Улучшение качества питьевой воды





НазваниеУлучшение качества питьевой воды
страница2/9
Дата публикации01.08.2013
Размер1.06 Mb.
ТипОтчет
100-bal.ru > Биология > Отчет
1   2   3   4   5   6   7   8   9

1.2. Существующие и перспективные способы улучшения качества воды

Централизованное водоснабжение большинства населенных пунктов России преимущественно ведется из поверхностных водоисточни­ков, характеризующихся высоким уровнем загрязнения /45/.

Существующие сооружения водоподготовки и применяемые технологические процессы часто уже не в состоянии обеспечить требуемое качество питьевой воды, поскольку рассчитаны на уровни загрязнения поверхностных вод, существовавшие 40÷50 лет назад и, в основном, направлены на улучшение прежде всего органолептических и микроби­ологических показателей качества воды.

В отечественном хозяйственно-питьевом водоснабжении используются типовые технологические схемы очистки: в зависимости от степени загрязненности исходной воды - двухступенчатая (отстойни­ки или осветлители со слоем взвешенного осадка - на первой ступе­ни и скорые фильтры - на второй ступени) или одноступенчатая (контактные осветлители или прямоточные фильтры) /45, 46/. Рассматривая эти схемы с современных позиций, можно отметить их не­достаточную надежность и эффективность. В первую очередь это обусловлено тем, что в их применяются устаревшие сооружения и реагентные методы очистки. Применяемые технологии очищают воду, в основном, от дисперсных частиц. Молекулярно растворенные вещества и ионы остаются в воде. Таким образом, многие токсичные вещества не улавливаются на водоочистных сооружениях и попадают в водопро­водную сеть /47/.

Необходимо отметить, что существующие технологические схемы способны оказывать негативное воздействие. Так, применяемые в хо­де водоподготовки для обеззараживания воды процедуры хлорирования и озонирования, в случае наличия в воде органических соединений, приводят к появлению высокотоксичных веществ.

В результате хлорирования воды, содержащей гуминовые вещест­ва фенольной природы, образуются хлорфенолы, хлороформ и даже диоксины /48, 49/. Появление в питьевой воде токсичных продуктов озонирования - формальдегида, бензальдегида, ацетальдегида, также может быть обусловлено физико-химическими характеристиками природных вод. Озонирование воды, в которой присутствуют пестици­ды, может привести к появлению более токсичных и стабильных недоокисленных эпоксидов с ненасыщенными двойными связями. Например, элдрин окисляется до диэлдрина, гептахлор до гептахлорэпоксида /50/.

Исследование содержания хлорорганических соединений в водо­заборе г.Питкяранта и г.Приозерск (Ладожское озеро) и в водопро­водной воде показало, что в процессе водоподготовки (хлорирова­ния) в 39 раз возросла концентрация хлороформа, в 5 раз - четы­реххлористого углерода, в 4,5 раза - 1,2-дихлорэтана, в 4,4 раза - тетрахлорэтана, в 8,3 раза - хлорбензола, появились трихлорэтан и трихлорфенол (табл.1.) /48/.

Таблица 1.

Содержание летучих хлорорганических соединений в водах Ладожского озера и питьевой воде городов Приозерск и Питкяранта

Вещество

Водозабор, мкг/л

Питьевая вода, мкг/л

ПДК, мкг/л 

США

ВОЗ

РФ

Хлороформ

 

9,0

350,0

60

200

60

Четыреххлорис­тый углерод

4,0

20,0

5

2

6

1,2-дихлорэтан

 

2,0

9,0

5

30

20

Трихлорэтан

 

-

 

10,0

5

70

60

Тетрахлорэтан

 

2,5

 

11,0

5

40

20

Бромдихлорэтан

 

3,0

-

 

 

 

Бензол

 

40,0

30,0

 

5

10

-

Трихлорфенол

 

-

 

3,0

 

-

200

-

Хлорбензол

6,0

50.0

-

300

-

Примечание: ВОЗ - всемирная организация здравоохранения

При изучении мутагенной активности питьевой воды обнаружено, что при применяемых режимах хлорирования отмечается интенсивное образование мутагенов /51/, радикальных и ион-радикальных частиц, которые могут обладать весьма длительным временем жизни /52/.

Установлена прямая зависимость между величиной цветности воды, обусловленной гуминовыми веществами, и содержанием хлорорганических веществ после ее хлорирования. При этом обнаружены сильные корреляционные связи уровней онкологической смертности, индукции рака печени и мочевого пузыря и частоты спонтанных абортов с величинами цветности хлорированной воды /53/.

В качестве профилактических мероприятий, направленных на снижение мутагенного и канцерогенного риска, возникающего при хлорировании высокоцветных гумусовых вод, необходимо добиваться максимального снижения цветности хлорируемой воды минимум до ве­личины, определенной ВОЗ в 15° и изменение статуса этого признака вредности хлорированной воды с органолептического на токсикологический /53, 54/.

Наряду с растущим загрязнением источников питьевого водос­набжения отмечается ухудшение санитарно-технического состояния водопроводных сооружений и сетей. Остаточные количества реагентов, используемых в процессе водоподготовки, оказывают влияние на интенсивность коррозии металлических водопроводных труб. Стальные и чугунные трубы дают течь уже через 5-6 лет эксплуатации. В результате длительного контакта с металлическими трубами, подвергшимися коррозии, вода приобретает запах (3÷4 балла), цветность (до 100° и выше), увеличивается содержание железа (до 5÷6 мг/л), меди, цинка, возрастает мутность /55, 56/.

Для удаления из обрабатываемой воды растворенных в ней вредных веществ необходимы дополнительные звенья водообработки. В большинстве же случаев на отечественных водопроводных станциях не хватает мощностей даже для традиционной схемы обработки воды, не говоря об усложнении технологии водоподготовки. В РФ в 1995 г. 12,9% коммунальных водопроводов не имели необходимого набора соо­ружений водоподготовки, на 15% не осуществлялось обеззараживание воды. В результате частота выявления неблагоприятных санитар-но-химических и микробиологических показателей стабилизировалась на высоком уровне и составила в 1995 г. соответственно 21,5 и 8,7 % /56/, в 1998 г. - 29,03 и 9,7% /1/.

В целом около половины населения России вынуждено использовать для питьевых целей воду, не соответствующую по ряду показателей гигиеническим требованиям /57/.

Положение с состоянием водоочистки усугубляется экономическим положением в стране, не позволяющем даже в ближайшей перспек­тиве осуществить коренную реконструкцию водоочистных станций за счет применения разработанных в настоящее время перспективных технологий.

Основными физико-химическими методами, используемыми в мире для подготовки питьевой воды, являются сорбция, ионный обмен, озонирование, УФ-обработка, коагуляция, мембранные методы. Реже при очистке используют аэрирование, дистилляцию и другие процессы /58, 59/.

Широко известны способы умягчения и опреснения воды реагентной обработкой. Кроме того, разработаны способы ионобменного и мембранного умягчения, в частности, Nа-катионирование при котором неизменной остается щелочность воды и Н-Nа-катионирование, приме­няемое, когда требуется понизить щелочность воды. На основе этих процессов разработаны технологии "Сиротерм" и "Карикс"/60/.

Наряду с физико-химическими методами для подготовки питьевой воды используют и биологические, особенно при очистке от аммиака, нитратов, железа, ряда синтетических веществ, удаления цветности. Применение биологической очистки позволяет значительно увеличить ресурс физико-химических методов. Этот способ используется во Франции и Германии при исходном содержании в воде азота 40÷140 мг/л /60, 61/.

Присутствующие в воде тяжелые металлы могут быть устранены реагентной обработкой. Так при добавлении гидроокиси натрия к воде до рН 8,3 и дальнейшей фильтрации и отстаивании, устраняется более 70% ионов цинка; более - 97% хрома; 99,5% - кадмия; а также 100% - свинца, меди и железа. Ионы хрома также удаляются (при его содержании до 200 мкг/л) сульфатом железа с последующим фильтро­ванием и осветлением /42/.

В последнее время развиваются исследования, посвященные при­менению процессов обратного осмоса и ультрафильтрации для получе­ния питьевой и высокоочищенной воды. Эти процессы позволяют получать качественную питьевую воду из природных водоисточников. Так, например, во Франции (департаменты Души и Амонкур) работают установки на основе данных процессов, обеспечивающие питьевой водой целые поселки /61/. Но высокая стоимость очистки ограничивает их широкое внедрение на отечественных водоочистных станциях. В РФ дело пока ограничивается выпуском бытовых мембранных водоочистителей /61-63/.

Разрабатываются различные модификации электроимпульсного метода для его применения в процессах водоочистки и водоподготовки. Импульсное питание позволяет существенно сократить затраты электроэнергии, уменьшить время проведения технологического процесса, а также упростить техническое обслуживание установок и повысить надежность их работы /64/.

Одним из основных способов подготовки питьевой воды является сорбция на пористых сорбентах (чаще всего фильтрование через не­подвижный слой сорбента). В качестве сорбентов используются гранулированные и порошкообразные активированные угли, минеральные адсорбенты, полимерные материалы и т.д. /63/.

На отечественных водоочистных станциях наиболее часто в ка­честве фильтрующей загрузки используется песок. Зачастую песок характеризуется неудовлетворительным гранулометрическим составом и скатанной формой зерен, что безусловно негативно сказывается на его фильтрационных свойствах /65/.

Более качественными фильтрующими материалами является гранитная крошка и другие дробленые материалы, обладающие большей грязеемкостью. Это их преимущество в первую очередь объясняется большей пористостью, а также дефектами кристаллической решетки, возникающими при дроблении и увеличивающими энергетическую по­верхность зерен /65, 66/.

В результате использования дробленых материалов обеспечиваются меньший темп прироста потерь напора, большая степень насыщения порового пространства загрузки осадком и более благоприятные гидродинамические характеристики пористой среды в части прилипа­ния и отрыва загрязнений от зерен загрузки, что обеспечивает бо­лее интенсивный вынос загрязнений из загрузки уже на первых минутах промывки /66/.

К числу таких новых фильтрующих материалов относятся крошка из отсевов гранитного щебня (Киркинский карьер Выборгского место­рождения) и габбро-диабазного щебня (карьер расположен под Петрозаводском) /45/.

Применение указанных материалов в качестве загрузки фильтровальных сооружений позволяет увеличить продолжительность фильтроцикла на 30÷40% по сравнению с сооружениями, загруженными тради­ционным песком скатанной формы /65, 66/.

За рубежом в технологических схемах водоподготовки широко используют активированный уголь (АУ) /67÷69/.

Основная направленность использования АУ - удаление из воды загрязнений и примесей органической природы. Он обладает высокой сорбционной активностью по отношению к хлор-, гидроксил-, амино-, нитропроизводным бензола, и других ароматических соединений /47, 69/.

Наиболее типичными органическими примесями питьевой воды яв­ляются галоидуглероды и пестициды. Эти вещества в разной степени удаляются из воды сорбционными методами. Так, при использовании сочетания сорбции на АУ с воздействием КМn04, содержание тригалометанов в очищаемой воде снижается на 35%. Сочетание биологичес­кой стадии очистки с сорбцией на АУ позволяет полностью удалить из речной воды трихлорэтан и 1, 2, 4-трихлорбензол /44/.

АУ в модельных экспериментах извлекает из воды 85÷100% гид­рофобных веществ (тригалометаны, хлороформ, четыреххлористый углерод), в то же время его использования для удаления гидрофильных соединений (определяемых частично показателем общего органического углерода) недостаточно (25÷75%). Присутствие же в очищаемой воде природных органических веществ (на уровне 10 мг/л по общему органическому углероду) резко снижает величину сорбции.

Так, при сорбции природных гуминовых соединений с использо­ванием экономически приемлемых доз АУ удается извлечь 50÷70% органических соединений. В фильтрат попадают фракции наиболее окисленных (более гидрофильных) фульвокислот /69/.

Это обстоятельство заставляет предусматривать в схеме очист­ки питьевой воды от тригалометанов с использованием АУ предвари­тельное удаление природных органических веществ. Указанное каса­ется и загрязнения пестицидами: наличие в воде природных органи­ческих соединений приводит к уменьшению ресурса действия сорбционного фильтра с АУ и проскоку пестицидов в фильтрат /44/.

Для удаления больших неионогенных поверхностно-активных ве­ществ (ПАВ) (полиэтиленгликолевые эфиры жирных кислот, спиртов, алкилфенолов) применение АУ неэффективно из-за стерической недос­тупности микропор (г = 0,5÷10 нм) для таких молекул. Для удаления из воды таких молекул необходимы АУ, обладающие развитой переход­ной пористостью. Однако при получении таких АУ потери при обжиге составляют до 75% и больше. Это повышает и без того значительную стоимость углей (порядка 3000$ за тонну) и понижает механическую прочность гранул /69/.

Таким образом, недостатками АУ является низкая прочность на истирание, потери при термической регенерации (от 30 до 75%), невысокая избирательность по отношению к органическим соединениям с высокой растворимостью и крупным неиногенным молекулам.

В настоящее время совершенствование АУ путем выбора сырья и режимов технологической подготовки практически исчерпано. Даль­нейшее усиление поглотительных свойств сорбентов по отношению к органическим веществам, содержащимся в воде, непосредственно свя­зано с научными исследованиями, нацеленными на изменение их по­верхностных свойств (создание искусственных науглероженных сор­бентов) /47/.

По нашему мнению, именно сорбционные процессы дают наилучшие результаты. Для нашей страны наиболее перспективным подходом к решению проблемы качества питьевой воды может быть использование природных минеральных сорбентов как в технологических схемах на водопроводных станциях, так и для доочистки воды потребителями.

1.3. Природные минеральные сорбенты перспективные материалы в процессах улучшения качества воды

Благодаря разнообразным физико-химическим свойствам природ­ные сорбенты (цеолиты, бентониты, опал-кристобаллитовые породы, палыгорскитовые глины и др.) играют все возрастающую роль в тех­ническом прогрессе различных отраслей промышленности /11/.

Сведения о полезных свойствах некоторых видов природных сор­бентов уходят далеко в глубь истории.

Однако полномасштабное изучение и промышленное использование природных сорбентов началось в 50÷60 гг. XX в. Это время открытия крупных промышленных месторождений цеолитовых пород как за рубе­жом (США, Япония и др.), так и в СССР.

В литературе появляется все больше сведений об использовании этих сорбентов для удаления из воды дисперсных примесей, нефти, и нефтепродуктов, красителей, радиоактивных загрязнений и др. /10÷16, 71÷75/.

В группу природных сорбентов относят горные породы и минера­лы, обладающие высокими адсорбционными, ионообменными, каталитическими и фильтровальными свойствами /75/. Для них характерны различные механизмы сорбции, такие как: молекулярная сорбция, катионный обмен, ионный обмен, ионная сорбция. Различия в минеральном составе и кристаллоструктурных особенностях приводят к изменчивости величины сорбционной емкости и кинетики процессов сорбции у различных сорбентов.

Их активные центры представлены гидроксильными группами поверхности и избыточным отрицательным зарядом, обусловленным изо­морфизмом, связанным с различными структурными позициями и нена­сыщенными связями на границе структурных слоев, а также с обменными катионами, компенсирующими избыточный заряд кристаллической решетки /11/.

Одни виды природных сорбентов относят к минеральным образо­ваниям с поверхностно-активными свойствами, с расширяющейся сло­истой структурой, другие - вступают непосредственно в реакцию на основе катионного обмена как ионообменники (цеолиты, глаукониты, бентониты, палыгорскиты). Аморфные природные сорбенты представле­ны силикатами опалового типа, в основе их сорбционной активности - молекулярный обмен (опал-кристобалитовые породы) /75/.

Некоторые сорбенты проявляют кроме того и каталитические свойства /76/.

Для их практического использования имеют значения такие ха­рактеристики как механическая прочность и водостойкость /75/.

Описаны различные способы повышения активности ПМС /11, 75÷77/.

Температурная активация ведется при 150÷400°С, при этом происходит удаление сорбционной воды, что повышает сорбционную емкость. При большей температуре начинается потеря структурной воды, что ведет уже к снижению сорбционных свойств.

Сущность химической активации заключается в химическом взаимодействии реагента с поверхностными группами структуры сорбента, приводящем к изменению их химического состава (деалюминированию, декатионированию, изменению характера пористости (объема и размера пор, удельной поверхности), получению дополнительных активных центров.

Общие разведанные запасы сорбентов в РФ составляют - 2x109 т. Суммарная добыча сырья для производства сорбентов в 1997 г. сос­тавила 106 тыс. т /75/.

 

Таблица 2.
1   2   3   4   5   6   7   8   9

Похожие:

Улучшение качества питьевой воды iconТема занятия
Тестовый контроль знаний. Отбор проб воды для ла­бораторного исследования, оформление сопроводи­тельного документации. Определение...
Улучшение качества питьевой воды iconАнализ качества питьевой воды в городе Мончегорска
Муниципальное общеобразовательное учреждение средняя общеобразовательная школа №37
Улучшение качества питьевой воды iconПрограмма по формированию навыков безопасного поведения на дорогах...
Задачи. Закрепить у детей знания о значении воды в жизни человека: вода- источник жизни; об источниках питьевой воды; представления...
Улучшение качества питьевой воды iconФормирование логистической инфраструктуры предприятий по производству...
Охватывает персонал, занятый в процессе движения материальных потоков
Улучшение качества питьевой воды iconСодержание
Гигиеническое обоснование и практика ранжирования водопроводных станций по эффективности водоподготовки на основе интегральной оценки...
Улучшение качества питьевой воды iconТехнический регламент о безопасности питьевой воды
Южно-Российский государственный технический университет (Новочеркасский политехнический институт)
Улучшение качества питьевой воды iconI. рабочая программа пересмотрена на заседании кафедры
Целью освоения дисциплины «Вода пищевых продуктов» является приобретение теоретических знаний о физико-химических свойствах воды...
Улучшение качества питьевой воды iconАнализ проблемы качества воды реки Вятки в зоне санитарной охраны...
Кирове существует проблема качества воды на городском водозаборе в связи с выносом загрязнений с затопляемых территорий вблизи объектов...
Улучшение качества питьевой воды iconПрограмма по формированию навыков безопасного поведения на дорогах...
В последнее время в средствах массовой информации много говорят и пишут о значении экологии, о необходимости организации работы по...
Улучшение качества питьевой воды iconГигиеническая оценка качественного состава питьевой воды при централизованном...
Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Российский государственный медицинский...
Улучшение качества питьевой воды iconУлучшение качества гидроакустических изображений на основе метода...

Улучшение качества питьевой воды iconФормирование учебно исследовательской деятельности учащихся на уроках...
«Анализ питьевой воды источников деревень Аксеново, Окатово, Цикуль Гусь-Хрустального района Владимирской области». «Определение...
Улучшение качества питьевой воды iconРецензия на проектную работу по экологии ученицы 11 класса ноу «Ломоносовская...
Краткая характеристика работы: в данной работе представлен обзор вопросов, связанных с проблемами чистой питьевой воды. Раскрыта...
Улучшение качества питьевой воды iconПоложение о внутришкольном контроле
Целью вшк является: совершенствование уровня деятельности школы; повышение мастерства учителей; улучшение качества образования
Улучшение качества питьевой воды iconС. А. Стрельнокова Сопредседатель Всероссийской коллегии судей по спортивному туризму
Целью семинара является повышение квалификации судей, улучшение качества проведения соревнований по группе дисциплин «маршрут»
Улучшение качества питьевой воды iconКонспект урока окружающего мира в 3 классе по теме «Значение воды для жизни на Земле»
Задачи: 1 дать представление о свойствах и состояниях воды, круговороте воды в природе


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск