Интенсификация растворения кольматирующих отложений водозаборных скважин





Скачать 75.78 Kb.
НазваниеИнтенсификация растворения кольматирующих отложений водозаборных скважин
Дата публикации24.11.2014
Размер75.78 Kb.
ТипДокументы
100-bal.ru > Математика > Документы


Интенсификация растворения кольматирующих отложений водозаборных скважин

Ивашечкин В. В., Губин В. В., Шейко А. М., Кондратович А. Н.

Белорусский национальный технический университет
Известный метод химической регенерации фильтров скважин с помощью реагентной ванны и циклического надавливания реагента за контур фильтра [1] не обеспечивает необходимую степень декольматации и сопровождается значительным нахождением реагента в стволе скважины (20-24 часа), что может не благоприятно сказаться на состоянии конструкций фильтра, и привести к загрязнению пласта выпавшими в осадок продуктами растворения.

Поэтому для повышения качества и сокращения времени обработки актуальной является задача интенсификации растворения отложений.

К способам интенсификации процесса растворения относятся: увеличение температуры реагента, интенсивности перемешивания, степени измельчения твердого растворяемого материала, наложение скрещенных магнитных и электрических полей, создание низкочастотных механических колебаний и пульсаций жидкости, высокочастотных звуковых и ультразвуковых колебаний и др. [2]

Кольматирующие отложения скважин накапливаются в перфорации каркаса фильтров, между каркасом и водоприемной поверхностью, в отверстиях и щелях водоприемной поверхности, а также в порах гравийной обсыпки и водоносных пород. Глубина распространения и прочность кольматирующих отложений возрастают с течением времени, поэтому для увеличения скорости растворения необходимо увеличить удельную поверхность кольматанта, а значит и поверхность контакта с реагентом. Этого можно достичь, например, если использовать в качестве источника импульсных возмущений для измельчения отложений подводный взрыв водородно-кислородной газовой смеси (ВКГС) который легко реализуется установкой ГДУ-150 [3]. Последующее интенсивное растворение и удаление из скважины продуктов реакции может быть реализовано в специальном устройстве, спускаемом в зону фильтра.

Поэтому целью работы является изучение способов интенсификации растворения кольматирующих отложений и разработка эффективного устройства для реагентной обработки фильтров скважин.

Методика экспериментов была следующей. В опытах использовалась проба кольматанта, взятого из фильтра скважины №18 «Зеленовка», содержащая 79,5% Fe2O3 по массе, 3,93% SiO2 и ряд других соединений, доля каждого из которых в общей массе составляла менее 0,5%. Кольматанта предварительно высушивался на воздухе и перемешивался. В опытах использовалась 20% HCl, как наиболее эффективный реагент, предварительно подобранный на стадии тестирования [4].

Определенное количества кольматанта подвергалось воздействию реагентной ванны при различных температурах: 15, 17, 42 и 46 С, и также гидродинамическому воздействию от перемешивания в 20% HCl при температурах 17 и 34 С. Время контакта кольматанта и реагента варьировалось от 15 до 12 часов. Степень растворения кольматанта оценивалась по соотношению количества растворенного Fe3+ и теоретически рассчитанного при условии его полного растворения. Теоретическая концентрация Ст ионов железа в растворе реагента определялась по формуле

Cт=S1*S2*m/V

где m – масса пробы; V – объем раствора реагента; S1 - содержание Fe2O3 в единице массы, S1=0,795; S2 - содержание Fe3+ в оксиде железа, S2=0,7.

Количество реагента брали не мене чем с 30% избытком исходя из уравнения реакции

6НС1 + Fe2O3=2FeCl3+3H2O

Содержание растворенного Fe3+ определялось фотоколориметрическим методом на колориметре-нефелометре ФЭК 56М, который предварительно тарировался.

Эффективность n растворения кольматанта определялась по степени растворения железа Fe3+

n=C/Cт*100%

С – текущая концентрация Fe3+ в растворе реагента

На рис. 1 представлены кривые зависимости степени растворимости соединений железа кольматанта скважины №18 водозабора «Зеленовка» от продолжительности процесса растворения при различных параметрах: температуре и перемешивании.


Рис. 1 Зависимость степени растворимости соединений железа кольматанта скважины №18 водозабора «Зеленовка» (г. Минск) от продолжительности растворения при различных параметрах процесса
Перемешивание реагента с измельчением производилась в цилиндрическом сосуде при неизменной частоте вращения мешалки n=150 об/мин при турбулентным гидродинамическом режиме (Re=105). В опытах использовалась лабораторная мешалка с подогревом.

Анализ результатов показывает, что интенсивность процесса растворения существенно возрастает при использовании механического перемешивания реагента по сравнению с растворением по методу реагентной ванны при той же температуре. При перемешивании реагента при Т=17 С степень растворимости железа возросла в среднем на (12-18%), а перемешивание реагента при Т=34 С позволило увеличить степень растворимости железа на (30-40%) и значительно сократить время процесса растворения: за 6 часов величина n достигла 90%.

На рис. 2 представлены зависимость степени растворимости n соединений железа Fe3+ от температуры Т при продолжительности растворения Т=4 часа (реагентная ванна).



Рис. 2 Зависимость степени растворимости соединений железа n кольматанта скважины №18 водозабора «Зеленовка» (г. Минск) от температуры Т при продолжительности растворения 4 часа в условиях реагентной ванны
Из графика следует, что с ростом температуры Т степень растворимости n возрастает при Т=46 С n=70%. В то же время использование перемешивания подогретого реагента до температуры 34 С способно за тот же промежуток времени (Т=4 часа) обеспечить степень растворения n=83% (см. рис. 1).

На основании проведенных опытов авторами предложено устройство для реагентной обработки фильтра, которое представлено на рис. 3

Устройство опускают на кабель-тросе в зону очищаемого фильтра и устанавливают в его верхней части, включают электродвигатель, открывают вентиль и из емкости по шлангу в нагнетательную циркуляционную камеру подают реагент, который через сопло, полость насоса и всасывающий патрубок попадает во всасывающую циркуляционную камеру. Закрывают вентиль, после этого включают от пульта управления электродвигатель, который приводит во вращение рабочее колесо насоса и турбинную мешалку с лопатками. При этом насос создает пониженное давление в камере и всасывает реагент через патрубок. Реагент попадает на рабочее колесо насоса и через сопло подается в нагнетательную камеру. На выходе сопла формируется струя реагента, направленная в сторону стенки фильтра.



Рис. 3 Устройство для циркуляционной обработки скважин:. 1 – емкость с реагентом; 2 – эрлифт; 3 – насос; 4 – рабочее колесо насоса; 5 – всасывающий патрубок; 6 – сопло; 7 – электродвигатель; 8 – вал; 9, 10 – пакеры; 11 – турбинная мешалка; 12 – лопатки; 13 – поперечные перегородки; 14, 15 – всасывающая и нагнетательная камеры; 16 – продольные перегородки; 17 – шланг; 18 – вентиль; 19 – компрессор; 20 – лебедка; 21 – скважинный блок; 22 – пульт управления; 23 – электронагреватель.
При вращении мешалки происходит периодическое перекрытие отверстия сопла лопатками, поэтому истечение через сопло получается прерывистым и сопровождается пульсациями скорости и давления в обеих камерах и в прифильтровой зоне.

Между камерами возникает перепад давлений и устанавливается циркуляционное пульсирующее движение реагента в прифильтровой зоне, направленное от нагнетательной камеры к всасывающей камере через проницаемые стенки фильтра.

В процессе движения реагента происходит растворение кольматирующих отложений в перфорационных отверстиях, проволочной обмотке и в грунте прифильтровой зоны. Процесс растворения кольматанта интенсифицируется его нагревом посредством электронагревателя и дополнительной циркуляцией реагента внутри нагнетательной камеры, которая снабжена плоскими вертикальными перегородками. При наличии перегородок турбинная мешалка формирует радиальный поток, направленный в перфорационные отверстия. При этом большая часть радиального потока поглощается и уходит в прифильтровую зону, а некоторая часть жидкости образует восходящие и нисходящие циркуляционные потоки внутри нагнетательной камеры, омывая каркас и растворяя обрастания каркаса. Все перечисленные потоки, включая фильтрационный, являются пульсационными из-за периодического перекрытия лопатками мешалки выходного отверстия сопла. Частота пульсаций зависит от частоты вращения вала электродвигателя и от количества лопаток мешалки. Момент окончания процесса декольматации обрабатываемого интервала определяется по стабилизации электропроводности раствора. После этого включают компрессор и удаляют продукты растворения кольматанта из прифильтровой зоны и из камер.

Затем скважинное устройство перемещают на нижележащий интервал и процесс очистки повторяют.

Применение в скважинном устройстве насоса и турбиной мешалки с регулируемой частотой вращения позволяет управлять процессом растворения кольматанта на участке регенерации. С увеличением частоты вращения вала насоса возрастает подача и давление насоса, т.е. возрастает глубина обработки. С другой стороны увеличивается частота пульсаций, создаваемых лопастями мешалки, и интенсивность циркуляции реагента в прифильтровой зоне.

Применяемое устройство позволит поинтервально восстанавливать фильтр с регулируемой скоростью регенерации.
Выводы:

1. Изучено влияние подогрева и перемешивания реагента на степень растворимости соединений железа. Показано, что целью сокращения времени реагентной обработки, необходимо одновременное воздействие этих факторов.

2. Разработана конструкция устройства для реагентной циркуляционной обработки фильтра, в котором для интенсификации процесса растворения использовано одновременное воздействия комплекса факторов: подогрев реагента, создание потока с колебанием скорости и давления, обеспечение помимо наружной циркуляции раствора реагента в прифильтровой зоне также и внутренней циркуляции в нагнетательной камере.


Тел. Ивашечкин Владимир Васильевич 029 7 56 99 32

Шейко Андрей Михайлович 029 77 095 42

Интенсификация растворения кольматирующих отложений водозаборных скважин

Ивашечкин В. В., Губин В. В., Шейко А. М., Кондратович А. Н.

Белорусский национальный технический университет

Реферат
Целью работы является изучение способов интенсификации растворения кольматирующих отложений и разработка эффективного устройства для реагентной обработки фильтров скважин.

На основании лабораторных экспериментов изучено влияние подогрева и перемешивания реагента на степень растворимости соединений железа, а также разработана конструкция устройства для реагентной циркуляционной обработки фильтра, в котором для интенсификации процесса растворения использовано одновременное воздействия комплекса факторов: подогрев реагента, создание потока с колебанием скорости и давления, обеспечение помимо наружной циркуляции раствора реагента в прифильтровой зоне также и внутренней циркуляции в нагнетательной камере.

Ключевые слова: водозаборная скважина, кольматаж, растворение.

Key words: water well, incrustation, solution.

ABSTRACT
Candidate of Science Ivashechkin V., Gubin V., Sheiko A., Kondratovich A.
Intensification solution processes of water wells incrustation
Belorusian National Technical University



Добавить документ в свой блог или на сайт

Похожие:

Интенсификация растворения кольматирующих отложений водозаборных скважин iconПрограмма по формированию навыков безопасного поведения на дорогах...
«Сервисные услуги при строительстве эксплуатационных скважин с горизонтальным окончанием, поисково-разведочных скважин, реконструкции...
Интенсификация растворения кольматирующих отложений водозаборных скважин iconГенетические типы и фации четвертичных отложений
Учебно-методическое пособие для практических занятий по курсу «Геология четвертичных отложений»
Интенсификация растворения кольматирующих отложений водозаборных скважин iconРабочая программа учебной дисциплины бурение нефтяных и газовых скважин скважин
Учебная дисциплина "Бурение нефтяных и газовых скважин" — обязательная дисциплина федеральных государственных образовательных стандартов...
Интенсификация растворения кольматирующих отложений водозаборных скважин iconМетодические указания и контрольные задания для студентов-заочников...
Бурение нефтяных и газовых скважин" (регистрационный номер 12-0907-Б), утвержденными 16. 05. 2002, ис примерной программой дисциплины...
Интенсификация растворения кольматирующих отложений водозаборных скважин icon“ Бурение скважин с винтовыми забойными двигателями”
Автоматизированные системы управления режимом бурения скважин забойными двигателями. 7
Интенсификация растворения кольматирующих отложений водозаборных скважин iconРабочая программа учебной дисциплины заканчивание скважин
Учебная дисциплина "Заканчивание скважин" — обязательная дисциплина федеральных государственных образовательных стандартов всех направлений...
Интенсификация растворения кольматирующих отложений водозаборных скважин iconПрограмма учебной дисциплины телеизмерительные и контрольные системы...
Телеизмерительные и контрольные системы автоматизации процесса проводки горизонтальных участков скважин
Интенсификация растворения кольматирующих отложений водозаборных скважин iconПредупреждение и ликвидация гвнп
Этого достаточно, чтобы оценить важность таких аварии при строительствах скважин. Каковы же основные причины появления пласта скважин?...
Интенсификация растворения кольматирующих отложений водозаборных скважин iconРабочая программа учебной дисциплины история развития бурения нефтяных и газовых скважин
Ос спгги) для направления подготовки: 131000 «Нефтегазовое дело» по профилю «Бурение нефтяных и газовых скважин» первого уровня высшего...
Интенсификация растворения кольматирующих отложений водозаборных скважин iconТехнология бурения нефтяных и газовых скважин модернизированными...
Работа выполнена в Научно-исследовательском и проектном институте технологий строительства скважин (нипи тсс) при Государственном...
Интенсификация растворения кольматирующих отложений водозаборных скважин iconТехнология бурения нефтяных и газовых скважин модернизированными...
Работа выполнена в Научно-исследовательском и проектном институте технологий строительства скважин (нипи тсс) при Государственном...
Интенсификация растворения кольматирующих отложений водозаборных скважин iconПрограмма учебной дисциплины учебная буровая практика Специальность:...
Цель практики: ознакомление студентов с основными технологическими процессами, инструментом и оборудованием, применяемым для бурения...
Интенсификация растворения кольматирующих отложений водозаборных скважин iconОценка токсичности вод и донных отложений антропогенно загрязненных...
Оценка токсичности вод и донных отложений антропогенно загрязненных экосистем методом биотестирования
Интенсификация растворения кольматирующих отложений водозаборных скважин iconМетодические указания для выполнения самостоятельных работ По Профессиональному модулю пм 01
«Проведение буровых работ в соответствии с технологическим регламентом» мдк 01. 01 «Технология бурения нефтяных и газовых скважин»для...
Интенсификация растворения кольматирующих отложений водозаборных скважин iconМетодические указания по прохождению первой учебной практики для...
Одним из важных этапов в подготовке специалистов специальности 090800 «Бурение нефтяных и газовых скважин» является учебная практика...
Интенсификация растворения кольматирующих отложений водозаборных скважин icon«Контроль скважины. Управление скважиной при газонефтепроявлениях...
Учебный курс предназначен для обучения специалистов по теме «Контроль скважины. Управление скважиной при газонефтепроявлениях с правом...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск