Ядерные реактивные двигатели – будущее космонавтики





Скачать 317.07 Kb.
НазваниеЯдерные реактивные двигатели – будущее космонавтики
страница2/5
Дата публикации18.01.2015
Размер317.07 Kb.
ТипДокументы
100-bal.ru > Астрономия > Документы
1   2   3   4   5

4.Электрические ракетные двигатели


Почти все рассмотренные выше ракетные двигатели, развивают огромную силу тяги и предназначены для вывода космических аппаратов на орбиту вокруг Земли и разгона их до космических скоростей для межпланетных полетов. Совсем другое дело – двигательные установки для уже выведенных на орбиту или на межпланетную траекторию космических аппаратов. Здесь, как правило, нужны двигатели малой мощности (несколько киловатт или даже ватт) способные работать сотни и тысячи часов и многократно включаться и выключаться. Они позволяют поддерживать полет на орбите или по заданной траектории, компенсируя сопротивление полету создаваемое верхними слоями атмосферы и солнечным ветром. В электрических ракетных двигателях разгон рабочего тела до определенной скорости производится нагреванием его электрической энергией. Электроэнергия поступает от солнечных батарей или атомной электростанции. Способы нагревания рабочего тела различны, но реально применяется в основном электродуговой. Он показал себя очень надежным и выдерживает большое количество включений. В качестве рабочего тела в электродуговых двигателя применяют водород. С помощью электрической дуги водород нагревается до очень высокой температуры и он превращается в плазму - электрически нейтральную смесь положительных ионов и электронов. Скорость истечения плазмы из двигателя достигает 20 км/с. Когда ученые решат проблему магнитной изоляции плазмы от стенок камеры двигателя, тогда можно будет значительно повысить температуру плазмы и довести скорость истечения до 100 км/с. Первый электрический ракетный двигатель был разработан в Советском Союзе в 1929-1933 гг. под руководством В.П. Глушко (впоследствии он стал создателем двигателей для советских космических ракет и академиком) в знаменитой газодинамической лаборатории (ГДЛ)./10/

5.Другие виды двигателей


Существуют и более экзотические проекты ядерных ракетных двигателей, в которых делящееся вещество находится в жидком, газообразном или даже плазменном состоянии, однако реализация подобных конструкций на современном уровне техники и технологий нереальна. Существуют, пока на стадии теоретической или лабораторной следующие проекты ракетных двигателей

- импульсные ядерные ракетные двигатели использующие энергию взрывов небольших ядерных зарядов;

- термоядерные ракетные двигатели, в которых в качестве топлива может использоваться изотоп водорода. Энергопроизводительность водорода в такой реакции составляет 6,8*1011 КДж/кг, то есть примерно на два порядка выше производительности ядерных реакций деления;

- солнечно-парусные двигатели – в которых используется давление солнечного света (солнечный ветер), существование которого опытным путем доказал русский физик П.Н. Лебедев еще в 1899 году. Расчетным путем ученые установили, что аппарат массой в 1 т, снабженный парусом диаметром 500 м, может долететь от Земли до Марса примерно за 300 суток. Однако эффективность солнечного паруса быстро уменьшается с удалением от Солнца.

6.Ядерные ракетные двигатели


Один из основных недостатков ракетных двигателей, работающих на жидком топливе, связан с ограниченной скоростью истечения газов. В ядерных ракетных двигателях представляется возможным использовать колоссальную энергию, выводящуюся при разложении ядерного «горючего», для нагревания рабочего вещества. Принцип действия ядерных ракетных двигателей почти не отличается от принципа действия термохимических двигателей. Разница заключается в том, что рабочее тело нагревается не за счет своей собственной химической энергии, а за счет «посторонней» энергии, выделяющейся при внутриядерной реакции. Рабочее тело пропускается через ядерный реактор, в котором происходит реакция деления атомных ядер (например, урана), и при этом нагревается. У ядерных ракетных двигателей отпадает необходимость в окислителе и поэтому может быть использована только одна жидкость. В качестве рабочего тела целесообразно применять вещества, позволяющие двигателю развивать большую силу тяги. Этому условию наиболее полно удовлетворяет водород, затем следует аммиак, гидразин и вода. Процессы, при которых выделяется ядерная энергия, подразделяют на радиоактивные превращения, реакции деления тяжелых ядер, реакцию синтеза легких ядер. Радиоизотопные превращения реализуются в так называемых изотопных источниках энергии. Удельная массовая энергия (энергия, которую может выделить вещество массой 1кг) искусственных радиоактивных изотопов значительно выше, чем химических топлив. Так, для 210Ро она равна 5*10 8КДж/кг, в то время как для наиболее энергопроизводительного химического топлива (бериллий с кислородом) это значение не превышает 3*10 4 КДж/кг. К сожалению, подобные двигатели применять на космических ракетах-носителях пока не рационально. Причина этого – высокая стоимость изотопного вещества и трудности эксплуатации. Ведь изотоп выделяет энергию постоянно, даже при его транспортировке в специальном контейнере и при стоянке ракеты на старте. В ядерных реакторах используется более энергопроизводительное топливо. Так, удельная массовая энергия 235U (делящегося изотопа урана) равна 6,75*10 9 КДж/кг, то есть примерно на порядок выше, чем у изотопа 210Ро. Эти двигатели можно «включать» и «выключать», ядерное горючее (233U, 235U, 238U, 239Pu) значительно дешевле изотопного. У таких двигателей в качестве рабочего тела может применяться не только вода, но и более эффективные рабочие вещества – спирт, аммиак, жидкий водород. Удельная тяга двигателя с жидким водородом равна 900 с. В простейшей схеме ядерного ракетного двигателя с реактором, работающим на твердом ядерном горючем рабочее тело размещено в баке. Насос подает его в камеру двигателя. Распыляясь с помощью форсунок, рабочее тело вступает в контакт с тепловыделяющим ядерным горючим, нагревается, расширяется и с большой скоростью выбрасывается через сопло наружу. Ядерное горючее по запасу энергии превосходит любой другой вид топлива. Тогда возникает закономерный вопрос – почему же установки на этом горючем имеют все-таки сравнительно небольшую удельную тягу и большую массу? Дело в том, что удельная тяга твердофазного ядерного ракетного двигателя ограничена температурой делящегося вещества, а энергетическая установка при работе испускает сильное ионизирующее излучение, оказывающее вредное действие на живые организмы. Биологическая защита от таких излучений имеет большой вес не применима на космических летательных аппаратах. Практические разработки ядерных ракетных двигателей, использующих твердое ядерное горючее, были начаты в середине 50-х годов 20-го столетия в Советском Союзе и США, почти одновременно со строительством первых ядерных электростанций. Работы проводились в обстановке повышенной секретности, но известно, что реального применения в космонавтике такие ракетные двигатели до сих пор не получили. Все пока ограничилось использованием изотопных источников электроэнергии относительно небольшой мощности на беспилотных искусственных спутниках Земли, межпланетных космических аппаратах и всемирно известном советском «луноходе».
7.Ядерные реактивные двигатели, принцип работы, способы получения импульса в ЯРД.

ЯРД получили свое название благодаря тому, что создают тягу за счет использования ядерной энергии, т. е. энергии, которая выделяется в результате ядерных реакций. В общем смысле под этими реакциями подразумеваются любые изменения энергетического состояния атомных ядер, а также превращения одних ядер в другие, связанные с перестройкой структуры ядер или изменением количества содержащихся в них элементарных частиц - нуклонов. Причем ядерные реакции, как известно, могут происходить либо спонтанно (т. е. самопроизвольно), либо вызываться искусственно, например, при бомбардировке одних ядер другими (или элементарными частицами). Ядерные реакции деления и синтеза по величине энергии превосходят химические реакции соответственно в миллионы и десятки миллионов раз. Это объясняется тем обстоятельством, что энергия химической связи атомов в молекулах во много раз меньше энергии ядерной связи нуклонов в ядре. Ядерную энергию в ракетных двигателях можно использовать двумя способами:

1. Высвобождаемая энергия используется для нагрева рабочего тела, которое затем расширяется в сопле, так же как в обычном ЖРД.

2. Ядерная энергия преобразуется в электрическую и затем используется для ионизации и разгона частиц рабочего тела.

3. Наконец импульс создается самими продуктами деления, образованными в процессе ядерной реакции деления./16/

8.ЯРД с реактором деления. Двигательная установка с ЯРД.

Этот тип ЯРД представляет собой сочетание энергетического реактора, подобного тем, которые используются в атомных электростанциях или на надводных и подводных судах, с жидкостным ракетным двигателем. В ЯРД реактор выполняет ту же функцию, что и камера сгорания в ЖРД, а именно служит для обращения исходного рабочего тела в высокотемпературный газ. Как и в случае ЖРД, этот газ разгоняется затем в реактивном сопле, создавая тягу.

По аналогии с ЖРД исходное рабочее тело ЯРД хранится в жидком состоянии в баке двигательной установки и его подача производится при помощи турбонасосного агрегата. Газ для вращения этого агрегата, состоящего из турбины и насоса, может вырабатываться в самом реакторе.

Схема такой двигательной установки изображена на рисунке.

Существует множество ЯРД с реактором деления:

-Твердофазный

-Газофазный

-Жидкофазные и коллоидные

- ЯРД с реактором синтеза

-Импульсные ЯРД и другие

Из всех возможных типов ЯРД наиболее разработаны тепловой радиоизотопный двигатель и двигатель с твердофазным реактором деления. Но если характеристики радиоизотопных ЯРД не позволяют надеяться на их широкое применение в космонавтике (по крайней мере в ближайшем будущем), то создание твердофазных ЯРД открывает перед космонавтикой большие перспективы. Типичный ЯРД этого типа содержит твердофазный реактор в виде цилиндра с высотой и диаметром около 1-2 м (при близости этих параметров утечка нейтронов деления в окружающее пространство минимальна).

Реактор состоит из активной зоны; отражателя, окружающего эту зону; управляющих органов; силового корпуса и других элементов. Активная зона содержит ядерное горючее - делящееся вещество (обогащенный уран), заключенное в тепловыделяющих элементах, и замедлитель или разбавитель. Реактор, представленный на рисунке, является гомогенным - в нем замедлитель входит в состав тепловыделяющих элементов, будучи однородно перемешанным с горючим. Замедлитель может размещаться и отдельно от ядерного горючего. В этом случае реактор называется гетерогенным. Разбавители (ими могут быть, "например, тугоплавкие металлы - вольфрам, молибден) используются для придания делящимся веществам специальных свойств.

Тепловыделяющие элементы твердофазного реактора пронизаны каналами, по которым протекает, постепенно нагреваясь, рабочее тело ЯРД. Каналы имеют диаметр порядка 1-3 мм, а их суммарная площадь составляет 20-30% поперечного сечения активной зоны. Активная зона подвешивается при помощи специальной решетки внутри силового корпуса, с тем чтобы она могла расширяться при нагреве реактора (иначе она разрушилась бы из-за термических напряжений).

Активная зона испытывает высокие механические нагрузки, связанные с действием значительных гидравлических перепадов давления (до нескольких десятков атмосфер) от протекающего рабочего тела, термических напряжений и вибраций. Увеличение размеров активной зоны при нагреве реактора достигает нескольких сантиметров. Активная зона и отражатель размещаются внутри прочного силового корпуса, воспринимающего давление рабочего тела и тягу, создаваемую реактивным соплом. Корпус закрывается прочной крышкой. На ней размещаются пневматические, пружинные или электрические механизмы привода регулирующих органов, узлы крепления ЯРД к космическому аппарату, фланцы для соединения ЯРД с питающими трубопроводами рабочего тела. На крышке может располагаться и турбонасосный агрегат.

В качестве простейших органов управления реактором используются регулирующие стержни, размещаемые в активной зоне или отражателе (в специальных гнездах), и поворотные барабаны, устанавливаемые на периферии реактора. Стержни содержат вещества, сильно поглощающие нейтроны (бор, кадмий). Перемещение стержней внутри реактора позволяет изменять количество реакций деления ядерного горючего в единицу времени и в итоге уровень энерговыделения в реакторе - его тепловую мощность. На боковых сторонах барабанов укреплены пластины из веществ-поглотителей нейтронов, и, таким образом, при повороте барабанов эти вещества (как и в случае стержней) вводятся в активную зону или выводятся из нее. Как правило, внутри силового корпуса реактора, над активной зоной, размещают так называемую первичную реакторную защиту. Она снижает интенсивность опасного гамма- и нейтронного излучения, выходящего из реактора в направлении остальной части космического аппарата. Замедлитель, отражатель, органы управления, защита и корпус реактора должны охлаждаться, для исключения их перегрева вследствие поглощаемого ими излучения реактора.

С этой целью в указанных элементах предусматриваются каналы, по которым пропускается рабочее тело. После прохождения каналов оно газифицируется и может быть использовано для привода турбонасосного агрегата. Реактор твердофазного ЯРД отличается от аналогичного типа реакторов, используемых в атомных электростанциях и на морских судах, значительно более напряженным рабочим процессом, малыми размерами и массой, кратковременностью переходных процессов, небольшим рабочим ресурсом (не превышающим нескольких часов).

В качестве ядерного горючего в реакторах твердофазных ЯРД используется в основном уран-238, обогащенный (примерно до 90%) изотопом уран-235. В будущем в ЯРД найдут, по-видимому, применение также плутоний-239 и уран-233, что позволит существенно снизить массу активной зоны реакторов. В настоящее время эти вещества слишком дороги и дефицитны. /3/

9.Твёрдофазный ядерный реактивный двигатель



Твёрдофазый ядерный реактивный двигатель (ТЯРД) — реактивный двигатель, в котором используется в качестве основного источника энергии высокотемпературный атомный реактор канального типа, в котором за счёт теплоносителя (водород, гелий и др) происходит съём тепла и образование реактивной струи сжатого, раскалённого газа. В отличие от радиоизотопных ракетных двигателей режим работы ТЯРД поддаётся глубокому регулированию.

Первый советский ядерный

ракетный двигатель РД-041
1   2   3   4   5

Похожие:

Ядерные реактивные двигатели – будущее космонавтики iconПсихогенные (реактивные) психозы
Реактивные психозы — психические нарушения психотического уровня, возникающие в результате воздействия сверхсильных потрясений, неблагоприятных...
Ядерные реактивные двигатели – будущее космонавтики iconРеферат Отчет содержит: 112 с., 29 рис., 60 источников
ЕЛ, ядро-ядерные столкновения, релятивистская ядерная физика, кварк глюонная плазма, тонкие углеродные пленки, ограничители тока,...
Ядерные реактивные двигатели – будущее космонавтики iconРеферат Отчет содержит: 112 с., 29 рис., 60 источников
ЕЛ, ядро-ядерные столкновения, релятивистская ядерная физика, кварк глюонная плазма, тонкие углеродные пленки, ограничители тока,...
Ядерные реактивные двигатели – будущее космонавтики icon«Беседа о Дне космонавтики» Задачи: 1 Познакомить детей с праздником «Днем космонавтики»
России Юрий Гагарин, о героях космоса о трудной и почетной и героической профессии космонавта
Ядерные реактивные двигатели – будущее космонавтики iconКлассный час «выдающиеся люди российской космонавтики» (посвященный д ню космонавтики 12 апреля)
Программное содержание: закрепить и уточнить знания детей о космосе. Развивать логическое мышление, внимание, память, речь. Воспитывать...
Ядерные реактивные двигатели – будущее космонавтики iconУрок по теме «Тепловые двигатели. Двигатели внутреннего сгорания»...
Уровень развития – чуть ниже среднего. Многие мальчики неплохо разбираются в технике. Это мне поможет при проведении данного урока....
Ядерные реактивные двигатели – будущее космонавтики iconПилотируемой космонавтики александра валентиновича глушко больше нет
«катюши» И. Т. Клейменова и Г. Э. Лангемака, лауреат премии имени академика В. П. Глушко за 2005 г и Беляевской премии за 2009 г....
Ядерные реактивные двигатели – будущее космонавтики iconМгппу
«динамическое базовое свойство человеческого существования. Прошлое и будущее – два аспекта поведения Будущее детерминируется настоящим,...
Ядерные реактивные двигатели – будущее космонавтики iconМаркс Доклад Интегрированное взаимодействие предметов филологической...
От его усилий зависит не только будущее страны, но и будущее человеческой цивилизации
Ядерные реактивные двигатели – будущее космонавтики iconУрок мультимедийная презентация по теме «Реактивное движение. Ракеты.»
...
Ядерные реактивные двигатели – будущее космонавтики iconДеление ядер. Ядерные превращения
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
Ядерные реактивные двигатели – будущее космонавтики iconГранты стипендиальной программы "Лифт в будущее"
Благотворительный фонд "Система" объявил о приеме заявок на участие в очередном стипендиальном конкурсе "Лифт в будущее"
Ядерные реактивные двигатели – будущее космонавтики iconРеферат Тема: «Ставка на ядерные силы»
Россия гарантированно обеспечит собственную безопасность, поддерживая арсенал в 5 тысяч боеголовок
Ядерные реактивные двигатели – будущее космонавтики iconПрограмма по формированию навыков безопасного поведения на дорогах...
Дети будущее любой страны. Если они живут здоровой жизнью сейчас, то за страной будет многообещающее будущее
Ядерные реактивные двигатели – будущее космонавтики iconБилл гейтс дорога в будущее
Его книга взгляд с высоты птичьего полета на неизведанные земли, по которым вскоре пройдет информационная магистраль; авторитетный,...
Ядерные реактивные двигатели – будущее космонавтики iconРабочая программа учебной дисциплины «нагнетатели и тепловые двигатели»



Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск