Газотурбинные установки





НазваниеГазотурбинные установки
страница3/6
Дата публикации22.04.2015
Размер0.57 Mb.
ТипРеферат
100-bal.ru > Астрономия > Реферат
1   2   3   4   5   6

- хорошие тяговые характеристики;

- высокая приемистость и хорошая управляемость.

Основным недостатком первых моделей наземных и морских ГТД была относительно низкая экономичность. Однако эта проблема достаточно быстро преодолевалась в процессе постоянного совершенствования двигателей, чему способствовало опережающее развитие технологически близких авиационных ГТД и перенос передовых технологий в наземные двигатели.
2.1 Механический привод промышленного оборудования
Наиболее массовое применение ГТД механического привода находят в газовой промышленности. Они используются для привода нагнетателей природного газа в составе ГПА на компрессорных станциях магистральных газопроводов, а также для привода агрегатов закачки природного газа в подземные хранилища (рис. 15).

Рис. 15. Применение ГТД для прямого привода нагнетателя природного газа: 1 - ГТД; 2 - трансмиссия; 3 - нагнетатель.
К примеру, только в ОАО "Газпром" к настоящему времени эксплуатируются около 3100 ГТД суммарной установленной мощностью свыше 36000 МВт. ГТД используются также для привода насосов, технологических компрессоров, воздуходувок на предприятиях нефтяной, нефтеперерабатыватывающей, химической и металлургической промышленности. Мощностной диапазон ГТД от 0,5 до 50 МВт.

Основная потребность перечисленного приводимого оборудования – зависимость потребляемой мощности от частоты вращения (обычно близкая к кубической), температуры и давления нагнетаемых сред. Поэтому ГТД механического привода должны быть приспособлены к работе с переменными частотами вращения и мощностью. Этому требованию в наибольшей степени отвечает схема ГТД со свободной силовой турбиной. Различные схемы морских и наземных ГТД будут рассмотрены ниже.
2.2 Привод электрогенераторов
ГТД для привода электрогенераторов (рис. 16) используются в составе газотурбинных электростанций (ГТЭС) простого цикла и конденсационных электростанций комбинированного парогазового цикла (ПГУ), вырабатывающих "чистую" электроэнергию, а также в составе когенерационных установок (в российской литературе они часто называются "ГТУ-ТЭЦ"), производящих совместно электрическую и тепловую энергию.

Современные ГТЭС простого цикла, имеющие относительно умеренный электрический КПД ηэл= 25…40%, в основном используются в пиковом режиме эксплуатации – для покрытия суточных и сезонных колебаний спроса на электроэнергию. Эксплуатация ГТД в составе пиковых ГТЭС характеризуется высокой цикличностью (большим количеством циклов "пуск – нагружение – работа под нагрузкой – останов"). Возможность ускоренного пуска является важным преимуществом ГТД при работе в пиковом режиме. Электростанции с ПГУ используются в базовом режиме (постоянная работа с нагрузкой, близкой к номинальной, с минимальным количеством циклов "пуск – останов" для проведения регламентных и ремонтных работ). Современные ПГУ, базирующиеся на ГТД большой мощности (N > 150 МВт), достигают КПД выработки электроэнергии ηэл= 58…60%. В когенерационных установках тепло выхлопных газов ГТД используется в котле-утилизаторе для производства горячей воды и (или) пара для технологических нужд или в системах централизованного отопления. Совместное производство электрической и тепловой энергии значительно снижает её себестоимость. Коэффициент использования тепла топлива в когенерационных установках достигает 90%. Электростанции с ПГУ и когенерационные установки являются наиболее эффективными и динамично развивающимися современными энергетическими системами. В настоящее время мировое производство энергетических ГТД составляет около 12000 штук в год суммарной мощностью около 76000 МВт.

Основная особенность ГТД для привода электрогенераторов – постоянство частоты вращения выходного вала на всех режимах (от холостого хода до максимального), а также и высокие требования к точности поддержания частоты вращения, от которого зависит качество вырабатываемого тока. Этим требованиям в наибольшей степени соответствуют одновальные ГТД, поэтому они широко используются в энергетике.

Рис. 16. Применение ГТД для привода генератора (через редуктор): 1- ГТД, 2 – трансмиссия, 3 – редуктор, 4 – генератор.
ГТД большой мощности (N > 60 МВт), работающие, как правило, в базовом режиме в составе мощных электростанций, выполняются исключительно по одновальной схеме.

В энергетике используется весь мощностной ряд ГТД от нескольких десятков кВт до 350 МВт.
2.3 Применение в морских условиях
В морских условиях ГТД применяются в составе силовых агрегатов гражданских морских судов и боевых кораблей различного класса: от быстроходных ракетных и патрульных катеров водоизмещением около 500 т до авианосцев и кораблей сопровождения водоизмещением до 50000 т. Газотурбинный силовой агрегат обычно включает один или несколько ГТД и редуктор для понижения частоты вращения и передачи мощности на гребной винт. При этом ГТД могут быть различной мощности. В этом случае двигатель меньшей мощности используется как маршевый для экономичного крейсерского хода, а большей мощности – как форсажный для обеспечения максимального боевого хода при совместной работе с маршевым двигателем. Применяются также силовые агрегаты смешанного типа с использованием дизеля в качестве маршевого двигателя.

К ГТД морского применения могут быть отнесены также двигатели, предназначенные для привода промышленного и энергетического оборудования, но работающие в морских условиях – на морских платформах добычи нефти и газа или в прибрежной полосе. Такие ГТД должны удовлетворять ряду специфических требований, поскольку работают они в агрессивной морской среде. Класс мощности морских ГТД – от 0,5 до 50 МВт.

Кроме перечисленных выше основных объектов ГТД применяются также как двигатели наземных транспортных средств (локомотивов, автомобилей) и боевой техники (танков, бронемашин). Прорабатывается применение ГТД для городских трамваев.

Дополнительным эффектом использования ГТД может быть выработка сжатого воздуха, инертных газов, охлаждённого воздуха (в системах кондиционирования и промышленных холодильниках).
3. Основные типы наземных и морских ГТД
Наземные и морские ГТД различного назначения и класса мощности можно разделить на три основных технологических типа:

- стационарные ГТД;

- ГТД, конвертированные из авиадвигателей (авиапроизводные);

- микротурбины.
3.1 Стационарные ГТД
Двигатели этого типа разрабатываются и производятся на предприятиях энергомашиностроительного комплекса согласно требованиям, предъявляемым к энергетическому оборудованию:

- высокий ресурс (не менее 100000 ч) и срок службы (не менее 25 лет);

- высокая надёжность;

- ремонтопригодность в условиях эксплуатации;

- умеренная стоимость применяемых конструкционных материалов и ГСМ для снижения стоимости производства и эксплуатации;

- отсутствие жёстких габаритно-массовых ограничений, существенных для авиационных ГТД. Перечисленные требования сформировали облик стационарных ГТД, для которых характерны следующие особенности:

- максимально простая конструкция;

- использование недорогих материалов с относительно низкими характеристиками;

- массивные корпуса, как правило, с горизонтальным разъёмом для возможности выемки и ремонта ротора ГТД в условиях эксплуатации;

- конструкция камеры сгорания, обеспечивающая возможность ремонта и замены жаровых труб в условиях эксплуатации;

- использование подшипников скольжения.
Рис. 17. Стационарный ГТД (модель M501F фирмы Mitsubishi Н. I.) мощностью 150 МВт
Типичный стационарный ГТД показан на рис. 17. В настоящее время ГТД стационарного типа используются во всех областях применения наземных и морских ГТД в широком диапазоне мощности от 1 МВт до 350 МВт.

На начальных этапах развития в стационарных ГТД применялись умеренные параметры цикла. Это объяснялось некоторым технологическим отставанием от авиационных двигателей из-за отсутствия мощной государственной финансовой поддержки, которой пользовалась авиадвигателестроительная отрасль во всех странах-производителях авиадвигателей. С конца 1980-х гг. началось широкое внедрение авиационных технологий при проектировании новых моделей ГТД и модернизации действующих. К настоящему времени мощные стационарные ГТД по уровню термодинамического и технологического совершенства вплотную приблизились к авиационным двигателям при сохранении высокого ресурса и срока службы.
3.2 Наземные и морские ГТД, конвертированные из авиадвигателей
ГТД данного типа разрабатываются на базе авиационных прототипов на предприятиях авиадвигателестроительного комплекса с использованием авиационных технологий. Промышленные ГТД, конвертированные из авиадвигателей, начали разрабатываться вначале 1960-х гг., когда ресурс гражданских авиационных ГТД достиг приемлемой величины (2500...4000 ч.). Первые промышленные установки с авиаприводом появились в энергетике в качестве пиковых или резервных агрегатов.

Дальнейшему быстрому внедрению авиапроизводных ГТД в промышленность и транспорт способствовали:

- более быстрый прогресс в авиадвигателестроении по параметрам цикла и повышению надежности, чем в стационарном газотурбостроении;

- высокое качество изготовления авиационных ГТД и возможность организации их централизованного ремонта;

- возможность использования авиадвигателей, отработавших летный ресурс, с необходимым ремонтом для эксплуатации на земле;

- преимущества авиационных ГТД – малая масса и габариты, более быстрый пуск и приемистость, меньшая потребная мощность пусковых устройств, меньшие потребные капитальные затраты при строительстве объектов применения.

При конвертации базового авиационного двигателя в наземный или морской ГТД в случае необходимости заменяются материалы некоторых деталей холодной и горячей частей, наиболее подверженных коррозии. Так, например, магниевые сплавы заменяются на алюминиевые или стальные, в горячей части применяются более жаростойкие сплавы с повышенным содержанием хрома. Камера сгорания и система топливопитания модифицируются для работы на газообразном топливе или под многотопливный вариант. Дорабатываются узлы, системы двигателя (запуска, автоматического управления (САУ), противопожарная, маслосистема и др.) и обвязка для обеспечения работы в наземных и морских условиях. При необходимости усиливаются некоторые статорные и роторные детали.

Объем конструктивных доработок базового авиадвигателя в наземную модификацию в значительной степени определяется типом авиационного ГТД. Например, при использовании ТРД - обязательна разработка свободной силовой турбины (СТ) или подстановка дополнительных ступеней к существующей турбине. При использовании ТРДД, имеющих, как минимум, по два каскада компрессора и турбины, возможна конвертация в наземные и морские ГТД различных схем: с однокаскадным газогенератором и свободной СТ; с двухкаскадным двухвальным газогенератором и свободной СТ; со "связанным" КНД. В первом и последнем вариантах возможно использование турбины вентилятора базового авиадвигателя в качестве силовой.

Пример конвертированного ГТД показан на рис. 18, а сравнение конвертированного ГТД и ГТД стационарного типа одного класса мощности показано на рис. 19.

Авиационные ТВД и вертолетные ГТД функционально и конструктивно более других авиадвигателей приспособлены для работы в качестве наземных ГТД. Они фактически не требуют модификации турбокомпрессорной части (кроме камеры сгорания).

Первым массовым конвертированным ГТД стал ТРД Avon фирмы Rolls-Royce, устанавливавшийся на самолетах "Каравелла". С 1964 г. "Avon" используется как газогенератор для стационарной СТ производства фирмы Cooper Bessemer. По аналогичной схеме впоследствии был конвертирован двухвальный газогенератор ТРДД RB211-24G. Мощность ГТУ, получивших обозначение Coberra 2000 и Coberra 6000, составила 14,5 и 27 МВт соответственно.

Рис. 18. ГТД, конвертированный из авиадвигателя (модель LM2500 фирмы General Electric мощностью 23 МВт на базе ТРДД CF6-6)

Рис. 19. Сравнение типичных конструкций ГТД, конвертированного из авиадвигателя и ГТД стационарного типа одного класса мощности (25 МВт, фирма GE): 1 - тонкие корпуса; 2 - подшипники качения; 3 - выносные КС; 4 - массивные корпуса; 5 - подшипники скольжения; 6 - горизонтальный разъем.
В СССР в 1970-е годы был разработан наземный ГТД НК-12СТ на базе одновального авиационного ТВД НК-12, который эксплуатировался на самолетах ТУ-95, ТУ-114 и АН-22. Конвертированный двигатель НК-12СТ мощностью 6,3 МВт был выполнен со свободной СТ и работает в составе многих ГПА и по сей день.

В настоящее время конвертированные авиационные ГТД различных производителей широко используются в энергетике, промышленности, в морских условиях и на транспорте. Мощностной ряд – от нескольких сотен киловатт до 50 МВт.

Данный тип ГТД характеризуется наиболее высоким эффективным КПД при работе в простом цикле, что обусловлено высокими параметрами и эффективностью узлов базовых авиадвигателей. ГТД LM6000PC фирмы General Electric и TRENT фирмы Rolls-Royce имеют эффективный КПД на валу СТ . ГТД TRENT к настоящему времени является наиболее мощным двигателем данного типа Ne = 52,6 МВт.
4. Основные мировые производители ГТД
В данном разделе дается краткий обзор крупнейших зарубежных и российских разработчиков, производителей авиационных, наземных и морских ГТД. Указываются марки наиболее массовых моделей ГТД и перспективные проекты.

Дженерал электрик

General Electric (GE), США. Крупнейший мировой производитель авиационных, наземных и морских ГТД. Отделение компании General Electric Aircraft Engines (GE AE) в настоящее время занимается разработкой и производством авиационных ГТД различных типов - ТРДД, ТРДДФ, ТВД и вертолетных ГТД. Диапазон тяг и мощностей этих двигателей очень широк: ТРДД - от 40 до 512 кН, ТРДДФ - от 80 до 190 кН, ТВД и вертолетные ГТД - от 900 до 3500 кВт. GE АЕ участвует в совместных программах. Так, с французской компанией Snecma разрабатывается и производится семейство ТРДД CFM56, с фирмой Pratt & Whitney действует программа ТРДД GP7000, с компанией Honeywell - программа ТРДД CFE738.

К наиболее массовым серийным авиационным двигателям и перспективным проектам можно отнести:

- ТРД - J85, J79;

- ТВД и вертолетные ГТД - СТ7, Т58, Т700;

- ТРДД - TF39, CF6-6, CF6-50, CF6-80C2, GE90, CF34, CFM56 (совместно с Snecma);

- ТРДДФ - F101, F110, F404, F414, F120 (двигатель 5-го поколения с элементами ДИЦ).

Отделение компании General Electric Energy разрабатывает и производит авиапроизводные стационарные ГТД для энергетического, механического и морского привода в диапазоне мощности от 2 до 300 МВт. Также это отделение осуществляет маркетинг и поставки всех типов наземных и морских ГТД фирмы GE.

Промышленные и морские ГТД представлены следующим рядом моделей:

- ГТД, конвертированные из авиадвигателей - LM500, LM1600, LM2000, LM2500, LM2500+, LM5000, LM6000;

- стационарные ГТД - PGT5, PGT10, PGT25, MS5000, MS6000, MS7000, MS9000.

Пратт энд Уитни

Pratt & Whitney (PW), США. Входит в состав компании United Technologies Corporations (UTC). В настоящее время PW занимается разработкой и производством авиационных ТРДД средней и большой тяги: гражданских ТРДД тягой от 70 до 440 кН и военных ТРДДФ в классе тяги 100... 170 кН. PW участвует в международной программе ТРДД V2500, совместно с GE - в программе ТРДД GP7000.

Наиболее массовые серийные авиационные двигатели и перспективные проекты:

- ТРД (Ф) - J57, J75, J58;

- ТРДД - J52, JT3D, JT8D, JT9D, PW2000,

- PW4000, PW6000 (опытный), PW8000 (проект ТРДД с редуктором и сверхвысокой степенью двухконтурности), ADP (опытный ТВВД с закапотированным ВВ);

- ТРДДФ - TF3 0, F100, F119, РW7000 (перспективный проект на базе программы IHРТЕТ), подъемно-маршевый ТРДДФ F13 5.

Отделение фирмы Pratt & Whitney Power Systems производит конвертированные наземные и морские ГТД на базе авиадвигателей PW и PWC мощностью от 0,4 до 28 МВт.
1   2   3   4   5   6

Похожие:

Газотурбинные установки iconПрограмма подготовки: Газотурбинные, паротурбинные установки и двигатели...
Целью дисциплины является изучение теории и методики расчетов тепловых процессов в гту, принципов их конструирования и особенностей...
Газотурбинные установки iconПрограмма подготовки: «Газотурбинные, паротурбинные установки и двигатели»
Целью дисциплины является изучение теории и методики расчетов тепловых процессов в авиационных газотурбинных двигателях (агтд), принципов...
Газотурбинные установки iconПрограмма по формированию навыков безопасного поведения на дорогах...
Профили подготовки: Котлы, камеры сгорания и парогенераторы аэс. Газотурбинные, паротурбинные установки и двигатели. Автоматизированные...
Газотурбинные установки iconУстановки россиян относительно сбережений и кредитов
В этой связи особое значение приобретает то, как воспринимаются людьми смыслы и значения денег как социального объекта, а также их...
Газотурбинные установки iconРасчет цикла парогазовой установки
Кпд реальных машин. Программа позволяет исследовать влияние различных параметров на энергетическую эффективность парогазовой установки....
Газотурбинные установки iconМосковский энергетический институт (технический университет) институт...
Профиль(и) подготовки: Техника и физика низких температур, Теплофизика, Атомные электростанции и установки, Термоядерные реакторы...
Газотурбинные установки iconРасчет воздушной турбохолодильной установки
Кпд реальных машин. Программа позволяет исследовать влияние различных параметров на энергетическую эффективность турбохолодильной...
Газотурбинные установки iconЭнергетическая установка
Решение позволяет значительно расширить область применения установок данного типа, отсекая необходимость наличия источника пресной...
Газотурбинные установки iconПаспорт и инструкция по эксплуатации Санкт-Петербург
Зеркала типа л-15 предназначены для установки на автомобили ваз-21099, 2115 и их модификации (с предусмотренным местом для установки...
Газотурбинные установки iconРеферат в данном курсовом проекте была разработана компоновка производственной...
Теплогенерирующие установки”. Котельная расположена в г. Симферополе топливом является уголь Чульмаканского месторождения. Котельная...
Газотурбинные установки iconРеферат Пояснительная записка : 57 стр, 10 рисунков, 9 таблиц, 1...
...
Газотурбинные установки iconРеферат Пояснительная записка : 57 стр, 10 рисунков, 9 таблиц, 1...
...
Газотурбинные установки iconПрограмма экзамена в аспирантуру по специальности 05. 08. 05 «Судовые...
Программа экзамена в аспирантуру по специальности 05. 08. 05 «Судовые энергетические установки и их элементы (главные и вспомогательные)»...
Газотурбинные установки iconЗадачи, стоящие перед учителем и учащимися в учебном процессе Проверочные...
Проверочные вопросы для определения установки учителя на поддержание коммуникативного поведения ученика
Газотурбинные установки iconОсновная образовательная программа высшего профессионального образования...
Основная образовательная программа высшего профессионального образования, реализуемая вузом по направлению подготовки 140400 Электроэнергетика...
Газотурбинные установки iconПрограмма подготовки: «Энергетические установки на органическом и ядерном топливе»



Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск