Понятие о метаболизме





Скачать 260.06 Kb.
НазваниеПонятие о метаболизме
страница1/4
Дата публикации02.11.2014
Размер260.06 Kb.
ТипДокументы
100-bal.ru > Биология > Документы
  1   2   3   4



Митохондриальное окисление 160401

БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ.

ПОНЯТИЕ О МЕТАБОЛИЗМЕ.


Метаболизм – это совокупность химических реакций, протекающих в организме. При этом процессы, происходящие в просвете желудочно-кишечного тракта, не входят в понятие метаболизма, поскольку полость желудочно-кишечного тракта рассматривается как часть внешней среды. Метаболизм включает в себя более чем 100 000 разнообразных реакций, но существуют основные метаболические пути, построенные по единому плану. Такие пути могут быть линейными и разветвленными. Ферменты, катализирующие реакции, протекающие на этих путях, в организме объединены в мультиферментные системы. В мультиферментных системах продукт предыдущей реакции является субстратом для последующей.

Метаболизм – это двуединый процесс, складывающийся из 2-х частей: катаболизма и анаболизма. В ходе катаболизма происходит разрушение, расщепление сложных веществ до более простых. В процессе анаболизма организм синтезирует собственные сложные органические вещества из простых. Оба процесса связаны между собой большим числом реакций, хотя в клетке часто бывают пространственно разделены.

Однако, существуют химические реакции из числа обратимых, которые в равной степени можно отнести как к катаболизму, так и анаболизму. Принадлежность той или иной реакции к одному из этих процессов определяется тем, в какую сторону сдвинуто ее равновесие в данный момент времени.


СХЕМА ЭТАПОВ КАТАБОЛИЗМА




1-й этап. Образование мономеров из полимеров.

Полимеры -------->Мономеры

Белки ----------->Аминокислоты

Крахмал --------->глюкоза

Жиры ------------>глицерин + жирные кислоты
2-й этап. Превращение мономеров в ПВК и Ацетил-КоА.
3-й этап. Превращение Ацетил-КоА в конечные продукты катаболизма: СО2 и Н2О.

Для всех классов веществ последний этап катаболизма одинаков: на 3-м этапе образуется большинство субстратов митохондриального окисления - 4 вещества из 9 основных и 5-й субстрат - ПВК.

БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ - это совокупность окислительных процессов в живом организме, протекающих с обязательным участием кислорода. Синоним - ТКАНЕВОЕ ДЫХАНИЕ. Окисление одного вещества невозможно без восстановления другого вещества. Окислительно-восстановительных процессов в живой природе очень много. Часть окислительно-восстановительных процессов, протекающих с участием кислорода, относится к биологическому окислению.
ИСТОРИЯ РАЗВИТИЯ УЧЕНИЯ О БИООКИСЛЕНИИ.

А. Лавуазье в конце XVIII века показал, что животный организм потребляет из воздуха кислород и выделяет углекислый газ. Сделал вывод, что горение и окисление - это одно и то же, что биологическое окисление представляет собой "медленное горение", происходящее в присутствии воды и при низкой температуре.

В конце XIX века русские исследователи А.Н. Бах и В.И.Палладин, работая независимо друг от друга, предложили 2 основные теории для объяснения процессов, протекающих в ходе биологического окисления.

1-я теория: А.Н.Бах (1857-1946) полагал, что в живых клетках существуют особые ферменты - "оксигеназы", которые взаимодействуют с кислородом, образуя перекиси. Сам кислород является не очень активным окислителем. Зато перекиси ("активный кислород") являются очень сильными окислителями и способны передавать кислород окисляемому веществу.

Эта теория известна как "перекисная" или "теория активации кислорода".



2-я теория: В.И. Палладин (1859-1922) создал теорию "активации водорода". Считал, что универсальным путем окисления является отнятие от веществ (субстратов) водорода с участием специальных ферментов - хромогенов. После этого водород, по Палладину, может передаваться или на молекулу кислорода с образованием воды, или на другие молекулы, восстанавливая их.



Впоследствии теория В.И.Палладина блестяще подтвердилась для процессов митохондриального окисления, а ферменты, принимающие непосредственное участие в отнятии водорода от субстратов, в настоящее время называются дегидрогеназами.
СОВРЕМЕННАЯ ТЕОРИЯ БИООКИСЛЕНИЯ

Согласно СОВРЕМЕННОЙ ТЕОРИИ БИООКИСЛЕНИЯ в нашем организме окисление может происходить двумя способами:

1. Путем отнятия водорода от окисляемого субстрата: сюда относятся МИТОХОНДРИАЛЬНОЕ ОКИСЛЕНИЕ и ВНЕМИТОХОНДРИАЛЬНОЕ ОКИСЛЕНИЕ ОКСИДАЗНОГО ТИПА.

2. Путем присоединения кислорода к окисляемому субстрату - так происходит внемитохондриальное ОКИСЛЕНИЕ ОКСИГЕНАЗНОГО ТИПА (старое название - МИКРОСОМАЛЬНОЕ окисление).
МИТОХОНДРИАЛЬНОЕ ОКИСЛЕНИЕ (МтО).
Система митохондриального окисления - мультиферментная система, постепенно транспортирующая протоны и электроны на кислород с образованием молекулы воды.

Все ферменты митохондриального окисления встроены во внутреннюю мембрану митохондрий. Только первый переносчик протонов и электронов - никотинамидная дегидрогеназа расположена в матриксе митохондрии. Этот фермент отнимает водород от субстрата и передает его следующему переносчику. Полный комплекс таких ферментов образует "дыхательный ансамбль" («дыхательную цепь»), в пределах которого атомы водорода отнимаются от субстрата, затем передаются последовательно от одного переносчика к другому, и, наконец, передаются на кислород воздуха с образованием воды.

Существует строгая последовательность работы каждого звена в цепочке переносчиков. Эта последовательность определяется величиной РЕДОКС-ПОТЕНЦИАЛА (ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНОГО ПОТЕНЦИАЛА, сокращенно - ОВП) каждого звена. ОВП - это химическая характеристика способности вещества принимать и удерживать электроны. Выражается в вольтах (V). Вещества с положительным ОВП окисляют водород (отнимают от него электроны), вещества с отрицательным ОВП окисляются самим водородом. Самый низкий ОВП имеет начальное звено цепи, самый высокий - у кислорода, расположенного в конце цепочки переносчиков. Таким образом, передача водорода идет от более низкого к более высокому ОВП. Перенос водорода и электронов возможен только в одном направлении - в порядке возрастания их ОВП: от -0.32V у никотинамидных дегидрогеназ (первого компонента главной цепи МтО) до 0.82V у О2, обладающего самым высоким редокс-потенциалом.

На одной из стадий происходит разделение атомов водорода на Н+ и электроны. Протоны остаются временно в окружающей среде, а электроны идут дальше по цепи и в ее конце используются для активации О2. Кислород является конечным акцептором электронов.

O2 + 4e -----> 2O-2 (полное восстановление кислорода)

Все реакции, происходящие в дыхательной цепи, сопряжены. Переносчики водорода и электронов расположены в строгом порядке, в соответствии с величиной их редокс-потенциала.

В настоящее время различают три варианта дыхательных цепей: 1)

  1. ГЛАВНАЯ (ПОЛНАЯ) ЦЕПЬ

  2. УКОРОЧЕННАЯ (СОКРАЩЕННАЯ) ЦЕПЬ

  3. МАКСИМАЛЬНО УКОРОЧЕННАЯ (МАКСИМАЛЬНО СОКРАЩЕННАЯ) ЦЕПЬ.


Сначала разберем их строение на примере главной дыхательной цепи.

I.ГЛАВНАЯ ДЫХАТЕЛЬНАЯ ЦЕПЬ


Главная дыхательная цепь - это три мультиферментных комплекса, встроенных во внутреннюю мембрану митохондрии. Обозначаются они латинскими цифрами – I, III и IV.

СХЕМА ГЛАВНОЙ (ПОЛНОЙ) ДЫХАТЕЛЬНОЙ ЦЕПИ


МИТОХОНДРИАЛЬНОГО ОКИСЛЕНИЯ



Комплекс I – НАДН-KoQ-редуктаза, комплекс III – KoQH2-редуктаза, комплекс IV – цитохромоксидаза. Есть еще комплекс II – сукцинат-KoQ-редуктаза, но он существует отдельно от остальных комплексов и не входит в состав главной цепи.

Эти комплексы транспортируют водород от никотинамидных дегидрогеназ на кислород воздуха, в результате чего создается электрохимический градиент концентраций протонов - +. Он возникает на внутренней мембране митохондрий между матриксом и межмембранным пространством. Его составляют два основных фактора:

  1. Электрический мембранный потенциал .

  2. Градиент pH (осмотический или химический градиент).

+=-p
+ - положительная величина. Его можно выразить как в вольтах (V), так и в единицах энергии (кДж/моль). Изменение значения pH на одну единицу соответствует 0,06V или 5,7 кДж/моль.

Энергия + используется для следующих процессов:

  1. Синтез АТФ.

  2. Получение тепла (особенно важно для бурого жира и для мышечной ткани птиц).

  3. Выполнение осмотической работы (транспорт фосфата в матрикс митохондрии).

  4. Мышечная работа (в некоторых случаях).

Для человека наиболее важен синтез АТФ.

В полной цепи при окислении субстрата два атома водорода переносятся на НАД – кофермент никотинамидных дегидрогеназ.
Как видно из приведенной схемы, в полной цепи при передаче двух атомов водорода на кислород воздуха, в межмембранном пространстве оказываются 10 протонов, перенесенных сюда из матрикса.

Все переносчики встроены во внутреннюю мембрану митохондрий, кроме никотинамидных дегидрогенказ. Они составляют дыхательный ансамбль, тысячи таких ансамблей существуют в митохондрии и потребляют 90-95% кислорода, который используется клеткой. Два атома водорода отнимаются от субстрата и передаются на О2 с образованием Н2О. Разность потенциалов на двух концах полной цепи составляет 1.14V.

НИКОТИНАМИДНЫЕ ДЕГИДРОГЕНАЗЫ (НАДГ)

Небелковая часть этих ферментов представляет собой динуклеотид: НИКОТИНАМИД-АДЕНИНДИНУКЛЕОТИД (НАД+) или НИКОТИНАМИДАДЕНИНДИНУКЛЕОТИДФОСФАТ (НАДФ+).



Студенты обязаны знать формулу НАД(Ф) и механизм присоединения к нему водорода. НАД(Ф) содержит производное витамина РР - никотинамид. (см. раздел «Витамины»).

НАД+ и НАДФ+ входят в состав каталитического центра НАДГ. Они являются КОФЕРМЕНТАМИ, так как связаны с белковой частью слабыми типами связей - могут легко диссоциировать. Они присоединяются к белковой части только в момент протекания реакции. Реакция, которую катализируют НАДГ - это реакция окисления субстрата.



Известно около 150 НАДГ, которые различаются по строению белковой части (апофермента).

Апоферменты большей части НАДГ способны присоединять или только НАД, или только НАДФ, и лишь немногие способны соединяться и с тем, и с другим коферментами. НАДГ, участвующие в митохондриальном окислении, находятся в матриксе митохондрий, в отличие от большинства других участников дыхательной цепи, которые встроены во внутреннюю мембрану. НАДГ можно встретить и в цитоплазме клеток. Мембрана митохондрий непроницаема для НАД(Ф), поэтому митохондриальный и цитоплазматический НАД(Ф) никогда не смешиваются. В митохондриях содержится очень много НАД и почти нет НАДФ, а в цитоплазме - наоборот - очень много НАДФ и почти нет НАД.

Из матрикса митохондриальный НАДН2 отдает два атома водорода на «комплекс I», встроенный во внутреннюю мембрану митохондрий.
КОМПЛЕКС I

В составе комплекса находится 26 полипептидных цепей общей массой 800 кДа. Комплекс содержит следующие небелковые компоненты: Флавинмононуклеотид (ФМН), 5 центров FeS (железо-серные центры): FeS1a, FeS1b FeS2, FeS3, FeS4.

В транспорте водорода по дыхательной цепи в этом комплексе принимает участие ФМН.




Одновременно с протонами транспортируются и электроны. Наибольшие перепады редокс-потенциала наблюдаются между железо-серными белками, расположенными в следующем порядке:

ФМНFeS1aFeS1bFeS3FeS4FeS2

Комплекс I – интегральный белковый комплекс. Используя энергию, выделяющуюся при переносе электронов по дыхательной цепи, он транспортирует 4 протона из матрикса в межмембранное пространство – комплекс I работает как протонный генератор. Точный механизм этого транспорта до сих пор неизвестен.

Далее комплекс I восстанавливает промежуточный переносчик KoQ (убихинон).



Это жирорастворимое низкомолекулярное вещество, содержащее длинную изопреновую цепь, не имеет белковой части. КоQ принимает водород от комплекса I. Образовавшийся КоQH2 отдает водород на комплекс III.
КОМПЛЕКС III.

В своем составе содержит цитохромы – сложные белки, содержащие небелковый компонент - простетическую группу, сходню по строению с небелковой частью гемоглобина – гемом.

1) Цитохромы b, имеющие в своем составе два типа простетических групп тетрапиррольной структуры - «гем». Известно два гема цитохромов: be, обладающий низким окислительно-восстановительным потенциалом и bh с высоким окислительно-восстановительным потенциалом. Строение простетической группы цитохромов группы b, похожей на гем белка гемоглобина, представлено на рисунке. Его необходимо выучить.

2)FeSIII – железо-серный кластер.

  1. Цитохром С1. Имеет в своем составе особый гем типа «с».

Друг от друга цитохромы могут отличаться:

  1. Строением белковой части;

  2. Значением окислительно-восстановительного потенциала;

  3. Строением радикалов, расположенных по периферии гема;

  4. Присоединением гема к белковой части – в некоторых случаях гем присоединен к ней ковалентной связью за счет радикалов цистеина, что характерно для цитохромов c1 и c.

От двух атомов водорода, которые переносятся на комплекс III от KoQ, дальше по цепи транспортируются только электроны, два протона (H+)комплекс III выбрасывает в межмембранное пространство вместе с еще одной парой протонов, которые подхватываются комплексом из матрикса. Таким образом, комплекс III в сумме выбрасывает в межмембранное пространство 4 протона. Поэтому комплекс III, как и комплекс I, является протонным генератором, и целью его работы также является создание +.
КОМПЛЕКС IV.

Комплекс IV называется цитохромоксидазой. Он способен захватывать из матрикса 4 протона. Два из них он отправляет в межмембранное пространство, а остальные передает на образование воды.
Благодаря многоступенчатой передаче энергия в дыхательной цепи выделяется не мгновенно, а постепенно (маленькими порциями) при каждой реакции переноса. Эти порции энергии не одинаковы по величине. Их величина определяется разницей между ОВП двух соседних переносчиков. Если эта разница небольшая, то энергии выделяется мало - она рассеивается в виде тепла. Но на нескольких стадиях ее достаточно, чтобы синтезировать макроэргические связи в молекуле АТФ. Такими стадиями являются:

  1. НАД/ФАД - разность потенциалов 0.25V.

  2. Цитохромы b/cc1 - 0.18V

  3. aa3/O-2 - 0.53V.

Значит, на каждую пару атомов водорода, отнятых от субстрата, возможен синтез 3-х молекул АТФ.

АДФ + Ф + ЭНЕРГИЯ -------> АТФ + Н2О

Макроэргическая связь - это такая ковалентная связь, при гидролизе которой выделяется не менее 30 кДж/моль энергии. Эта связь обозначается знаком ~.

Синтез АТФ за счет энергии, которая выделяется в системе МтО, называется ОКИСЛИТЕЛЬНЫМ ФОСФОРИЛИРОВАНИЕМ. Основная роль АТФ - обеспечение энергией процесса синтеза АТФ.

Для оценки эффективности работы системы МтО при окислении вычисляют КОЭФФИЦИЕНТ P/O. Он показывает, сколько молекул неорганического фосфата присоединилось к АДФ в расчете на один атом кислорода.

Для главной (полная) цепи Р/О=3 (10H+/2H+(затраты на освобождение АТФ из комплекса с ферментом) + 1H+ (затраты на транспорт фосфата)) = 3,3 (округляют до 3-х)), коэффициент полезного действия системы - 65%, для укороченной P/O=2 (6H+/2H+(затраты на освобождение АТФ из комплекса с ферментом) + 1H+ (затраты на транспорт фосфата)) = 2, для максимально укороченной P/O=1 (4H+/2H+(затраты на освобождение АТФ из комплекса с ферментом) + 1H+ (затраты на транспорт фосфата)) = 1.

Система МтО потребляет 90% кислорода, поступающего в клетку. При этом в сутки образуется 62 килограмма АТФ. Но в клетках организма содержится всего 20-30 граммов АТФ. Поэтому молекула АТФ в сутки гидролизуется и снова синтезируется в среднем 2500 раз (средняя продолжительность жизни молекулы АТФ - полминуты).
ОСНОВНЫЕ ПРОЦЕССЫ, ДЛЯ КОТОРЫХ ИСПОЛЬЗУЕТСЯ ЭНЕРГИЯ АТФ:

1. Синтез различных веществ.

2. Активный транспорт (транспорт веществ через мембрану против градиента их концентраций). 30% от общего количества расходуемого АТФ приходится на Na++-АТФазу.

3. Механическое движение (мышечная работа).
СИНТЕЗ АТФ.

Во внутренней мембране митохондрий расположен интегральный белковый комплекс – Н+-зависимая АТФ-синтаза seu Н+-зависимая АТФ-аза (два разных названия связаны с полной обратимостью катализируемой реакции), обладающий значительной молекулярной массой – более, чем 500кДа. Состоит из двух субъединиц: FO и F1.

F1 представляет из себя грибовидный вырост на матриксной поверхности внутренней митохондриальной мембраны, FO же пронизывает эту мембрану насквозь. В толще FO расположен протонный канал, позволяющий протонам возвращаться обратно в матрикс по градиенту их концентраций.

F1 способна связывать АДФ и фосфат на своей поверхности с образованием АТФ - без затраты энергии, но обязательно в комплексе с ферментом. Энергия необходима лишь для освобождения АТФ из этого комплекса. Эта энергия выделяется в результате тока протонов через протонный канал FO.

В дыхательной цепи сопряжение абсолютно: ни одно вещество не может окисляться без восстановления другого вещества.

Но при синтезе АТФ сопряжение одностороннее: окисление может идти без фосфорилирования, а фосфорилирование без окисления никогда не идёт. Это означает, что система МтО может работать без синтеза АТФ, но АТФ не может быть синтезирована, если не работает система МтО.

  1   2   3   4

Добавить документ в свой блог или на сайт

Похожие:

Понятие о метаболизме iconЭнергетический обмен в клетке
Интегрирующая цель: углубить знания о метаболизме, раскрыв сущность энергетического обмена
Понятие о метаболизме iconМетаболизм: фазы и стадии. Общий путь катаболизма
Формирование представлений о метаболизме как совокупности взаимосвязанных ферментативных реакций в клетке, специфических и общей...
Понятие о метаболизме iconПрограмма по формированию навыков безопасного поведения на дорогах...
Понятие интеграции в образовании. Понятие интегрированного обучения в начальном образовании. Интеграция в учебной деятельности: понятие;...
Понятие о метаболизме iconТема: Переваривание белков и всасывание продуктов переваривания....
Цель: Составить представление о пуле аминокислот в клетке, путях транспорта аминокислот через клеточные мембраны и их расходование...
Понятие о метаболизме iconРеферат l-карнитин (LC) и l-ацетил-карнитин (alc) обнаруживаются...
Целью данного обзора является обобщение знаний о многочисленных функциях, которые lc и alc выполняют в мужской репродуктивной системе,...
Понятие о метаболизме iconПрограмма по формированию навыков безопасного поведения на дорогах...
Понятие история принадлежит к древним научным понятиям. В переводе с греческого обозначает «узнавание», «расспрашивание». В современном...
Понятие о метаболизме iconВопросы и задания
Понятие множества, операции над множествами, истинность высказываний, понятие графа, граф с направленными ребрами
Понятие о метаболизме iconРефератов Понятие, система и общая характеристика правоохранительных органов РФ
Понятие, истоки и место конституционного контроля в государственно-правовом механизме
Понятие о метаболизме iconУрок 2 Призма. Параллелепипед
Цели: ввести понятие призмы и ее элементов; дать определение прямой и наклонной призмы, определение высоты призмы; ввести понятие...
Понятие о метаболизме iconКонспект урока «Окружающий мир»
Понятие множества, операции над множествами, истинность высказываний, понятие графа, граф с направленными ребрами
Понятие о метаболизме iconРеферат по социальной психологии тема: Понятие и структура возрастных кризисов
Вступление, понятие возраста как ключевое для понятия кризиса, историческая справка
Понятие о метаболизме icon3. Семейные правоотношения понятие, элементы, основания возникновения....
Понятие и предмет семейного права. Метод регулирования семейно-правовых отношений
Понятие о метаболизме iconКонспект урока по технологии в 4 классе на тему: Чудо-тесто. Панно «Земляничка»
Понятие множества, операции над множествами, истинность высказываний, понятие графа, граф с направленными ребрами
Понятие о метаболизме iconКонспект урока по «Окружающему миру» во 2 классе Тема: «Какой бывает транспорт?»
Понятие множества, операции над множествами, истинность высказываний, понятие графа, граф с направленными ребрами
Понятие о метаболизме iconКонспект урока по «Окружающему миру» во 2 классе Тема: «Какой бывает транспорт?»
Понятие множества, операции над множествами, истинность высказываний, понятие графа, граф с направленными ребрами
Понятие о метаболизме iconПрограмма по формированию навыков безопасного поведения на дорогах...
...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск