворота 9 в шарнире, действительное значение угла поворота в шарнире 15, действительное значение скорости поворота 10 в шарнире. В качестве активационной функции нейронов нейросети 2 принята функция Гаусса, количество нейронов нейросети 2 изменяется в зависимости от активности каждого нейрона, алгоритм обучения нейросети 2 работает по правилу «победитель получает все».

В заявке предлагается управляющая структура, которая использует ПД-регулятор, чтобы стабилизировать систему и нейросеть, обучаемую в режиме on-line, чтобы компенсировать нелинейности, как например, трение, центростремительные и Кориолисовы эффекты, и силы тяжести.

В предлагаемой системе управления использована адаптивная нейросеть с техникой обучения по сигналу обратной связи (Feedback-Error-Learning technique) для управления положением рабочего органа гибкого звена. Нейросеть с радиальной базисной функцией с минимальным ресурсным распределением использована для расчета сигнала управления по возмущению. Четыре входных сигнала нейросети это заданные и действительные положения и скорости в шарнире. Полное отклонение рабочего органа использовано в расчетах пропорциональной части ПД-регулятора. Дифференциалная часть ПД-контроллера построена на ошибке между заданной и действительной скоростями в шарнире и . Для управления использовано полное отклонение рабочего органа.

Работает система управления гибким звеном робота-манипулятора 3 следующим образом. При включении системы управления производится чтение исходных данных для дальнейшей обработки. Это полное заданное перемещение 5 концевой точки гибкого звена робота-манипулятора, заданный угол поворота 14 в шарнире, заданная скорость поворота 9 в шарнире, действительное значение угла поворота 15 в шарнире, действительное значение скорости поворота 10 в шарнире, действительное отклонение 7 концевой точки гибкого звена робота-манипулятора. Далее производится вычисление ошибки полного отклонения 4 концевой точки от заданного значения 5 и ошибки скорости поворота 8 в шарнире от заданной 9, результаты которых далее поступают в ПД-регулятор 1. На следующем этапе работы регулятора 1 производится одновременное вычисление управляющих сигналов ПД-регулятора 11 и нейросети 13 и последующее их суммирование 12 для передачи в робот-манипулятор 3. Перед следующим циклом вычислений производится подсчет критериев ошибки обучения нейросети 2 и при неудовлетворительном результате происходит обновление параметров нейрона нейросети, центр активационной функции которого ближе других к заданному значению (алгоритм «победитель получает все»). При удовлетворении критериев условиям количество нейронов сравнивается с максимально допустимым значением и если число нейронов N нейросети 2 меньше максимального Nmax, то к сети добавляется новый нейрон, если число нейронов нейросети 2 максимально, то удаляется нейрон, наименее эффективный, не обновляемый в течение нескольких циклов, и место него добавляется новый нейрон. Затем процесс повторяется до завершения моделирования.


Формула полезной модели

Система управления гибким звеном робота-манипулятора, состоящая из ПД-регулятора, вход которого соединен с выходом робота-манипулятора, а выход соединен с нейросетью, имеющей в качестве активационной функции гиперболический тангенс и линейную функцию, где используется в качестве величины ошибки при обучении нейросети, причем выход нейросети соединен с входом робота-манипулятора; выход ПД-регулятора также соединен с входом робота-манипулятора, предварительно суммированный с сигналом выхода нейросети; выход робота-манипулятора, в свою очередь, соединен с входом нейросети, отличающаяся тем, что вход ПД-регулятора соединен: с сигналом разности между заданным и действительными сигналами полного перемещения концевой точки звена робота-манипулятора, причем в действительном сигнале принято отклонение концевой точки в обратную сторону; с сигналом разности между заданным значением и действительным значением скорости поворота в шарнире, вход нейросети соединен с сигналами: заданное значение угла поворота в шарнире, заданное значение скорости поворота в шарнире, действительное значение угла поворота в шарнире, действительное значение скорости поворота в шарнире, причем в качестве активационной функции нейрона принята функция Гаусса, количество нейронов нейросети изменяется в зависимости от активности каждого нейрона, алгоритм обучения нейросети работает по правилу «победитель получает все».




Добавить документ в свой блог или на сайт

Похожие:

Патентам и товарным знакам (19) iconПатентам и товарным знакам (19)

Патентам и товарным знакам (19) iconПатентам и товарным знакам (19)

Патентам и товарным знакам (19) iconПатентам и товарным знакам (19)

Патентам и товарным знакам (19) iconПатентам и товарным знакам (19)

Патентам и товарным знакам (19) iconПатентам и товарным знакам (19)

Патентам и товарным знакам (19) iconПолезной модели
В федеральную службу по интеллектуальной собственности, патентам и товарным знакам
Патентам и товарным знакам (19) iconПатентам и товарным знакам (19)
Министерство промышленности и торговли Российской Федерации (Минпромторг рф) (RU)
Патентам и товарным знакам (19) iconПатентам и товарным знакам (19)
С2, 10. 09. 2005. Ru 2088086 C1, 27. 08. 1997. Su 1678247 A1, 23. 09. 1991. Jp 8140501 A, 04. 06. 1996
Патентам и товарным знакам (19) iconПатентам и товарным знакам (19)
Способ развивающего обучения на основе интенсификации познавательной деятельности
Патентам и товарным знакам (19) iconПатентам и товарным знакам (19)
С2, 27. 10. 2004. Ru 109621 U1, 20. 10. 2011. Ep 1154579 A2, 14. 11. 2001. Us 20020150156 A1, 17. 10. 2002
Патентам и товарным знакам (19) iconПатентам и товарным знакам (19)
С1, 20. 02. 2007. Ru 2411309 С2, 10. 02. 2011. Ru 2009113190 А, 20. 10. 2010. Ер 0368753 А, 16. 05. 1990
Патентам и товарным знакам (19) iconПатентам и товарным знакам (19)
С2, 10. 04. 2008. Ru 2078364 C1, 27. 04. 1997. Su 1296873 A1, 15. 03. 1987. Jp 2000310600 A, 07. 11. 2000
Патентам и товарным знакам (19) iconПатентам и товарным знакам (19)
А, 15. 10. 1979. Su 1033258 А, 07. 08. 1983. De 1282865 В, 14. 11. 1968. Us 6056041 А, 02. 05. 2000
Патентам и товарным знакам (19) iconПатентам и товарным знакам (19)
А1, 07. 01. 1991. Su 1578664 А1, 15. 07. 1990. Ru 2292030 С1, 20. 01. 2007. Ер 2215461 В1, 11. 05. 2011
Патентам и товарным знакам (19) iconПатентам и товарным знакам (19)
А, 22. 05. 1991. Kz 14477 А, 15. 06. 2004. Ru 93027780 А, 10. 04. 1996. Ru 2003103655 A, 27. 01. 2005
Патентам и товарным знакам (19) iconПатентам и товарным знакам (19)
А, 04. 12. 1982. Ru 2131144 C1, 27. 05. 1999. Jp 63-275218 А, 11. 11. 1988. Us 3875427, 01. 04. 1975


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск