В. П. Кохановский Кохановский В. П., Лешкевнч Т. Г., Матяш Т. П., Фатхи Т. Б





НазваниеВ. П. Кохановский Кохановский В. П., Лешкевнч Т. Г., Матяш Т. П., Фатхи Т. Б
страница25/63
Дата публикации30.11.2014
Размер8.23 Mb.
ТипДокументы
100-bal.ru > Философия > Документы
1   ...   21   22   23   24   25   26   27   28   ...   63
Глава IV. Динамика науки как процесс порождения нового знания 253

Фейерабенд ратует за построение новой теории развития идей, которая была бы способна сделать понятными все детали этого развития. А для этого она должна быть свободной от указанных крайностей и исходить из того, что в развитии науки в одни пери­оды ведущую роль играет концептуальный фактор, в другие — социальный. Вот почему всегда необходимо держать в поле зре-I ния оба этих фактора и их взаимодействие. | Изменение, развитие научного знания есть одновременно и 1 изменение научных методов, «методологических директив», ко­торые Фейерабенд не отвергает, но и не ограничивает их только : правилами рациональными. Его методологическое кредо «все доз-; волено!» означало, что исследователи могут и должны использо­вать в своей научной работе любые методы и подходы, которые представляются им заслуживающими внимания.

При этом Фейерабенд резко выступал против неопозитивист­ского схоластического конформизма с его требованием «оставлять все так, как есть». Философ подчеркивает, что (как и вся наука в целом) «методологические директивы» не являются статичными, неизменными, а всегда носят конкретно-исторический характер. Наука, как сложный, динамический процесс, насыщенный «неожиданными и непредсказуемыми изменениями», «требует раз­нообразных действий и отвергает анализ, опирающийся на прави­ла, которые установлены заранее без учета постоянно меняющих­ся условий истории». Данные истории, по Фейерабенду, играют решающую роль в спорах между конкурирующими методологи­ческими концепциями. Кроме того, эти данные служат той осно­вой, исходя из которой можно наиболее достоверно объяснить эволюцию теории, которую (эволюцию) нельзя не учитывать в методологических оценках.

После постпозитивизма развитие эволюционной эпистемоло­гии пошло по двум основным направлениям. Во-первых, по ли­нии так называемой альтернативной модели эволюции (К. Уод-дингтон, К. Халквег, К. Хугер и др.) и, во-вторых, по линии си-нергетического подхода. К. Уоддингтон и его сторонники счита­ли, что их взгляд на эволюцию дает возможность понять, как такие высокоструктурированные системы, как живые организмы или концептуальные системы, могут посредством управляющих воздействий самоорганизовываться и создавать устойчивый ди­намический порядок. В свете этого становится более убедитель-

254 Основы философии науки

ной аналогия между биологической и эпистемологической эво­
люцией, чем модели развития научного знания, опирающиеся на-
традиционную теорию эволюции. i

Синергетический подход сегодня становится все более персч пективным и распространенным, во-первых, потому, что идея са­моорганизации лежит в основе прогрессивной эволюции, которая характеризуется возникновением все более сложных и иерархи­чески организованных систем; во-вторых, она позволяет лучше учитывать воздействие социальной среды на развитие научного познания; в-третьих, такой подход свободен от малообоснованно­го метода «проб и ошибок» в качестве средства решения научных проблем. (Подробнее о синергетике см. гл.VII, §2.)

В современной отечественной философско-гносеологической литературе исследование проблем эволюционной эпистемологии фактически только разворачивается. Одна из серьезных работ в этой области — монография И. П. Меркулова «Когнитивная эво­люция» (1999) и последующие его труды. В ней автор, в частно­сти, считает, что западные модели способствовали более глубо­кому пониманию механизмов роста научного знания, ибо меха­низмы естественного отбора и отбора концептуальных измене­ний в науке действительно имеют много общего. Важное место, по мнению Меркулова, в данном процессе занимает информа­ция. Исходя из центральной идеи эволюционной эпистемологии — идеи универсальности информационного развития и эволюции способов информационного контроля окружающей среды, — ав­тор полагает, что «с этой точки зрения прогресс в науке означает прежде всего изобретение относительно более информативных теорий».

Таким образом, основная задача эволюционной эпистемоло­гии, как ее понимает подавляющее большинство исследователей, состоит прежде всего в разработке всестороннего и максимально исчерпывающего подхода к развитию познания, который суще­ственно выходит за пределы классических философских тради­ций. Реально этот подход может быть только междисциплинар­ным, так как он базируется на результатах, полученных в самых различных науках.

В истории науки существует два крайних подхода к анализу динамики, развития научного знания и механизмов этого развития.

Глава IV. Динамика науки как процесс порождения нового знания 255

Кумулятивизм (от лат. cumula — увеличение, скопление) счи­тает, что развитие знания происходит путем постепенного добав­ления новых положений к накопленной сумме знаний. Такое по­нимание абсолютизирует количественный момент роста, измене­ния знания, непрерывность этого процесса и исключает возмож­ность качественных изменений, момент прерывности в развитии науки, научные революции.

Сторонники кумулятивизма представляют развитие научного знания как простое постепенное умножение числа накопленных фактов и увеличение степени общности устанавливаемых на этой основе законов. Так, Г. Спенсер мыслил механизм развития зна­ния по аналогии с биологическим механизмом наследования бла­гоприобретенных признаков: истины, накопленные опытом уче­ных предшествующих поколений, становятся достоянием учеб­ников, превращаются в априорные положения, подлежащие зау­чиванию.

Антикумулятивизм полагает, что будто в ходе развития по­знания не существует каких-либо устойчивых (непрерывных) и сохраняющихся компонентов. Переход от одного этапа эволюции науки к другому связан лишь с пересмотром фундаментальных идей и методов. История науки изображается представителями антикумулятивизма в виде непрекращающейся борьбы и смены теорий, методов, между которыми нет ни логической, ни даже содержательной преемственности.

Объективно процесс развития науки далек от этих крайностей и представляет собой диалектическое взаимодействие количествен­ных и качественных (скачки) изменений научного знания, един­ство прерывности и непрерывности в его развитии.

§2. Формирование первичных

теоретических моделей и законов

Модели позволяют представить в наглядной форме объекты и процессы, недоступные для непосредственного восприятия: на­пример, модель атома, модель Вселенной, модель генома чело­века и пр. Теоретические модели отражают строение, свойства и поведение реальных объектов.

256 ; Основы философии науки

Известный западный философ науки Имре Лакатос отмечал, что процесс формирования первичных теоретических моделей мо­жет опираться на программы троякого рода: во-первых, это эмпи-ристская программа, во-вторых, индуктивистская программа и, в-третьих, — система Евклида (Евклидова программа). Все три программы исходят из организации знания как дедуктивной си­стемы'.

Евклидианскую программу, которая предполагает, что все можно дедуцировать из конечного множества тривиальных ис­тинных высказываний, состоящих только из терминов с триви­альной смысловой нагрузкой, принято называть программой три-виализации знания. Данная программа содержит сугубо истин­ные суждения, но она не работает ни с предположениями, ни с опровержениями. Знание как истина вводится на верхушку тео­рии и без какой-либо деформации «стекает» от терминов-прими­тивов к определяемым терминам.

В отличие от Евклидовой, эмпиристская программа строится на основе базовых положений, имеющих общеизвестный эмпи­рический характер. Эмпиристы не могут допустить иного введе­ния смысла, чем снизу теории. Если эти положения оказываются ложными, то данная оценка проникает вверх по каналам дедук­ции и наполняет всю систему. Следовательно, эмпиристская тео­рия предположительна и фальсифицируема. И если евклидианс-кая теория располагает истину наверху и освещает ее естествен­ным светом разума, то эмпиристская — располагает ее внизу и освещает светом опыта. Но обе программы опираются на логи­ческую интуицию.

Об нндуктивистской программе Лакатос говорит так: «Из­гнанный с верхнего уровня разум стремится найти прибежище внизу. (...) Индуктивистская программа возникла в рамках уси­лий соорудить канал, посредством которого истина течет вверх от базисных положений, и, таким образом, установить дополнитель­ный логический принцип, принцип ретрансляции истины». Воз­никновение индуктивистской программы было связано с докопер-никанскими временами Просвещения, когда опровержение счи­талось неприличным, а догадки презирались. «Передача власти от Откровения к фактам, разумеется, встречала оппозицию церк-

1 См.: Лакатос И. Бесконечный регресс и основания науки // Совре­менная философия науки. М., 1996. С. 107.

Глава IV. Динамика науки как процесс порождения нового знания 257

ви. Схоластические логики и «гуманисты» не уставали предре­кать печальный исход индуктивистского предприятия»1. Индук­тивная логика была заменена вероятностной логикой. Окончатель­ный удар по индуктивизму был нанесен Поппером, который по­казал, что снизу вверх не может идти даже частичная передача истины и значения.

В фундаментальном труде академика В. С. Степина «Теоре­тическое знание» показано, что главная особенность теоретичес­ких схем состоит в том, что они не являются результатом чисто дедуктивного обобщения опыта. В развитой науке теоретические схемы вначале строятся как гипотетические модели за счет ис­пользования ранее сформулированных абстрактных объектов. На ранних стадиях научного исследования конструкты теоретичес­ких моделей создаются путем непосредственной схематизации опыта2.

Важными характеристиками теоретической модели являются ее структурность, а также возможность переноса абстрактных объектов из других областей знания. Лакатос считает, что основ­ные структурные единицы — это жесткое ядро, пояс защитных гипотез, положительная и отрицательная эвристика. Отрицатель­ная эвристика запрещает применять опровержения к жесткому ядру программы. Положительная эвристика разрешает дальней­шее развитие и расширение теоретической модели. Лакатос на­стаивал на том, чтобы всю науку понимать как гигантскую науч­но-исследовательскую программу, подчиняющуюся основному правилу К. Поппера: «Выдвигай гипотезы, имеющие большее эм­пирическое содержание, чем у предшествующих». Построение научной теории мыслится двуступенчато: первое — это выдвиже­ние гипотезы, второе — это ее обоснование.

На выбор абстрактных объектов оказывает существенное вли­яние научная картина мира, которая стимулирует развитие иссле­довательской практики, определение задач и способов их реше­ний. Абстрактные объекты, которые иногда называют теорети­ческими конструктами, а иногда теоретическими объектами, яв­ляются идеализациями действительности. В них могут содержать­ся признаки, которые соответствуют реальным объектам, а могут

1 Лакатос И. Бесконечный регресс и основания науки // Современная
философия науки. М., 1996. С. 114.

2 См.: Степин В. С. Теоретическое знание. М., 2000. С. 313—314.

9 Основы философии науки

258 Основы философии науки '

присутствовать свойства, которыми не обладает ни один реаль­ный объект. Теоретические объекты передают смысл таких поня-1 тий, как «идеальный газ», «абсолютное черное тело», «точка», \ «сила», « окружность», «отрезок» и пр. Абстрактные объекты на­правлены на замещение тех или иных связей действительности, но они не могут существовать в статусе реальных объектов, так как представляют собой идеализации.

Перенос абстрактных объектов из одной области знания в дру­гую предполагает существование прочного основания для анало­гий, которые указывают на отношения сходства между вещами. Этот, достаточно широко распространенный, способ отождеств­ления свойств объектов или самих объектов восходит к древней­шей герметической традиции, отзвуком которой являются размыш­ления пифагорейцев о числовой структуре мироздания, т.е. о со­отношении числовых соответствий и космической гармонии сфер. «Все вещи суть числа», «число владеет вещами» — таковы выво­ды Пифагора. Единое начало в непроявленном состоянии равно нулю; когда оно воплощается, то создает проявленный полюс аб­солюта, равный единице. Превращение единицы в двойку симво­лизирует разделение единой реальности на материю и дух, гово­рит, что знание об одном является знанием о другом.

Онтологическое основание метода аналогий прячется в извес­тном принципе об единстве мира, который, согласно античной традиции, интерпретируется двояко: единое есть многое и мно­гое есть единое. Огромное значение аналогия играет в метафизи­ке Аристотеля, который трактует ее как форму проявления едино­го начала в единичных телах.

Современные интерпретаторы выделяют: 1) аналогию нера­венства, когда разные предметы имеют одно имя (тело небес­ное, тело земное); 2) аналогию пропорциональности (здоровье физическое — здоровье умственное); 3) аналогию атрибуции, когда одинаковые отношения по-разному приписываются объекту (здоровый образ жизни — здоровый организм — здоровое обще­ство и т. п.).

Таким образом, умозаключение по аналогии позволяет упо­доблять новое единичное явление другому, уже известному яв­лению. Аналогия с определенной долей вероятности позволяет расширять имеющиеся знания путем включения в их сферу но­вых предметных областей. Примечательно, что Гегель очень

Глава IV. Динамика науки как процесс порождения нового знания 259

высоко ценил возможности метода аналогий, называя последний «инстинктом разума».

Абстрактные объекты должны удовлетворять связям и взаи­модействиям складывающейся области знания. Поэтому всегда ' актуален вопрос о достоверности аналогии. В силу того, что исто­рия науки дает значительное количество примеров использова­ния аналогии, она признана неотъемлемым средством научного и философского умопостижения. Различают аналогии предметов и аналогии отношений, а также строгую аналогию и нестрогую. Стро­гая аналогия обеспечивает необходимую связь переносимого при­знака с признаком сходства. Аналогия нестрогая носит проблем­ный характер. Важно отметить, что отличие аналогии от дедук­тивного умозаключения состоит в том, что в аналогии имеет мес­то уподобление единичных объектов, а не подведение отдельного случая под общее положение, как в дедукции.

Как отмечает В. Н. Порус, «важную роль в становлении клас­сической механики играла аналогия между движением брошен­ного тела и движением небесных тел; аналогия между геометри­ческими и алгебраическими объектами реализована Декартом в аналитической геометрии; аналогия селективной работы в ското­водстве использовалась Дарвиным, в его теории естественного отбора; аналогия между световыми, электрическими и магнит­ными явлениями оказалась плодотворной для теории электромаг­нитного поля Максвелла. Обширный класс аналогий использует­ся в современных научных дисциплинах: в архитектуре и теории градостроительства, бионике и кибернетике, фармакологии и меди­цине, логике и лингвистике и др.

Известны также многочисленные примеры ложных аналогий, "аковы аналогии между движением жидкости и распространени­ем тепла в учении о «теплороде» XVII—ХУШ вв., биологические налогии социал-дарвинистов в объяснении общественных про­цессов и др.»1

К этой группе примеров следует добавить, что метод анало-ии широко используется в сфере технических наук. Для них важ-:а процедура сведения, где при создании сходных с изобретени­ем объектов сводятся одни группы знаний и принципов к другим. Огромное значение имеет процедура схематизации, которая за-

1 Новая философская энциклопедия: В 4 т. Т. 1. М., 2000. С. 104.

260 Основы философии науки

мещает реальный инженерный объект идеализированным пред­
ставлением (схемой, моделью). Необходимым условием являет-
сяматематизация. Различают технические науки классического!
типа, которые формируются на базе одной естественной науки!
(например, электротехники), и неклассические или комплексные!
технические науки, которые опираются на ряд естественных наук!
(радиолокация, информатика и пр.). |

В технических науках принято различать изобретение, как со-|
здание нового и оригинального, и усовершенствование, как пре-|
образование существующего. Иногда в изобретении усматривает-!
ся попытка имитации природы, имитационное моделирование*!
аналогия между искусственно созданным предметом и природ-!
ной закономерностью. Так, цилиндрическая оболочка — распрос-1
траненная форма, используемая для различных целей в технике и!
быту — универсальная структура многочисленных проявлений ра-|
стительного мира. I

У изобретения-имитации больше оснований быть вписанным!
в природу, поскольку в нем ученый пользуется секретами при-!
родной лаборатории, ее решениями и находками. Но изобрете-1
ние — это еще и создание нового, не имеющего аналогов. 1

Формирование законов предполагает, что обоснованная экс-1 периментально или эмпирически гипотетическая модель имеет! возможность для превращения в схему. Причем «теоретические I схемы вводятся вначале как гипотетические конструкции, но за-1 тем они адаптируются к определенной совокупности эксперимен-1 тов и в этом процессе обосновываются как обобщение опыта»1.1 Затем следовал этап ее применения к качественному многообра-1 зию вещей, т. е. ее качественное расширение. И лишь после этого! следовал этап количественного математического оформления в I виде уравнения или формулы, что знаменовало собой фазу появ- ' ления закона.

Итак, модель -» схема -> качественные и количественные рас­ширения -> математизация -» формулировка закона. На всех без исключения стадиях реально осуществлялась как корректировка самих абстрактных объектов, так и их теоретических схем, а так­же их количественных математических формализации. Теорети­ческие схемы также могли видоизменяться под воздействием ма-

1 СтепшВ. С. Теоретическое знание. М., 2000. С. 313—314.

1   ...   21   22   23   24   25   26   27   28   ...   63

Похожие:

В. П. Кохановский Кохановский В. П., Лешкевнч Т. Г., Матяш Т. П., Фатхи Т. Б iconПрограмма по формированию навыков безопасного поведения на дорогах...
Кохановский В. П., Золотухина Е. В., Лешкевич Т. Г., Фатхи Т. Б. Философия для аспирантов: Учебное пособие. Изд. 2-е Ростов н/Д:...
В. П. Кохановский Кохановский В. П., Лешкевнч Т. Г., Матяш Т. П., Фатхи Т. Б iconПрограмма по формированию навыков безопасного поведения на дорогах...
Кохановский В. П., Жаров Л. В., Яковлев В. П. Философия. Конспект лекций. Ростов-на-Дону, 2005
В. П. Кохановский Кохановский В. П., Лешкевнч Т. Г., Матяш Т. П., Фатхи Т. Б iconСимоненко В. Д., Очинин О. П., Матяш Н. В. Технология: Учебник для...
Рабочая программа разработана в соответствии с Примерной программой для общеобразовательных школ «Технология. Обслуживающий труд»...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск