Реферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича»





НазваниеРеферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича»
страница5/7
Дата публикации29.04.2015
Размер0.66 Mb.
ТипРеферат
100-bal.ru > Информатика > Реферат
1   2   3   4   5   6   7

Верхний  уровень  автоматизации




   нижний   уровень   автоматизации




Рисунок 4.1 – Структура системы автоматизации


Таблица 4.1 – Условные обозначения технических средств на структурной схеме контроля и автоматизации

Обозначение

Наименование




1

2

Д

С

СУ

ИЦ

ИА

Датчик-преобразователь

Сигнализатор значений параметров процесса

Станции управления исполнительными механизмами

Индикатор цифровой

Индикатор аналоговый

Продолжение таблицы 4.1


1

2

Р

РА

КА

ЗД

ПР

ВЗУ

ВВУ

УП

ВТ

ПРВ

ДС

ПГС

УСО

Регуляторы

Регистр аналоговый

Командо-аппарат

Задатчик

Процессор

Внешнее запоминающее устройство

Вводно-выводное устройство

Устройство печати

Видеотерминал

Пульт ручного ввода данных

Диспетчерская связь

Производственная громкоговорящая связь

Устройство связи с объектом

Таблица 4.2 – Условные обозначения функций системы автоматизации

Обозначение

Наименование

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Контроль параметров

Дистанционное управление исполнительным механизмом

Измерения

Контроль и сигнализация значений параметров

Стабилизация параметров

Выбор режима работы регулятора

Ручной ввод данных

Регистрация параметров

Расчет ТЭП

Учет производства и составление данных в смену

Диагностика технологических линий

Распределение технологических линий

Оптимизация отдельных техпроцессов

Анализ состояния техоборудования

Прогнозирование основных показателей производства

Оценка работы смены

Контроль выполнения плановых заданий

Контроль проведения ремонтов

Подготовка, выдача информации в АСУ ТП

Получение производственных ограничений от АСУ ТП


5 ФУНКЦИОНАЛЬНАЯ СХЕМА АВТОМАТИЗАЦИИ

 

Функциональная схема автоматизации – основная схема проекта и показывает функционально-блочную структуру управления, а также степень оснащения объекта управления устройствами контроля и управления.

На функциональной схеме в дипломном проекте изображена система автоматизации процесса спекания агломерата на агломерационной фабрике ОАО «ММК им. Ильича» (лист 3). 

В соответствии с поставленными задачами разработаны контуры:

-     автоматического контроля температуры в зажигательном горне;

-     автоматического регулирования температуры в зажигательном горне;

-     автоматического контроля температуры в коллекторе спекания;

-     автоматического контроля температуры в коллекторе охлаждения;

-     автоматического контроля температуры природного газа на аглокорпус;

-     автоматического контроля температуры в вакуумкамерах №16-21, 31;

-     автоматического контроля и регулирования законченности процесса спекания;

-     автоматического контроля температуры отходящих газов перед эксгаустером;

-     автоматического контроля температуры отходящих газов перед скрубберами;

-     автоматического контроля разрежения перед эксгаустером;

-     автоматического контроля разрежения в коллекторе спекания;

-     автоматического контроля разрежения в коллекторе охлаждения;

-     автоматического контроля разрежения в вакуумкамерах №1-17;

-     автоматического контроля давления природного газа в горн;

-     автоматического контроля давления воздуха в горн;

-     автоматического контроля расхода природного газа в горн;

-     автоматического контроля расхода природного газа на аглокорпус;

-     автоматического контроля расхода воздуха в горн;

-     автоматического регулирования соотношения «топливо-воздух»;

-     автоматического контроля уровня шихты в промбункере;

-     автоматического контроля скорости аглоленты;

-     аварийной сигнализации агломашины.

Рассмотрим более подробно разработанные контуры.

Контур автоматического контроля температуры в зажигательном горне: измерение температуры осуществляется первичным пирометрическим преобразователем ППТ121-01 (поз.1-1), с которого сигнал поступает на вторичный измерительный преобразователь ПВ-0 (поз.1-2), который выдает стандартный сигнал 0-5 мА на вторичный регистрирующий прибор Диск-250-1121 (поз.1-3) и на микроконтроллер Symatic S7-300. С микроконтроллера сигнал поступает в ЭВМ.

Контур автоматического контроля температуры в коллекторе спекания: сигнал с термоэлектрического преобразователя ТХК-1087 (поз.4-1) поступает на вторичный регистрирующий прибор Диск-250-1121 (поз.4-2), на микроконтроллер и на ЭВМ.

Расположение приборов в контурах автоматического контроля температуры в коллекторе охлаждения, температуры природного газа на аглокорпус, температуры в вакуумкамерах №16-21, 31, температуры отходящих газов перед эксгаустером и перед скрубберами аналогично контуру контроля температуры в коллекторе спекания.

Контур автоматического контроля разрежения перед эксгаустером, в коллекторе спекания и коллекторе охлаждения, вакуумкамерах №1-17 осуществляется с помощью измерительного преобразователя разряжения «САПФИР-22М-ДВ», сигнал с которых поступает на вторичный регистрирующий прибор Диск-250-1121, на микроконтроллер и на ЭВМ.

Контур автоматического контроля давления природного газа и воздуха в горн: состоит из датчика-реле напора ДН-40 (поз.22-1, 23-1), преобразователь МЕТРАН-45 (поз.22-2, 23-2) и вторичного регистрирующего прибора Диск-250 (поз.22-3, 23-3). Кроме того сигнал поступает на микроконтроллер и на ЭВМ. Здесь работает аварийная сигнализация: при ослаблении давления газа срабатывает звуковая или световая сигнализация, а затем останавливается работа машины.

Контур автоматического контроля расхода воздуха, природного газа в горн и на аглокорпус абсолютно одинаковы по составу приборов: диафрагма (поз.  24-1, 25-1, 26-1), преобразователь измерительный разности давлений «САП-ФИР-22М-ДД-2410» (поз. 24-2, 25-2, 26-2), блок извлечения корня БИК-1,1 (поз.24-3, 25-3, 26-3), вторичный регистрирующий прибор Диск-250-1121 (поз.24-4, 25-4, 26-4), выходной сигнал с которого поступает на микроконтроллер Symatic S7-300 и на ЭВМ.

Контур автоматического контроля скорости агломашины: состоит из тахогенератора постоянного тока ТГМ-30 (поз.28-1), сигнал с которого поступает на микроконтроллер и на ЭВМ.

Контур автоматического контроля уровня шихты в промбункере: состоит из датчика уровня (поз. 27-1), сигнал с которого поступает на измерительный преобразователь ЭП-8007 (поз.27-2), а затем на вторичный регистрирующий прибор Диск-250-1121 (поз. 27-3), выходной сигнал поступает на микроконтролер Symatic S7-300 и на ЭВМ.

Аварийная сигнализация агломашины осуществляется следующим образом: при падении разрежения в коллекторе спекания или давления природного газа, воздуха при подаче в горн ниже допустимого, происходит звуковая сигнализация при переключении кнопочно переключателя КЕ-011 на звонок МЗ-1, либо световая сигнализация, при переключении на световое табло ТСМ.

Далее приводятся основные параметры выбранных модулей микроконтроллера Simatic S7-300.

Блок питания PS 307 1В сконструирован для подключения к линейному напряжению 120/230 В переменного тока и снабжает вторичную сторону напряжением 5 В постоянного тока  4 А и 24 В постоянного тока 0,5 А.

Входное напряжение:

- номинальное значение           ~120/230 В;

- допустимые диапазоны                   от 85 до 132 В от 170 до 264 В.
частота питающей сети:

- номинальное значение           50/60 Гц;

- допустимый диапазон           от 47 до 63 Гц.

- при 120 В перем. тока           0,55 А;

- при 230 В перем. тока           0,31 А.

Выходные напряжения:

- номинальное значение           5,1 В / 24 В;

- допустимые диапазоны                   5 В: +2% / -0,5%; 24 В: ±5%;

Выходные токи                        5 В: 4 А; 24 В: 0,5 А.

Блок питания PS 307 1Е сконструирован для подключения к линейному напряжению 120/230 В переменного тока и снабжает вторичную сторону напряжением 5 В постоянного тока 10 А и 24 В постоянного тока 1 А.

Входное напряжение:

- номинальное значение           ~120/230 В;

- допустимые диапазоны                   от 85 до 132 В от 170 до 264 В.
частота питающей сети:

- номинальное значение           50/60 Гц;

- допустимый диапазон           от 47 до 63 Гц.

Номинальный входной ток:

- при 120 В                               1,14 А;

- при 230 В                               0,57 А.

Выходные напряжения:

- номинальное значение           5,1 В / 24 В;

- допустимые диапазоны                   5 В: +2% / -0,5%; 24 В: ±5%;

Выходные токи                        5 В: 10 А; 24 В: 1,0 А.

Таблица 5.2 – Технические характеристики CPU 315-2DP

Процессор

Pentium 120 МГц

Возможность расширения памяти

16 Мбайт

Напряжение питания

3,3 В

Кэш второго уровня

250 Кбайт

Номинальное напряжение

5 В пост. тока  (от 4,75 до 5,25 В пост.тока)

Типовое потребление тока

3,0 А

Максимально допустимое потребление тока

3,5А

Максимально допустимые потери мощности

17,5 Вт

Максимально допустимые потери мощности с интерфейсными субмодулями

20,5 Вт

Рабочая память

0,8 Мбайт или 1,6 Мбайт (встроенная)

Загрузочная память

16 Кбайт (встроенная)

Размер отображения процесса, входы и выходы

512 байт

Область адресов входов/выходов

16 Кбайт

Цифровые входы/выходы

Аналоговые входы/выходы

131072

8192

Таблица 5.3 – Технические характеристики интерфейсных модулей          IM 153-1

Потребление тока из шины S7-300 5 В пост.тока IM 153-1

Тип. 100 мА

Макс. 120 мА

Потери энергии IM 153-1

Тип. 500 мВт

Макс. 600 мВт

Источник питания для устройства расширения

5 В / 5 А на цепь

Повторитель RS 485 усиливает сигналы данных на линиях шины и связывает шинные сегменты между собой.

Таблица 5.4 – Технические данные повторителя R 485

Источник питания:

-     номинальное напряжение

-     пульсация

24 В пост.тока

от 18 пост.тока до 30 пост.тока

Потребление тока при номинальном напряжении:

-     без нагрузки в разъеме PG/OP

-     нагрузка в разъеме PG/OP (5В/90мА)

-     нагрузка в разъеме PG/OP (24В/100мА)

100 мА

130 мА

200 мА

Скорость передачи

от 9,6 кбит/с до 12 Мбит/с

Таблица 5.5 – Технические данные памяти

Наименование

Потребление тока при 5 В

Токи при буферизации

МС 952 / 64 Кбайт / RAM

тип. 20 мА

макс. 50 мА

тип. 0,5 мкА

макс. 20 мкА

MC 952 / 64 Кбайт / 5 В флэш

тип. 15 мА

макс. 35 мА

-

Таблица 5.6 – Модуль ввода дискретных сигналов SM 321 (16 входов)

Количество входов, которые могут управляться одновременно

16

Потребление тока и шины S7-400 (5 В пост.тока)

макс. 150 мА

тип. 100 мА

Данные для выбора датчика

Входное напряжение

Номинальное значение

от 24 до 60 VUC

Для сигнала «1»

от 15 до 72 VDC

от –15 до –72 VDC

от 15 до 60 VAC

Для сигнала «0»

от –6 до +6 VDC

от 0 до 5 VAC

Диапазон частот для сигналов переменного тока

от 47 до 63 Гц

Входной ток при сигнале «1»

от 4 до 10 мА

Таблица 5.7 – Модуль ввода аналоговых сигналов SM 331 (8 входов)

Диапазон измерения напряжения

± 80 мВ,± 250 мВ,± 500 мВ,

± 1 В, ± 2,5 В, ± 5 В, ± 10 В,

от 1 до 5 В

Диапазон измерения тока для 4-х проводных преобразователей

от 0 до 20 мА, от 4 до 20 мА,

± 20 мА

Диапазон измерения тока для 2-х проводных преобразователей

от 4 до 20 мА

Модуль аналогового вывода SM 332:

-  4 выходов;

-  разрешающая способность 13 бит;

-  выходные диапазоны для напряжения;

-  выходные диапазоны для тока;

-  напряжение питания: 24 В пост.тока.

Таблица 5.8 – Модуль аналогового вывода SM 332

Выходной диапазон (номинальные значения)

± 10 В

от 0 до 10 В

от 1 до 5 В

± 20 мА

от 0 до 20 мА

от 4 до 20 мА

Модуль с релейным выходом SM 332:

-    8 выходов;

-    номинальное выходное напряжение: до 230 В перем.тока / 125 В пост. тока

Таблица 5.9 – Модуль аналогового вывода SM 332

Номинальное напряжение на L+

Допустимый диапазон

от 5 до 264 В перем. тока

от 5 до 125 В пост.тока

Суммарный ток выходов (на группу)

до 40˚С

до 60 ˚С

Без вент. / с вентил.

10 А / 10 А

5 А / 10 А

Допустимая разность потенциалов

между группами

на стороне процесса/стороне управления

500 В перем.тока

1500 перем.тока

Тип контакта

Вид А

Сопротивление контакта

Макс. 100 Ом

Минимальный ток нагрузки

10 мА

Потери мощности модуля

тип. 4,5 Вт, макс. 25 Вт

В качестве ЭВМ выбран Pentium III-650, 17’’ SVGA, 128 Mb, который прошел промышленное испытание. Для вывода на печать данных выбран широкоформатный принтер Epson FX-1880.
6 СПЕЦИАльная часть диплома

 

В специальной части диплома разрабатываются основные контуры по регулированию процессом спекания аглошихты на агломашине. Проектируется контур управления процессом зажигания в горне, так как от температуры в зоне горения зависит качество спекания шихты. При рассмотрении технологии производства было выяснено, что скорость движения ленты на машине оказывает существенное влияние на законченность процесса спекания. Поэтому, разработан контур по регулированию скорости агломашины или законченностью спекания. На горение оказывает влияние также и расход природного газа и воздуха. Учитывая это, разработан контур по регулированию соотношения «топливо-воздух», который также является немаловажным по своей значимости в процессе спекания.

 

6.1 Разработка контура регулирования температуры

 в зажигательном горне

Основной контур в системе автоматизации - контур контроля и регулирования температуры в зажигательном горне. Рассмотрим его работу подробнее.

Измерение температуры осуществляется первичным пирометрическим преобразователем ППТ-121 (поз.1-1), с которого сигнал поступает на вторичный измерительный преобразователь ПВ-0 (поз.1-2), который выдает стандартный сигнал 0-5 мА на вторичный регистрирующий прибор Диск-250-1121 (поз.1-3) и на микроконтроллер Symatic S7-300. С микроконтроллера сигнал поступает в ЭВМ. После обработки поступившего сигнала в соответствии с заданным алгоритмом ЭВМ вырабатывает задание для микроконтроллера, при этом в системе предусмотрен переключатель ПМОФ-45 (поз.1-5), позволяющий подавать задание на микроконтроллер либо с ручного задатчика РЗД-22 (поз.  1-4), либо с ЭВМ. Заданное значение индуцируется миллиамперметром М1730 (поз.1-6) и поступает на вход микроконтроллера. На основании полученного задания микроконтроллер вырабатывает управляющее воздействие, которое с выхода микроконтроллера поступает на БРУ-32 (поз.1-7), затем на пускатель ФЦ-0611 (поз.1-8) и на исполнительный механизм МЭО-250/63 (поз.1-9), который управляет клапаном подачи природного газа в горн (поз.1-10). Кроме того на микроконтроллер заводится сигнал о положении регулирующего органа. Регулирование можно осуществлять в трех режимах: автоматическом режиме – когда заданное значение поступает с ЭВМ; режиме локальной автоматики – когда заданное значение поступает с задатчика, если ЭВМ выйдет из строя или с ней будет нарушена связь; режиме ручного управления – когда микроконтроллер выходит из строя и управляющее воздействие подается с помощью блока ручного управления.

6.2   Разработка контура регулирования законченностью

процесса спекания

 

Не менее важным является контур автоматического контроля и регулирования законченностью процесса спекания на агломашине. Он состоит из термоэлектрических преобразователей ТХК-1087 установленных в вакуум-камерах №16-21, 31 (поз.10-1,…13-1), с которых сигнал поступает на 12-ти канальный регистрирующий и показывающий прибор ФЩЛ 501 (поз.7-2) и на микроконтроллер Symatic S7-300. С микроконтроллера сигнал поступает в ЭВМ. После обработки поступившего сигнала в соответствии с заданным алгоритмом ЭВМ вырабатывает задание для микроконтроллера, при этом в системе предусмотрен переключатель ПМОФ-45 (поз.7-4), позволяющий подавать задание на микроконтроллер либо с ручного задатчика РЗД-22 (поз.7-3), либо с ЭВМ. Заданное значение индуцируется миллиамперметром М1730 (поз.7-5) и поступает на вход микроконтроллера. На основании полученного задания микроконтроллер вырабатывает управляющее воздействие, которое с выхода микроконтроллера поступает на БРУ-32 (поз.7-6), затем на тиристорный усилитель ФЦ-0611 (поз.7-7). Дальнейшее управление осуществляется согласно электрическим схемам управления электродвигателем.  Регулирование можно осуществлять в трех режимах: автоматическом режиме – когда заданное значение поступает с ЭВМ; режиме локальной автоматики – когда заданное значение поступает с задатчика, если ЭВМ выйдет из строя или с ней будет нарушена связь; режиме ручного управления – когда микроконтроллер выходит из строя и управляющее воздействие подается с помощью блока ручного управления.

6.3   Разработка контура регулирования соотношением

«топливо-воздух»

 

Важным параметром, влияющим на процесс спекания, является расход воздуха и природного газа на горение, поэтому проектируется контур автоматического контроля и регулирования соотношением топливо-воздух. Он состоит из двух стандартных комплектов для измерения расхода методом переменного перепада – диафрагмы, преобразователя разности давлений «САПФИР-22М-ДД» (поз.24-2, 26-2) и блока извлечения корня БИК (поз.24-3, 26-3). Комплекты установлены на трубопроводах воздуха и природного газа. Сигналы поступают на вторичные регистрирующие приборы Диск-250-1121 (поз.24-4, 26-4) и на микроконтроллер Symatic S7-300. С микроконтроллера сигнал поступает в ЭВМ. После обработки поступившего сигнала в соответствии с заданным алгоритмом ЭВМ вырабатывает задание для микроконтроллера, при этом в системе предусмотрен переключатель ПМОФ-45 (поз.26-6), позволяющий подавать задание на микроконтроллер либо с ручного задатчика РЗД-22 (поз.26-5), либо с ЭВМ. Заданное значение индуцируется миллиамперметром М1730 (поз.26-7) и поступает на вход микроконтроллера. На основании полученного задания микроконтроллер вырабатывает управляющее воздействие, которое с выхода микроконтроллера поступает на БРУ-32 (поз.26-8), затем на пускатель ФЦ-0611 (поз.26-9) и на исполнительный механизм МЭО-250/63 (поз.26-10), который управляет клапаном подачи природного газа в горн. Кроме того на микроконтроллер заводится сигнал о положении регулирующего органа. Регулирование можно осуществлять в трех режимах: автоматическом режиме – когда заданное значение поступает с ЭВМ; режиме локальной автоматики – когда заданное значение поступает с задатчика, если ЭВМ выйдет из строя или с ней будет нарушена связь; режиме ручного управления – когда микроконтроллер выходит из строя и управляющее воздействие подается с помощью блока ручного управления.

6.4   Проектирование принципиальной электрической схемы контура                     регулирования соотношением «топливо-воздух»

Принципиальная электрическая схема – это схемная реализация отдельных контуров функциональной схемы автоматизации. В этой схеме описывается полный состав всех приборов и технических средств, которые входят в данный контур, а также все линии связи между ними.

Принципиальная электрическая схема является одной из наиболее важных схем для работников службы КИПиА, а также других служб связанных с обслуживанием агрегата.

В схеме используются стандартные по ГОСТ приборы, которые работают на стандартных сигналах, что облегчает настройку и ремонт, поверку, наладку и т.д.

Основываясь на функциональной схеме, разработана принципиально-электрическая схема (лист 4 графической части проекта) контура регулирования соотношением «топливо-воздух», основного в управлении качеством процесса спекания аглошихты.

Рассмотрим подключение приборов контура. Расход природного газа и воздуха осуществляется методом переменного перепада с помощью диафрагмы, сигнал с которой преобразователем разности давлений «САПФИР-22М-ДД» (поз.24-2, 26-2) преобразуется в токовый 5 мА. Питание 36 В преобразователям обеспечивает блок питания 22-БП-36. Сигнал 5 мА с САПФИР-22М-ДД поступает на БИК-1,1 (поз.24-3, 26-3), который преобразует и отправляет сигнал 5 мА на регистрирующий прибор Диск-250-1121 (поз.24-4, 26-4) против обрыва цепи на его клеммные колодки  устанавливаются стабилитроны VD. С Диск-250 и БИК-1,1 сигнал 5 мА подается на микроконтроллер Symatic S7-300. Задатчик РЗД-22 (поз.26-5) вырабатывает управляющий сигнал, который поступает на пакетный переключатель ПМОФ-45 (поз.26-6). Переключатель в зависимости от сигнала (от задатчика или от УВК) осуществляет переключение сигнала на соответствующие соединения. С помощью ручного задатчика М-1730 (поз.26-7) можно задать необходимое значение регулируемого параметра в ручную. С миллиамперметра и переключателя сигнал 5 мА поступает на блок ввода аналоговых сигналов SM 331 микроконтроллера Symatic S7-300.

Микроконтроллер Symatic S7-300  обрабатывает сигналы полученные с задатчика либо с миллиамперметра сравнивает с текущими значениями и вырабатывает управляющий сигнал, который подается на БРУ-32 (поз.26-8). Блок ручного управления БРУ-32 связан через клеммы 19, 29 с пускателем ФЦ-0510 (поз.26-9). Пускатель осуществляет регулирование исполнительным механизмом МЭО-250/63 (поз.26-10), который активизирует регулирующий орган, в нашем случае заслонку на газопроводе, подающем воздух. Блок питания БПИ-24 обеспечивает питание микроконтроллеру и БРУ-32. Для исполнительного механизма МЭО-250/63 подключен блок питания БП-10.

6.5   Проектирование щита КИП и А контура регулирования

соотношением «топливо-воздух»

Щит контроля и управления необходим для оперативного вмешательства персонала в работу системы, а также для выдачи соответствующей информации. На нем располагаются средства контроля, управления и сигнализации.

Исходным чертежом, по которому составляется общий вид щита контроля и управления, является функциональная схема автоматизации. На щите размещается вся аппаратура, которая указана на функциональной схеме.

В дипломном проекте используется щит, состоящий из 6 панелей. В качестве щитов используются стандартные изделия: щиты панельные плоские ЩПП размером 2200х1000 и 2200х600.

В графической части дипломного проекта рассмотрена панель 4, на которой расположены следующие приборы: вторичный регистрирующий прибор Диск-250-1121 (поз.26-4), миллиамперметр М1730 (поз.26-7), ручной задатчик РЗД-22 (поз.26-5), переключатель ПМОФ-45 (поз.26-6),  блок ручного управления БРУ-32 (поз.26-8).

6.6   Проектирование монтажно-коммутационной схемы контура

регулирования соотношением «топливо-воздух»

Монтажно-коммутационная схема щита проектируется исходя из принципиально-электрической схемы и общего вида щита. На ней отображаются все вторичные приборы и другие средства автоматизации. Связь между приборами производиться как путем соединения напрямую контактов технических средств проводкой, так и при помощи клеммных колодок, что дает преимущество при модернизации щита или замене отдельных технических средств.

Также на монтажно-коммутационной схеме показана связь всех приборов расположенных на щите с приборами и техническими средствами вне щита, т.е. устройства ввода в щиты внешних электрических и трубных проводок, а также их присоединение к внутренней проводке щитов. В частности показана связь с исполнительным механизмом, микроконтроллером, щитом блоков питания и преобразователей.

Чертежи монтажно-коммутационных схем щитов необходимы для выполнения электрической и трубной коммутации приборов и средств автоматизации в пределах щита. Монтажные схемы выполняют в виде отдельных чертежей для каждой панели щита.

В графической части дипломного проекта (лист 7) выполнен чертеж панели №4. На этой схеме отображаются клеммники на десять клемм для соединения приборов между собой и клеммники на 6 клемм для подсоединения питающего напряжения. Приборы на монтажно-коммутационной схеме размещаются так, как они будут размещены на обратной стороне щита. Линии и связи нумеруются так же, как и на принципиально-электрической схеме. Отображается без масштаба.
6.7  Математическая модель

 
1   2   3   4   5   6   7

Похожие:

Реферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича» iconРеферат Пояснительная записка содержит: 90 стр., 53 рис., 26 табл., 12 источников информации
Телефонная сеть, оборудование связи, программный комплекс, база данных, клиентское приложение, паспортно-отчетная документация
Реферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича» iconФедеральное государственное образовательное учреждение высшего профессионального образования
Отчет о нир 65 с., 2 рис., 1 табл., приложений 2, источников использованной литературы 58
Реферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича» iconФедеральное государственное образовательное учреждение высшего профессионального образования
Отчет о нир 65 с., 2 рис., 1 табл., приложений 2, источников использованной литературы 58
Реферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича» iconФедеральное государственное образовательное учреждение высшего профессионального образования
Отчет о нир 65 с., 2 рис., 1 табл., приложений 2, источников использованной литературы 58
Реферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича» iconРеферат Дипломный проект  137 с., 49 рис., 33 табл., 23 источников
...
Реферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича» iconРеферат Отчет 99 с., 7 ч., 47 рис., 28 табл., 26 источников
Проект направлен на изучение термодинамической стабильности, структуры и свойств минеральных фаз, содержащих радиоактивные и токсичные...
Реферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича» iconРеферат 89 стр., 4 рис., 1 табл., 69 источников регион, промышленность,...
Цель работы исследование форм, методов и механизмов формирования и реализации региональной промышленной политики в современных российских...
Реферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича» iconРеферат Отчет с. 22, рис., 3 табл
Объектом исследования являлись системы централизованного водоснабжения мо г п. Одоев
Реферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича» iconРеферат Отчет 35 с., 3 главы, 16 рис., 1 табл., 12 источников, 5 прил
Объектом разработки является программа восстановления каркасных 3D объектов по 2D проекциям
Реферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича» iconРеферат (21с., 3 рис., 2 табл.)
Объектом исследования являлись системы централизованного и локального водоотведения мо ломинцевское
Реферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича» iconРеферат (18 стр., рис., 3 табл.)
Объектом исследования являлись системы централизованного и локального водоотведения мо ракитинское
Реферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича» iconРеферат. Отчет…23с., рис., 4 табл
Объектом исследования являлись системы централизованного и локального водоотведения мо кожинское
Реферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича» iconРеферат Дипломный проект 117 с., 15 рис., 19 табл., 39 источников
Цель работы – детальная разработка пункта технического обслуживания электровозов с комплексной механизацией
Реферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича» iconРеферат Пояснительная записка 100 стр., 18 рис., 15 табл., 1 прил., 15библ
...
Реферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича» iconРеферат Тычинин И. А. Разработка приложения для портативных устройств...
Тычинин И. А. Разработка приложения для портативных устройств с использованием qt framework, квалификационная работа на степень бакалавра...
Реферат Пояснительная записка: с., рис., табл., приложений, источников. Объект исследования процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ммк им. Ильича» iconРеферат Дипломный проект с. 114, рис. 4, табл. 17, источников 15, прил. 4
Целью работы является проектирование основного электровозного депо пассажирских электровозов постоянного тока серии чс


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск