Архитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна





НазваниеАрхитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна
страница3/11
Дата публикации26.08.2013
Размер1.52 Mb.
ТипУчебный курс
100-bal.ru > Информатика > Учебный курс
1   2   3   4   5   6   7   8   9   10   11

Для того чтобы оценить эффективность работы вычислительной системы на реальных задачах, был разработан фиксированный набор тестов. Наиболее известным из них является LINPACK – программа, предназначенная для решения системы линейных алгебраических уравнений с плотной матрицей с выбором главного элемента по строке. LINPACK используется для формирования списка Top500 – пятисот самых мощных компьютеров мира. Однако LINPACK имеет существенный недостаток: программа распараллеливается, поэтому невозможно оценить эффективность работы коммуникационного компонента суперкомпьютера.

В настоящее время большое распространение получили тестовые программы, взятые из разных предметных областей и представляющие собой либо модельные, либо реальные промышленные приложения. Такие тесты позволяют оценить производительность компьютера действительно на реальных задачах и получить наиболее полное представление об эффективности работы компьютера с конкретным приложением.

Наиболее распространенными тестами, построенными по этому принципу, являются: набор из 24 Ливерморских циклов (The Livermore Fortran Kernels, LFK) и пакет NAS Parallel Benchmarks (NPB), в состав которого входят две группы тестов, отражающих различные стороны реальных программ вычислительной гидродинамики. NAS тесты являются альтернативой Linpack, поскольку они относительно просты и в то же время содержат значительно больше вычислений, чем, например, Linpack или LFK.

Однако при всем разнообразии тестовые программы не могут дать полного представления о работе компьютера в различных режимах. Поэтому задача определения реальной производительности многопроцессорных вычислительных систем остается пока нерешенной.

Лекция №2

Архитектура вычислительных систем. Классификация архитектур по параллельной обработке данных.

Чтобы дать более полное представление о многопроцессорных вычислительных системах, помимо высокой производительности необходимо назвать и другие отличительные особенности. Прежде всего, это необычные архитектурные решения, направленные на повышение производительности (работа с векторными операциями, организация быстрого обмена сообщениями между процессорами или организация глобальной памяти в многопроцессорных системах и др.).

Понятие архитектуры высокопроизводительной системы является достаточно широким, поскольку под архитектурой можно понимать и способ параллельной обработки данных, используемый в системе, и организацию памяти, и топологию связи между процессорами, и способ исполнения системой арифметических операций. Попытки систематизировать все множество архитектур впервые были предприняты в конце 60-х годов и продолжаются по сей день.

В 1966 году М.Флинном (Flynn) был предложен чрезвычайно удобный подход к классификации архитектур вычислительных систем. В его основу было положено понятие потока, под которым понимается последовательность элементов, команд или данных, обрабатываемая процессором. Соответствующая система классификации основана на рассмотрении числа потоков инструкций и потоков данных и описывает четыре архитектурных класса:

SISD = Single Instruction Single Data 
MISD = Multiple Instruction Single Data 
SIMD = Single Instruction Multiple Data 
MIMD = Multiple Instruction Multiple Data) 


SISD (single instruction stream / single data stream) - одиночный поток команд и одиночный поток данных. К этому классу относятся последовательные компьютерные системы, которые имеют один центральный процессор, способный обрабатывать только один поток последовательно исполняемых инструкций. В настоящее время практически все высокопроизводительные системы имеют более одного центрального процессора, однако каждый из них выполняет несвязанные потоки инструкций, что делает такие системы комплексами SISD-систем, действующих на разных пространствах данных. Для увеличения скорости обработки команд и скорости выполнения арифметических операций может применяться конвейерная обработка. В случае векторных систем векторный поток данных следует рассматривать как поток из одиночных неделимых векторов. Примерами компьютеров с архитектурой SISD могут служить большинство рабочих станций Compaq, Hewlett-Packard и Sun Microsystems.

MISD (multiple instruction stream / single data stream) - множественный поток команд и одиночный поток данных. Теоретически в этом типе машин множество инструкций должно выполняться над единственным потоком данных. До сих пор ни одной реальной машины, попадающей в данный класс, создано не было. В качестве аналога работы такой системы, по-видимому, можно рассматривать работу банка. С любого терминала можно подать команду и что-то сделать с имеющимся банком данных. Поскольку база данных одна, а команд много, мы имеем дело с множественным потоком команд и одиночным потоком данных.

SIMD (single instruction stream / multiple data stream) - одиночный поток команд и множественный поток данных. Эти системы обычно имеют большое количество процессоров, от 1024 до 16384, которые могут выполнять одну и ту же инструкцию относительно разных данных в жесткой конфигурации. Единственная инструкция параллельно выполняется над многими элементами данных. Примерами SIMD машин являются системы CPP DAP, Gamma II и Quadrics Apemille. Другим подклассом SIMD-систем являются векторные компьютеры. Векторные компьютеры манипулируют массивами сходных данных подобно тому, как скалярные машины обрабатывают отдельные элементы таких массивов. Это делается за счет использования специально сконструированных векторных центральных процессоров. Когда данные обрабатываются посредством векторных модулей, результаты могут быть выданы на один, два или три такта частотогенератора (такт частотогенератора является основным временным параметром системы). При работе в векторном режиме векторные процессоры обрабатывают данные практически параллельно, что делает их в несколько раз более быстрыми, чем при работе в скалярном режиме. Примерами систем подобного типа являются, например, компьютеры Hitachi S3600.

MIMD (multiple instruction stream / multiple data stream) - множественный поток команд и множественный поток данных. Эти машины параллельно выполняют несколько потоков инструкций над различными потоками данных. В отличие от упомянутых выше многопроцессорных SISD-машин, команды и данные связаны, потому что они представляют различные части одной и той же задачи. Например, MIMD-системы могут параллельно выполнять множество подзадач, с целью сокращения времени выполнения основной задачи. Большое разнообразие попадающих в данный класс систем делает классификацию Флинна не полностью адекватной. Действительно, и четырехпроцессорный SX-5 компании NEC, и тысячепроцессорный Cray T3E попадают в этот класс. Это заставляет использовать другой подход к классификации, иначе описывающий классы компьютерных систем. Основная идея такого подхода может состоять, например, в следующем. Будем считать, что множественный поток команд может быть обработан двумя способами: либо одним конвейерным устройством обработки, работающем в режиме разделения времени для отдельных потоков, либо каждый поток обрабатывается своим собственным устройством. Первая возможность используется в MIMD-компьютерах, которые обычно называют конвейерными или векторными, вторая – в параллельных компьютерах. В основе векторных компьютеров лежит концепция конвейеризации, т.е. явного сегментирования арифметического устройства на отдельные части, каждая из которых выполняет свою подзадачу для пары операндов. В основе параллельного компьютера лежит идея использования для решения одной задачи нескольких процессоров, работающих сообща, причем процессоры могут быть как скалярными, так и векторными.

Классификация архитектур вычислительных систем нужна для того, чтобы понять особенности работы той или иной архитектуры, но она не является достаточно детальной, чтобы на нее можно было опираться при создании МВС, поэтому следует вводить более детальную классификацию, которая связана с различными архитектурами ЭВМ и с используемым оборудованием.
Лекция №3

Архитектура вычислительных систем. SMP и MPP архитектуры. Гибридная архитектура (NUMA). Организация когерентности многоуровневой иерархической памяти.

SMP архитектура (symmetric multiprocessing) - симметричная многопроцессорная архитектура. Главной особенностью систем с архитектурой SMP является наличие общей физической памяти, разделяемой всеми процессорами.

Память служит, в частности, для передачи сообщений между процессорами, при этом все вычислительные устройства при обращении к ней имеют равные права и одну и ту же адресацию для всех ячеек памяти. Поэтому SMP-архитектура называется симметричной. Последнее обстоятельство позволяет очень эффективно обмениваться данными с другими вычислительными устройствами. SMP-система строится на основе высокоскоростной системной шины (SGI PowerPath, Sun Gigaplane, DEC TurboLaser), к слотам которой подключаются функциональные блоки типов: процессоры (ЦП), подсистема ввода/вывода (I/O) и т.п. Для подсоединения к модулям I/O используются уже более медленные шины (PCI, VME64). Наиболее известными SMP-системами являются SMP-cерверы и рабочие станции на базе процессоров Intel (IBM, HP, Compaq, Dell, ALR, Unisys, DG, Fujitsu и др.) Вся система работает под управлением единой ОС (обычно UNIX-подобной, но для Intel-платформ поддерживается Windows NT). ОС автоматически (в процессе работы) распределяет процессы по процессорам, но иногда возможна и явная привязка.

Основные преимущества SMP-систем:

  • простота и универсальность для программирования. Архитектура SMP не накладывает ограничений на модель программирования, используемую при создании приложения: обычно используется модель параллельных ветвей, когда все процессоры работают независимо друг от друга. Однако можно реализовать и модели, использующие межпроцессорный обмен. Использование общей памяти увеличивает скорость такого обмена, пользователь также имеет доступ сразу ко всему объему памяти. Для SMP-систем существуют довольно эффективные средства автоматического распараллеливания.

  • простота эксплуатации. Как правило, SMP-системы используют систему кондиционирования, основанную на воздушном охлаждении, что облегчает их техническое обслуживание.

  • относительно невысокая цена.

Недостатки:

  • системы с общей памятью плохо масштабируются.

Этот существенный недостаток SMP-систем не позволяет считать их по-настоящему перспективными. Причиной плохой масштабируемости является то, что в данный момент шина способна обрабатывать только одну транзакцию, вследствие чего возникают проблемы разрешения конфликтов при одновременном обращении нескольких процессоров к одним и тем же областям общей физической памяти. Вычислительные элементы начинают друг другу мешать. Когда произойдет такой конфликт, зависит от скорости связи и от количества вычислительных элементов. В настоящее время конфликты могут происходить при наличии 8-24 процессоров. Кроме того, системная шина имеет ограниченную (хоть и высокую) пропускную способность (ПС) и ограниченное число слотов. Все это очевидно препятствует увеличению производительности при увеличении числа процессоров и числа подключаемых пользователей. В реальных системах можно задействовать не более 32 процессоров. Для построения масштабируемых систем на базе SMP используются кластерные или NUMA-архитектуры. При работе с SMP-системами используют так называемую парадигму программирования с разделяемой памятью (shared memory paradigm).

MPP архитектура (massive parallel processing) - массивно-параллельная архитектура. Главная особенность такой архитектуры состоит в том, что память физически разделена. В этом случае система строится из отдельных модулей, содержащих процессор, локальный банк операционной памяти (ОП), коммуникационные процессоры (рутеры) или сетевые адаптеры, иногда - жесткие диски и/или другие устройства ввода/вывода. По сути, такие модули представляют собой полнофункциональные компьютеры. Доступ к банку ОП из данного модуля имеют только процессоры (ЦП) из этого же модуля. Модули соединяются специальными коммуникационными каналами. Пользователь может определить логический номер процессора, к которому он подключен, и организовать обмен сообщениями с другими процессорами. Используются два варианта работы операционной системы (ОС) на машинах MPP-архитектуры. В одном полноценная операционная система (ОС) работает только на управляющей машине (front-end), на каждом отдельном модуле функционирует сильно урезанный вариант ОС, обеспечивающий работу только расположенной в нем ветви параллельного приложения. Во втором варианте на каждом модуле работает полноценная UNIX-подобная ОС, устанавливаемая отдельно. 

Главным преимуществом систем с раздельной памятью является хорошая масштабируемость: в отличие от SMP-систем, в машинах с раздельной памятью каждый процессор имеет доступ только к своей локальной памяти, в связи с чем не возникает необходимости в потактовой синхронизации процессоров. Практически все рекорды по производительности на сегодня устанавливаются на машинах именно такой архитектуры, состоящих из нескольких тысяч процессоров (ASCI Red, ASCI Blue Pacific). 

Недостатки:

отсутствие общей памяти заметно снижает скорость межпроцессорного обмена, поскольку нет общей среды для хранения данных, предназначенных для обмена между процессорами. Требуется специальная техника программирования для реализации обмена сообщениями между процессорами;
• каждый процессор может использовать только ограниченный объем локального банка памяти;
• вследствие указанных архитектурных недостатков требуются значительные усилия для того, чтобы максимально использовать системные ресурсы. Именно этим определяется высокая цена программного обеспечения для массивно-параллельных систем с раздельной памятью.


Системами с раздельной памятью являются суперкомпьютеры МВС-1000, IBM RS/6000 SP, SGI/CRAY T3E, системы ASCI, Hitachi SR8000, системы Parsytec.

Машины последней серии CRAY T3E от SGI, основанные на базе процессоров Dec Alpha 21164 с пиковой производительностью 1200 Мфлопс/с (CRAY T3E-1200), способны масштабироваться до 2048 процессоров.

При работе с MPP-системами используют так называемую Massive Passing Programming Paradigm - парадигму программирования с передачей данных (MPI, PVM, BSPlib).

Гибридная архитектура NUMA (nonuniform memory access). Главная особенность такой архитектуры - неоднородный доступ к памяти.

Гибридная архитектура совмещает достоинства систем с общей памятью и относительную дешевизну систем с раздельной памятью. Суть этой архитектуры - в особой организации памяти, а именно: память физически распределена по различным частям системы, но логически она является общей, так что пользователь видит единое адресное пространство. Система построена из однородных базовых модулей (плат), состоящих из небольшого числа процессоров и блока памяти. Модули объединены с помощью высокоскоростного коммутатора. Поддерживается единое адресное пространство, аппаратно поддерживается доступ к удаленной памяти, т.е. к памяти других модулей. При этом доступ к локальной памяти осуществляется в несколько раз быстрее, чем к удаленной. По существу архитектура NUMA является MPP (массивно-параллельной ) архитектурой, где в качестве отдельных вычислительных элементов берутся SMP (cимметричная многопроцессорная архитектура) узлы. Доступ к памяти и обмен данными внутри одного SMP-узла осуществляется через локальную память узла и происходит очень быстро, а к процессорам другого SMP-узла тоже есть доступ, но более медленный и через более сложную систему адресации.

Структурная схема компьютера с гибридной сетью: четыре процессора связываются между собой при помощи кроссбара в рамках одного SMP-узла. Узлы связаны сетью типа "бабочка" (Butterfly):

Впервые идею гибридной архитектуры предложил Стив Волох, он воплотил ее в системах серии Exemplar. Вариант Воллоха - система, состоящая из восьми SMP-узлов. Фирма HP купила идею и реализовала на суперкомпьютерах серии SPP. Идею подхватил Сеймур Крей (Seymour R.Cray) и добавил новый элемент - когерентный кэш, создав так называемую архитектуру cc-NUMA (Cache Coherent Non-Uniform Memory Access), которая расшифровывается как "неоднородный доступ к памяти с обеспечением когерентности кэшей". Он ее реализовал на системах типа Origin.
1   2   3   4   5   6   7   8   9   10   11

Похожие:

Архитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна iconВыпускной вечер 2004г
Владимир Жириновский, Ирина Хакамада и Владимир Владимирович Путин с супругой …не приехали. Но только сегодня и только для вас у...
Архитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна iconПрокопьев Валерий Викторович Методист: Гончаров Владимир Борисович...
Образовательная – дать преставление о составе программного обеспечения компьютера
Архитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна iconРеферат
Вячеслав Геннадьевич, Богославский Дмитрий Дмитриевич, Бодягин Владимир Михайлович, Бодягин Андрей Владимирович, Волков Сергей Денисович,...
Архитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна iconК статьям журнала «Компьютерная оптика»
Юрий Владимирович Микляев3 (доцент, e-mail: ), Владимир Евгеньевич Дмитриенко4 (ведущий научный сотрудник, e-mail: ), Владимир Сергеевич...
Архитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна iconПрезидентская программа подготовки управленческих кадров для организаций...
Авторский коллектив: Владилен Быстров, Александр Кобышев, Евгений Кобышев, Александр Козлов, Владимир Лысков-Штреве
Архитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна iconУрок на тему: «Ансамблевое музицирование в классе баяна, аккордеона»
Проводит лауреат Международных конкурсов, преподаватель рам им. Гнесиных селиванов александр Владимирович
Архитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна iconДиректор школы: Передвигин Владимир Владимирович
Приоритетные цели и задачи развития школы, деятельность по их решению в отчетный период 20
Архитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна iconПрограмма дисциплины Безопасность жизнедеятельности для направления...
Автор программы: к т н., доцент кафедры физического воспитания Полшков Александр Владимирович
Архитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна iconОбщественного объединения «белорусский республиканский союз молодежи»...
Координатор конференции – Председатель Совета молодых ученых нан беларуси Казбанов Владимир Владимирович
Архитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна iconКомаров владимир борисович (10. 05. 1890 08. 10. 1971) Комаров Владимир...
Цели и задачи дисциплины: Дать студентам представление о принципах формирования компьютерного изображения, работы с фото и видео...
Архитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна iconУрок физики в 7 классе по теме «Давление газов, жидкостей и твердых тел»
Разработал учитель физики мбоу «Ладомировская сош» Ломакин Александр Владимирович
Архитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна iconБоб Фьюсел Александр Владимирович Лихач Супермозг. Тренинг памяти, внимания и речи
...
Архитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна iconВладимира Владимировича Набокова 1899-1977
Набо́ков владимир Владимирович (12 (24) апреля 1899, Петербург — 3 июля 1977, Монтре, Швейцария), русский и американский писатель;...
Архитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна iconАлександр Александрович Бушков Владимир Путин. Полковник, ставший капитаном
I. порядок применения правил землепользования и застройки городского округа лыткарино и внесения в них изменений
Архитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна iconТема: Разработка автоматизированного программного комплекса управления...
Омский институт водного транспорта (филиал) фбоу впо «Новосибирская государственная академия водного транспорта»
Архитектуры многопроцессорных вычислительных систем Авторы: Богданов Александр Владимирович Дегтярев Александр Борисович Корхов Владимир Владиславович Мареев Владимир Владимирович Станкова Елена Николаевна iconПрограмма по формированию навыков безопасного поведения на дорогах...
Аббакумов Сергей, Чехлов Александр, Шайдуров Владимир, мбоу инженерный лицей нгту, г. Новосибирск


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск