Министерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций)





НазваниеМинистерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций)
страница14/58
Дата публикации09.07.2013
Размер4.51 Mb.
ТипУчебно-методическое пособие
100-bal.ru > Информатика > Учебно-методическое пособие
1   ...   10   11   12   13   14   15   16   17   ...   58

Разработка Advanced Encryption Standard (AES)


Понимая слабость и уязвимость стандарта DES, NIST (Национальный Институт стандартов и технологий (США)) в 1997 году стал инициатором проведения конкурса на разработку нового криптографического стандарта, который должен был стать преемником DES. Требования к новому стандарту были следующими:

  • блочный шифр.

  • длина блока, равная 128 битам.

  • ключи длиной 128, 192 и 256 бит.

Конкурс вызвал значительный интерес, в нём участвовало большое количество разработчиков. Дополнительные рекомендации кандидатам включали:

  • использовать операции, легко реализуемые как аппаратно (в микрочипах), так и программно (на персональных компьютерах и серверах);

  • ориентация на 32-разрядные процессоры;

  • не усложнять без необходимости структуру шифра для того, чтобы все заинтересованные стороны были в состоянии самостоятельно провести независимый криптоанализ алгоритма и убедиться, что в нём не заложено каких-либо недокументированных возможностей.

Кроме того, алгоритм, претендующий на то, чтобы стать стандартом, должен распространяться по всему миру на неэксклюзивных условиях и без платы за пользование патентом.

20 августа 1998 года на 1-й конференции AES был объявлен список из 15 кандидатов: CAST-256, CRYPTON, DEAL, DFC, E2, FROG, HPC, LOKI97, MAGENTA, MARS, RC6, Rijndael, SAFER+, Serpent, Twofish. В последующих обсуждениях эти алгоритмы подвергались всестороннему анализу, причём исследовались не только криптографические свойства, такие как стойкость к известным атакам, отсутствие слабых ключей, хорошие статистические свойства, но и практические аспекты реализации: оптимизацию скорости выполнения кода на различных архитектурах (от ПК до смарт-карт и аппаратных реализаций), возможность оптимизации размера кода, возможность распараллеливания. Проверка кандидатов на предмет формирования случайных двоичных последовательностей осуществлялась с помощью набора статистических тестов NIST.

В течение первого раунда тестирование проводилось со 128-битными ключами. Лишь 9 алгоритмов из 15 смогли пройти статистические тесты, а именно: CAST-256, DFC, E2, LOKI-97, MAGENTA, MARS, Rijndael, SAFER+ и Serpent. Оставшиеся алгоритмы показали некоторые отклонения в тестах на случайный характер формируемых ими двоичных последовательностей

В марте 1999 года прошла 2-я конференция AES, а в августе 1999 года были объявлены 5 финалистов: MARS, RC6, Rijndael, Serpent и Twofish. Все эти алгоритмы были разработаны авторитетными криптографами с мировыми именами. На 3-й конференции AES в апреле 2000 года авторы выступили с докладами о своих алгоритмах.

MARS выполняет последовательность преобразований в следующем порядке: сложение с ключом в качестве pre-whitening (предварительное «забеливание»), 8 раундов прямого перемешивания без использования ключа, 8 раундов прямого преобразования с использованием ключа, 8 раундов обратного преобразования с использованием ключа, 8 раундов обратного перемешивания без использования ключа и вычитание ключа в качестве post-whitening («постзабеливание»). 16 раундов с использованием ключа называются криптографическим ядром. Раунды без ключа используют два 8х16-битных S-boxes, операции сложения и XOR. В дополнение к этим элементам раунды с ключом используют 32-битное умножение ключа, зависимые от данных циклические сдвиги и добавление ключа. Как раунды перемешивания, так и раунды ядра являются раундами модифицированной сети Фейстеля, в которых четверть блока данных используется для изменения остальных трех четвертей блока данных. MARS был предложен корпорацией IBM.

RC6 является параметризуемым семейством алгоритмов шифрования, основанных на сети Фейстеля; для AES было предложено использовать 20 раундов. Функция раунда в RC6 задействует переменные циклические сдвиги, которые определяются квадратичной функцией от данных. Каждый раунд также включает умножение по модулю 32, сложение, XOR и сложение с ключом. Сложение с ключом также используется для pre- и post-whitening. RC6 был предложен лабораторией RSA.

Rijndael представляет собой алгоритм, использующий линейно-подстановочные преобразования и состоящий из 10, 12 или 14 раундов в зависимости от длины ключа. Блок данных, обрабатываемый с использованием Rijndael, делится на массивы байтов, и каждая операция шифрования является байт-ориентированной. Функция раунда Rijndael состоит из четырех слоев. В первом слое для каждого байта применяется S-box размерностью 8х8 бит. Второй и третий слои являются линейными перемешиваниями, в которых строки рассматриваются в качестве сдвигаемых массивов и столбцы перемешиваются. В четвертом слое выполняется операция XOR байтов подключа и каждого байта массива. В последнем раунде перемешивание столбцов опущено. Rijndael предложен Joan Daemen (Proton World International) и Vincent Rijmen (Katholieke Universiteit Leuven).

Serpent является алгоритмом, использующим линейно-подстановочные преобразования и состоящим из 32 раундов. Serpent также определяет некриптографические начальную и заключительную перестановки, которые облегчают альтернативный режим реализации, называемый bitslice. Функция раунда состоит из трех слоев: операция XOR с ключом, 32-х параллельное применение одного из восьми фиксированных S-boxes и линейное преобразование. В последнем раунде слой XOR с ключом заменен на линейное преобразование. Serpent предложен Ross Anderson (University of Cambridge), Eli Biham (Technion) и LarsKnudsen (University of California San Diego).

Twofish является сетью Фейстеля с 16 раундами. Сеть Фейстеля незначительно модифицирована с использованием однобитных ротаций. Функция раунда влияет на 32-битные слова, используя четыре зависящих от ключа S-boxes, за которыми следуют фиксированные максимально удаленные отдельные матрицы в GF(28), преобразование псевдо-Адамара и добавление ключа. Twofish был предложен Bruce Schneier, John Kelsey и Niels Ferguson (Counterpane Internet Security, Inc.), Doug Whiting (Hi/fn, Inc.), David Wagner (University of California Berkley) и Chris Hall (Princeton University).

Во втором раунде оценка пригодности финалистов первого раунда в качестве генераторов случайных чисел проводилось на основе 192-битных и 256-битных ключей. Продолжительность статистических тестов NIST составило несколько месяцев, причем вычисления производились на множестве рабочих станциях “Sun Ultra”. Все данные формировались и обрабатывались в режиме онлайн. В результате второго раунда было показано, что каждый из пяти вышеуказанных алгоритмов формирует абсолютно случайную бинарную последовательность и поэтому может быть использован в качестве генератора псевдослучайных чисел, причем имеется возможность использования ключей размерами 128, 192 и 256 бит.

Голоса на конференции AES2 распределились следующим образом:


  • Rijndael: 86 за, 10 против

  • Serpent: 59 за, 7 против

  • Twofish: 31 за, 21 против

  • RC6: 23 за, 37 против

  • MARS: 13 за, 83 против


Третья конференция AES прошла в Нью-Йорке 13 и 14 апреля 2000 года, незадолго до завершения второго этапа. На ней присутствовало 250 участников, многие из которых приехали из-за рубежа. Двухдневная конференция была разделена на восемь сессий, по четыре в день, плюс к тому состоялась неформальная дополнительная сессия, подводившая итоги первого дня. На сессиях первого дня обсуждались вопросы, связанные с программируемыми матрицами (FPGA), проводилась оценка реализации алгоритмов на различных платформах, в том числе PA-RISC, IA-64, Alpha, высокоуровневых смарт-картах и сигнальных процессорах, сравнивалась производительность претендентов на стандарт, анализировалось число раундов в алгоритмах-кандидатах. На сессиях второго дня был проанализирован Rijndael с сокращённым числом раундов и показана его слабость в этом случае, обсуждался вопрос об интегрировании в окончательный стандарт всех пяти алгоритмов-претендентов, ещё раз тестировались все алгоритмы. В конце второго дня была проведена презентация, на которой претенденты рассказывали о своих алгоритмах, их достоинствах и недостатках. О Rijndael рассказал Винсент Рэймен, заявивший о надёжности защиты, высокой общей производительности и простоте архитектуры своего кандидата.

2 октября 2000 года было объявлено, что победителем конкурса стал алгоритм Rijndael, и началась процедура стандартизации. 28 февраля 2001 года был опубликован проект, 26 ноября 2001 года AES был принят как FIPS 197, а пользователи, наконец, смогли вместо труднопроизносимого названия алгоритма Rijndael использовать существенно более простое словосочетание AES.

Безопасность являлась самым важным фактором при оценке финалистов. В отношении собственно алгоритмов (полных) никаких атак зафиксировано не было. Зафиксированы были только атаки против упрощённых вариантов алгоритмов, когда число раундов было уменьшено или были сделаны упрощения другими способами.

С одной стороны, варианты с уменьшенным числом раундов на самом деле являются другими алгоритмами, и таким образом атаки на них никак не характеризуют безопасность собственно исходных алгоритмов. Алгоритм может быть безопасен при n раундах, даже если он уязвим при n-1 раунде. С другой стороны, обычной практикой в современном криптоанализе являются попытки сконструировать атаки на варианты с уменьшенным числом раундов. С этой точки зрения вполне понятны попытки оценить "резерв безопасности" рассматриваемых кандидатов, основываясь на атаках на варианты с уменьшенным числом раундов.

Одним из возможных критериев резерва безопасности является число, на которое полное число раундов алгоритма превышает наибольшее число раундов, при котором возможна атака. Существует ряд причин, объясняющих, почему не следует полагаться исключительно на подобную метрику для определения силы алгоритма; тем не менее, данная метрика резерва безопасности может быть полезна.
Атаки на варианты с уменьшенным числом раундов

Алгоритм, раунды

Раунды (длина ключа)

Тип атаки

Текст

Байты памяти

Операции

MARS 16 Core (C)

16 Mixing (M)

11C

Amp. Boomerang

265

270

2229

16M, 5C

Meet-in-Middle

8

2236

2232

16M, 5C

Diff. M-i-M

250

2197

2247

6M, 6C

Amp. Boomerang

269

273

2197

RC6 20

14

Stat. Disting.

2118

2112

2122

12

Stat. Disting.

294

242

2119

14 (192,256)

Stat. Disting.

2110

242

2135

14 (192,256)

Stat. Disting.

2108

274

2160

15 (256)

Stat. Disting.

2119

2138

2215

Rijndael

10 (128)

4

Truncated Diff.

29

Small

29

5

Truncated Diff.

211

Small

240

6

Truncated Diff.

232

7*232

272

6

Truncated Diff.

6*232

7*232

244

7 (192)

Truncated Diff.

19*232

7*232

2155

7 (256)

Truncated Diff.

21*232

7*232

2172

7

Truncated Diff.

2128 - 2199

261

2120

8 (256)

Truncated Diff.

2128 - 2199

2101

2204

9 (256)

Related Key

277

NA

2224

Rijndael

12 (192)

7 (192)

Truncated Diff.

232

7*232

2184

7 (256)

Truncated Diff.

232

7*232

2200

Rijndael

14 (256)

7 (192, 256)

Truncated Diff.

232

7*232

2140

Serpent 32

8 (192, 256)

Amp. Boomerang

2113

2119

2179

6 (256)

Meet-in-Middle

512

2246

2247

6

Differential

283

240

290

6

Differential

271

275

2103

6 (192, 256)

Differential

241

245

2163

7 (256)

Differential

2122

2126

2248

8 (192, 256)

Amp. Boomerang

2128

2133

2163

8 (192, 256)

Amp. Boomerang

2110

2115

2175

9 (256)

Amp. Boomerang

2110

2212

2252

Twofish 16

6 (256)

Impossible Diff.

NA

NA

2256

6

Related Key

NA

NA

NA

NA – информация недоступна.
В итоге финалисты продемонстрировали следующие характеристики, относящиеся к безопасности: ни против одного из пяти алгоритмов не существует общих известных атак, поэтому определение уровня безопасности является достаточно приблизительным:


  • MARS показывает высокую степень резерва безопасности. Кратко охарактеризовать MARS трудно, потому что фактически MARS реализует два различных типа раунда. MARS даже критиковали за сложность, которая может препятствовать анализу его безопасности.

  • RC6 показал адекватный резерв безопасности. Однако RC6 критиковали за небольшой резерв безопасности по сравнению с другими финалистами. С другой стороны, все высоко оценили простоту RC6, облегчающую анализ безопасности. RC6 произошел от RC5, который уже достаточно хорошо проанализирован.

  • Rijndael показал адекватный резерв безопасности. Резерв безопасности довольно трудно измерить, потому что число раундов изменяется в зависимости от длины ключа. Rijndael критиковался по двум направлениям: что его резерв безопасности меньше, чем у других финалистов, и что его математическая структура может привести к атакам. Тем не менее, его структура достаточно проста и обеспечивает возможность анализа безопасности.

  • Serpent показал значительный резерв безопасности. Serpent также имеет простую структуру, безопасность которой легко проанализировать.




  • Twofish показал высокий резерв безопасности. Поскольку Twofish использует зависящую от ключа функцию раунда, для него замечания о резерве безопасности могут иметь меньшее значение, чем для других финалистов. Зависимость S-boxes Twofish только от k/2 битов энтропии в случае k-битного ключа позволяет сделать вывод, что Twofish может быть подвегнут divide-and-conquer-атаке, хотя такая атака не найдена. Twofish был подвергнут критике за сложность, которая затрудняет его анализ.
1   ...   10   11   12   13   14   15   16   17   ...   58

Похожие:

Министерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций) iconМинистерство образования республики беларусь белорусский государственный...
Книга предназначена для студентов, аспирантов, научных работников. В ней рассматриваются основные положения и понятия современной...
Министерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций) iconМинистерство образования и науки российской федерации томский государственный...
Целью дисциплины является ознакомление студентов с базовыми понятиями следующих разделов информатики: теория информации, технические...
Министерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций) iconМинистерство образования Российской Федерации Санкт Петербургский...
Задачи курса: Изучить основные математические результаты и методы, лежащие в основе метода конечных элементов и других вариационных...
Министерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций) iconМинистерство образования и науки российской федерации правительство...
Правила определяют основные требования технической эксплуатации железной дороги
Министерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций) iconМинистерство образования и науки российской федерации белгородский...
Главного управления мчс россии по Республике Тыва и структурных подразделений по согласованию с Министерством образования и науки...
Министерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций) iconПрограмма по формированию навыков безопасного поведения на дорогах...
Министерство образования и науки Российской Федерации новосибирский государственный университет экономики и управления – «нинх»
Министерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций) iconМинистерство образования Российской Федерации Санкт Петербургский...
Определение высоковольтной проводимости и конвективного механизма тока. Знакомство с эгд-технологиями и устройствами. Особенности...
Министерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций) iconОсновная образовательная программа высшего профессионального образования...
«Новосибирский национальный исследовательский государственный университет» (Новосибирский государственный университет, нгу)
Министерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций) iconОбразования Российской Федерации томский государственный университет...
Алгоритм построения совокупной модели пересечения трехмерных объектов, 3ds формат, dll, плагин для 3ds max
Министерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций) iconКурс лекций по истории и философии науки утверждено Редакционно-издательским...
Глотова В. В. Краткий курс лекций по истории и философии науки: учеб пособие / В. В. Глотова. Воронеж: фгбоу впо «Воронежский государственный...
Министерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций) iconМинистерство образования и науки российской федерации государственное...
Рабочая программа учебной дисциплины «Управление стоимостью предприятия в сфере эксплуатации недвижимости» составлена в соответствии...
Министерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций) iconРеферат по курсу медицинской энтомологии Тема: лихорадка паппатачи
«Новосибирский национальный исследовательский государственный университет» (Новосибирский государственный университет, нгу)
Министерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций) iconРеферат по курсу энтомологии студентка медф гр. 13451. 1
«Новосибирский национальный исследовательский государственный университет» (Новосибирский государственный университет, нгу)
Министерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций) iconМинистерство образования и науки российской федерации фбгоу впо «Марийский...
Наименование результата: монография «Лингводидактика поликультурного образования»
Министерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций) iconПервый Московский государственный медицинский университет имени И....
Элективный курс предназначен для учащихся 9 классов общеобразовательных учреждений. Курс основан на знаниях и умениях, полученных...
Министерство образования и науки РФ новосибирский государственный университет физический факультет Кафедра физико-технической информатики проблемы безопасности в информационных технологиях (курс лекций) iconМинистерство образования и науки российской федерации томский государственный...
Государственное общеобразовательное учреждение-средняя общеобразовательная школа


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск