Улучшение качества питьевой воды





НазваниеУлучшение качества питьевой воды
страница3/9
Дата публикации01.08.2013
Размер1.06 Mb.
ТипОтчет
100-bal.ru > Биология > Отчет
1   2   3   4   5   6   7   8   9

Различные методы активации ПМС

Индуцированные изменения

 

Метод активации природных сорбентов

Термичес­кий

Кислотный

Щелочной

Солевой

Комбинированный

Удаление

сорбцион-

ной воды

Декатиони-

рование,

деалюмини-

рование

Разработка

пористой

структуры,

частичное

удаление

SiO2

Создание

дополни-

те­льных

цен­тров сорб­ции

Целевое

катиони-

рование

Действующий агент

Темпера­

тура 150÷400°

Серная,

соляная кислоты

NаОН,

КОН

Соли

металлов

Кислота+

соли металлов

1.3.1. Углеродсодержащие породы - ш у н г и т ы

Шунгиты - специфические углеродсодержащие породы, в которых углеродная составляющая тесно связана с алюмосиликатами и другими минералами. Углерод представлен в шунгите в элементарной форме с метастабильной надмолекулярной структурой. Шунгит отличается от графита отсутствием кристаллической решетки, от углей и битумов - двухмерной структурой и малым содержанием летучих компонентов /78÷81/.

По структурным характеристикам шунгит обладает турбостратной молекулярной структурой, состоящей из поликонденсированных арома­тических сеток, уложенных в субпараллельные атомные пакеты, кото­рые азимутально разориентированы относительно друг друга. По сравнению с графитом поликонденсированная ароматическая сетка шунгита дефектна и сильно деформирована /78/.

Шунгит занимает промежуточное положение между "аморфными" (сажа, стеклоуглерод, антрацит и др.) и кристаллическими (графит, алмаз) формами углерода, обнаруживая признаки и тех и других ве­ществ. Следствием этого являются специфические технологические свойства шунгита и широкий спектр его возможного промышленного использования /79, 80/.

Не так давно стало известно, что карельский шунгит содержит до 0,1% фуллеренов - сферических молекул углерода (углеродные микрокластеры) /82/. Установлено, что углеродные микрокластеры, в частности, участвуют в окислительно-восстановительных процессах, протекающих по свободно-радикальному механизму, поскольку активно реагируют со свободными радикалами. Во всех работах, в которых изучено влияние микрокластеров на окислительно-восстановительные процессы с участием свободных радикалов, подчеркивается, что их эффективность существенно выше, чем у обычных антиоксидантов и что они оказывают свое действие в чрезвычайно низких концентрациях. Это однозначно свидетельствуют о каталитическом действии уг­леродных микрокластеров /83, 84/.

Шунгитовые породы подразделяют на разновидности в соответс­твии с содержанием в них углерода: 55÷80% и 25÷55% - высокоуглеродистые породы, или собственно шунгитовые (тип I); 5-25% - среднеуглеродистые, или шунгитистые (тип II); менее 5% - малоуглеродистые, или шунгитосодержащие (тип III) /85/.

На площади юго-восточной части Балтийского щита высокоугле­родистые породы залегают в пределах разреза нижнепротерозойских образований на четко определенном стратиграфическом уровне, являясь коррелятивным горизонтом для данных отложений. Углерод, присутствующий в породах, в зависимости от тектонического режима имеет различное структурное состояние - от шунгитового вещества до графита. Шунгитосодержащие породы вытянулись от г.Петрозаводска до г.Медвежьегорска на 130 км при ширине 120 км, занимая, таким образом, площадь более 10 тыс. км2.

Общая мощность образований заонежской свиты 1200 м с учетом суммарной мощности пластово-секущих силлов габбродиабазов, составляющей 400÷500 м /78, 80, 81/.

Комплекс шунгитовых пород Карелии - явление уникальное. По крайней мере, неизвестны проявления шунгитовых пород в таких масштабах и с такими концентрациями шунгитового вещества в других регионах. Уникальность этих пород должна приниматься в расчет при определении объемов их добычи и переработки /78÷80/.

В то же время углерод в форме шунгита, по-видимому, широко распространен и масштабы его развития значительны. Проявления шунгита, помимо Карелии, обнаружены в различных районах РФ - на Урале, в Якутии. Не исключено, что углерод черных сланцев в Ленинградской области во многих случаях также представлен шунгитом /78/.

При электронографических исследованиях шунгитового вещества стратифицированных пород было показано, что шунгитовый углерод, прилегающий к поверхности частиц алюмосиликатов, отличается повышенной упорядоченностью молекулярной структуры. По-видимому, алюмосиликаты оказывают каталитическое действие на преобразование углеродистого вещества и отслаивание пленок происходит на границе раздела вещества с различными структурными и физическими параметрами. Каталитическое действие алюмосиликатов, создающее градиент свойств в углеродистом веществе, заметно проявляется в условиях повышения метаморфизма пород, когда стираются границы между глобулами шунгитового вещества /78, 87÷89/.

Стратифицированные шунгитовые породы могут обладать высокой внутренней поверхностью. Величина ее определяется, по-видимому, несколькими факторами. В породах с глобулярной структурой шунгитового вещества величина внутренней поверхности изменяется в зависимости от содержания шунгитового вещества по сложной кривой, имеющей максимум. В шунгитовых породах II разновидности внутрен­няя поверхность значительно меньше, чем в породах III разновид­ности /78/.

При глубоком обогащении шунгитов III разновидности внутренняя поверхность меняется незначительно. Очевидно, глобулярное шунгитовое вещество стратифицированных пород, как и миграционный шунгит Шуньги, имеет малую собственную внутреннюю поверхность. Внутренняя поверхность стратифицированных пород с таким углеродом создается, главным образом, за счет контактной поверхности угле­рода с силикатными фазами, т.е. за счет контактной поверхности углеродной матрицы с силикатным каркасом /78÷80/.

Это, по-видимому, свидетельствуют о том, что шунгитовый уг­лерод обладает многими ценными свойствами традиционных типов ес­тественного и искусственного твердого углерода, способен быть за­менителем любого из них.

Способность шунгита выступать в качестве заменителя углерода любого типа делает особенно эффективным применение его в тех нап­равлениях, где он может создать наибольший технический и экономи­ческий эффект (в том числе, в качестве адсорбентов, например, взамен АУ в процессах водоочистки и водоподготовки).

Углеродистые сорбенты (шунгиты) использовали в исследованиях по сорбции органических примесей /90÷93/, галогенов /94/, тяжелых металлов /88, 93/. При этом отмечено, что данные природные сорбенты обладают хорошей сорбционной емкостью, повышенной проч­ностью, термической стойкостью и относительной дешевизной /90, 95÷97/.

Механизм очистки воды с помощью шунгитов не ясен. Существует представление об ионообменном характере этих процессов /98/.

Показано, что при достаточном времени контакта (1÷7 часов) шунгита с водой, содержащей органические загрязнители, шунгит проявляет, помимо сорбционных, каталитические свойства в отноше­нии окисления органических субстратов (дихлорэтана, пропанола, бутанола, толуола, бензола, хлороформа, хлорфенола) /99, 100/.

1.3.2. Кремнеземные и кремнистые породы

Кремнеземные породы - это кварциты, кварцевые песчаники и жильный кварц, рассматриваемые совместно как высококремнеземные породы. Их химический состав определяется содержанием SiO2, где 46,7% составляет кремний и 53,3% - кислород /101/.

Кристаллический кремнезем может иметь одну из следующих модификаций - кварц (модификация α и β), тридимит (модификация α, β и γ) и кристобаллит (модификация α и β). Фазовые переходы в пределах каждого типа характеризуются большими скоростями, а превра­щения одного типа в другой протекают очень медленно, причем лишь в присутствии паров воды или некоторых других минерализаторов /102÷104/.

Кроме кристаллического вида кремнезем встречается и в аморфной (стекловидной, коллоидной) форме /101, 103/. Полиморфными модификациями кремнезема являются халцедон (скрытнокристаллическая разновидность β-кварца тонковолокнистого строения) и опал (вторичный продукт неорганического и органического разложения и растворения). Опаловый кремнезем имеет первичную биогенную природу /101/.

Основными продуцентами кремнеземного сырья являются РФ, Украина, Корея. Турция, Казахстан, Испания и Норвегия /101/.

К кремнистым породам относятся диатомиты, опоки, трепелы, спонголиты, радиоляриты - группа осадочных пород, сложенных преимущественно опалом и кристобаллитом. Они являются распространенными осадочными образованиями и играют заметную роль в сложении мезо- кайнозойских отложений платформенных и складчатых областей /105/.

В составе кремнистых пород преобладают опал, кристобаллит и их разности /106/.

Кремнистые породы подразделяют на две группы: сложенные преимущественно кремниевыми панцирями организмов (диатомиты, спонголиты, радиоляриты, силикофлагелиты) и представленные мелкозернис­тым и глобулярным кремнеземом (трепелы и опоки) /107/.

В кремнистых породах, представленных в основном аморфным кремнеземом, ионобменная способность и активность связаны с реакционной способностью силанольных групп Si-ОН и их числом на поверхности, что зависит от степени гидратированности кремензема. Специфические особенности структуры при высоком содержании опалового кремнезема определяют адсорбционные и каталитические особенности кремнистых пород, возможность получения из них фильтровальных и адсорбционных материалов. Основные полезные свойства опал-кристобаллитовых пород определяются как содержанием активно­го кремнезема, так и степенью его раскристаллизации /108/.

РФ располагает крупнейшей сырьевой базой опок, диатомитов, трепелов, спонголитов, но используются кремнистые породы в основном для производства цемента /105, 106/. В перспективных направлениях (фильтрация, наполнители, осушители) они еще не нашли должного применения. В отличие от США, где до 72% добываемого кремнистого сырья идет на производство фильтровальных порошков, в нашей стране с этими целями используется только 5÷7% данных мине­ралов /106/.

К кремнистым минералам относится глауконит (моноклинальная диоктаэдрическая железисто-магнезиальная слюда). В его состав входит: до 28% Fe2Оз, до 9,5% К2О, 8,6% FеО, 4,5% Мg0. Сорбционная активность глауконита связана с ионообменными свойствами и развитой удельной поверхностью. Месторождениям глауконита сопутс­твуют пески, опока, мел, мергель /106, 109/.

В 90-ые годы XX века внимание ряда исследователей привлек представитель группы опал-кристобаллитовых пород - кремень. В ли­тературе были описаны различные эффекты, наблюдаемые после употребления воды, прошедшей обработку кремнем, ее бактерицидные свойства, антиаллергенное действие, продление сроков годности ле­карственных средств группы биогенных стимуляторов изготовленных на такой воде и т.п.) /110/.

Кремень представляет собой двуокись кремния (мелкие кристал­лы халцедона или кварца и аморфный опал, образующий идеальную ку­бическую упаковку из мельчайших зерен окиси кремния) /81, 101/.

Кремни распространены среди осадочных стратифицированных по­род (особенно мела и карбона), а также связанных с ними россыпей. Их месторождения известны в Подмосковье, Архангельской, Смоленс­кой, Ленинградской области, на Урале /111/.

По-видимому источником кремнезема являются кремниевые или опаловые скелеты различных, возможно специфических организмов, окаменелость которых обусловила особенности структуры /111/.

Изучению изменений, происходящих в обработанной кремнем воде был посвящен цикл исследований, проведенных с использованием ме­тодов ядерного-магнитного резонанса, ИК-спектроскопии, рентгеноструктурного анализа /112÷116/. Эти исследования позволили ус­тановить, что в результате взаимодействия молекул воды с поверх­ностью кремня происходит изменение валентного угла в молекуле во­ды, расстояния' между атомами кислорода в двух соседних молекулах воды, расстояния между двумя спинами. Причем эти деформации, воз­никающие в процессе адсорбции, сохраняются и при переходе молеку­лы воды с поверхности кремня в объем жидкости.

От величины валентного угла зависит дипольный момент молеку­лы воды, плотность и диэлектрическая проницаемость воды. Тем са­мым меняется энергия водородных связей в воде, контактировавшей с кремнем, что влечет за собой изменение ее физико-химических свойств /112÷114/.

При контакте воды с поверхностью кремня (в составе которого преобладает α-кварц и присутствуют α-тридимит и α-кристобаллит) происходит изменение ее рН до 10÷13,5. Причем обнаружена зависимость величины рН от числа циклов контакта воды с кремнем. Напро­тив, вода, контактировавшая с опалом, в котором преобладает аморфный кремнезем и присутствуют β-тридимит и β-кристобаллит приобретает рН 5,0 /115/.

Механизм изменения рН в данном исследовании объясняют пере­ходом коллоидно-дисперсных частиц кремня в воду и захватом ионов гидроксония атомами кислорода этих дисперсных поверхностей. При этом происходит активный перенос заряда с атома кислорода кристаллической решетки кремня на центральный ион H2O+. Вследствие этого создается избыток ОН- групп в воде /115, 117/.

В экспериментальных исследованиях показано, что в системе кремень-водные растворы неорганических солей происходит интенсив­ное осаждение ряда металлов: алюминия, железа, кадмия, цезия, цинка, свинца и стронция. Процесс растянут во времени и затухает на 6÷7 сутки. Осаждение металлов, как считают исследователи, выз­вано теми структурными изменениями, которые возникают в молекулах воды под влиянием кремня /I14÷116/.

На основе этого феномена предлагается технологическая схема очистки воды, которая не требует дополнительных затрат электроэ­нергии, при этом одна загрузка кремня работает длительное время /116/.

1.3.3. Карбонатные породы

В водоочистке находят применение карбонатные породы. Наибо­лее распространенной карбонатной породой является известняк. По­родообразующим минералом известняка служит кальцит - СаСОз - 56,03% СаО и 47,41% СО2. От 10 до 50 % известняка может составлять доломит. В переменном количестве в нем присутствуют гидрос­люды, монтмориллонит и другие минералы. Иногда в известняке со­держатся халцедон, марказит, органическое вещество.

Для известняка характерны три типа структур: кристалличес­ки-зернистые, биогенные и оолитовые. Большинство залежей извест­няка образовано в морских условиях. Разновидностями известняка являются мел, туф и гажа (118, 81).

К карбонатным породам относится также минерал доломит. Его формула СаМg(СОз)2. Содержание СаО - 30,41%; Мg0 - 21,86%; СО2 -47,73%. Отношение СаО:Мg0 = 1,391.

Доломит может содержать примеси кальцита (до 50%), гипс, ан­гидрит, кремнезем (халцедон), гидроксиды железа и марганца; иногда, - пирит, марказит, органическое вещество, пропитки битумом, глинистые примеси.

Доломит разделяют на две группы. Первая - седиментационного происхождения. Сюда входят хемогенные породы с биогенными разностями. Вторая группа - метасоматические доломиты, возникшие путем перераспределения осадочного материала в ходе позднего диагенеза и катагенеза.

Доломит кристаллизуется в тригональной сингонии, твердость 3,5÷4 ед., плотность - 2,75 ÷ 2,85 г/см3, пористость 0,4 ÷ 12,6 ед. /119, 81/.
1   2   3   4   5   6   7   8   9

Похожие:

Улучшение качества питьевой воды iconТема занятия
Тестовый контроль знаний. Отбор проб воды для ла­бораторного исследования, оформление сопроводи­тельного документации. Определение...
Улучшение качества питьевой воды iconАнализ качества питьевой воды в городе Мончегорска
Муниципальное общеобразовательное учреждение средняя общеобразовательная школа №37
Улучшение качества питьевой воды iconПрограмма по формированию навыков безопасного поведения на дорогах...
Задачи. Закрепить у детей знания о значении воды в жизни человека: вода- источник жизни; об источниках питьевой воды; представления...
Улучшение качества питьевой воды iconФормирование логистической инфраструктуры предприятий по производству...
Охватывает персонал, занятый в процессе движения материальных потоков
Улучшение качества питьевой воды iconСодержание
Гигиеническое обоснование и практика ранжирования водопроводных станций по эффективности водоподготовки на основе интегральной оценки...
Улучшение качества питьевой воды iconТехнический регламент о безопасности питьевой воды
Южно-Российский государственный технический университет (Новочеркасский политехнический институт)
Улучшение качества питьевой воды iconI. рабочая программа пересмотрена на заседании кафедры
Целью освоения дисциплины «Вода пищевых продуктов» является приобретение теоретических знаний о физико-химических свойствах воды...
Улучшение качества питьевой воды iconАнализ проблемы качества воды реки Вятки в зоне санитарной охраны...
Кирове существует проблема качества воды на городском водозаборе в связи с выносом загрязнений с затопляемых территорий вблизи объектов...
Улучшение качества питьевой воды iconПрограмма по формированию навыков безопасного поведения на дорогах...
В последнее время в средствах массовой информации много говорят и пишут о значении экологии, о необходимости организации работы по...
Улучшение качества питьевой воды iconГигиеническая оценка качественного состава питьевой воды при централизованном...
Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Российский государственный медицинский...
Улучшение качества питьевой воды iconУлучшение качества гидроакустических изображений на основе метода...

Улучшение качества питьевой воды iconФормирование учебно исследовательской деятельности учащихся на уроках...
«Анализ питьевой воды источников деревень Аксеново, Окатово, Цикуль Гусь-Хрустального района Владимирской области». «Определение...
Улучшение качества питьевой воды iconРецензия на проектную работу по экологии ученицы 11 класса ноу «Ломоносовская...
Краткая характеристика работы: в данной работе представлен обзор вопросов, связанных с проблемами чистой питьевой воды. Раскрыта...
Улучшение качества питьевой воды iconПоложение о внутришкольном контроле
Целью вшк является: совершенствование уровня деятельности школы; повышение мастерства учителей; улучшение качества образования
Улучшение качества питьевой воды iconС. А. Стрельнокова Сопредседатель Всероссийской коллегии судей по спортивному туризму
Целью семинара является повышение квалификации судей, улучшение качества проведения соревнований по группе дисциплин «маршрут»
Улучшение качества питьевой воды iconКонспект урока окружающего мира в 3 классе по теме «Значение воды для жизни на Земле»
Задачи: 1 дать представление о свойствах и состояниях воды, круговороте воды в природе


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск