1. Экология и другие области научного знания





Скачать 415.7 Kb.
Название1. Экология и другие области научного знания
страница2/4
Дата публикации08.08.2013
Размер415.7 Kb.
ТипЛекция
100-bal.ru > Биология > Лекция
1   2   3   4

Правило Вант-Гоффа — при оптимальных температурах у всех организмов физиологические процессы протекают наиболее интенсивно, что способствует увеличению темпов их роста.

Правило взаимодействия факторов: «Одни факторы могут усиливать или смягчать силу действия других факторов». Например, избыток тепла мо­жет в какой-то мере смягчаться пониженной влажностью воздуха, недостаток света для фотосинтеза растений - компенсироваться повышенным содержанием углекислого газа в воздухе и т. п. Из этого, однако, не следует, что факторы могут взаимозаменяться. Они не взаимозаменяемы.

Закон минимума (Ю. Либих) — жизненность организма определяется самым слабым звеном в цепи его экологических потребностей. Ю. Либих формулировал данный закон следующим образом: "Веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость последнего во времени" или «биотический потенциал (жизнеспособность, продуктивность организма, популяции, вида) лимитируется тем из факторов среды, который находится в минимуме, даже если все остальные условия благоприятны».

Впоследствии в закон Либиха были внесены уточнения. Важной поправкой и дополнением служит закон неоднозначного (селективного) действия фактора на различные функции организма:

«Любой экологический фактор неодинаково влияет на функции организма, оптимум для одних процессов, например дыхания, не есть оптимум для других, например пищеварения, и наоборот».

Э. Рюбелем в 1930 г. был установлен закон (эффект) компенсации (взаимозаменяемости) факторов:

«Отсутствие или недостаток некоторых экологических факторов может быть компенсировано другим близким (аналогичным) фактором».

Например, недостаток света может быть компенсирован для растения обилием диоксида углерода, а при построении раковин моллюсками недостающий кальций может заменяться на стронций.

Однако подобные возможности чрезвычайно ограничены. В 1949 г. В. Р. Вильямс сформулировал закон незаменимости фундаментальных факторов:

«Полное отсутствие в среде фундаментальных экологических факторов (света, воды, биогенов и т. д.) не может быть заменено другими факторами».

К этой группе уточнений закона Либиха относится несколько отличное от других правило фазовых реакций «польза — вред»:

«Малые концентрации токсиканта действуют на организм в направлении усиления его функций (их стимулирования), тогда как более высокие концентрации угнетают или даже приводят к его смерти».

Фактор среды ощущается организмом не только при его недостатке. Впервые предположение о лимитирующем (ограничивающем) влиянии максимального значения фактора наравне с минимальным значением было высказано в 1913 г. американским зоологом В. Шелфордом, установившим фундаментальный биологический закон толерантности:

«Любой живой организм имеет определенные, эволюционно унаследованные верхний и нижний пределы устойчивости (толерантности) к любому экологическому фактору».

Другая формулировка закона В. Шелфорда поясняет, почему закон толерантности одновременно называют законом лимитирующих факторов.

Фактор, уровень которого в качественном или количественном отношении (недостаток или избыток) оказывается близким к пределам выносливости данного организма, называется ограничивающим, или лимитирующим.

Правило лимитирующих факторов: «Фактор, находящийся в недостатке или избытке (вблизи критических точек) отрицательно влияет на организмы и, кроме того, ограничивает возможность прояв­ления силы действия других факторов, в том числе и нахо­дящихся в оптимуме». Например, если в почве имеются в достат­ке все, кроме одного, необходимые для растения химические эле­менты, то рост и развитие растения будет обусловливаться тем из них, который находится в недостатке. Все другие элементы при этом не проявляют своего действия. Лимитирующие факторы обычно обусловливают границы распространения видов (популяций), их аре­алы. От них зависит продуктивность организмов и сообществ. По­этому крайне важно своевременно выявлять факторы минимально­го и избыточного значения, исключать возможности их проявления (например, для растений - сбалансированным внесением удобрений).

Человек своей деятельностью часто нарушает практически все из перечисленных закономерностей действия факторов. Особенно это относится к лимитирующим факторам (разрушение местообитаний, нарушение режима водного и минерального питания расте­ний и т.п.).

Закон толерантности дополняют положения американского эколога Ю. Одума:

  1. организмы могут иметь широкий диапазон толерантности в отношении одного экологического фактора и низкий диапазон в отношении другого;

  2. организмы с широким диапазоном толерантности в отношении всех экологических факторов обычно наиболее распространены;

  3. диапазон толерантности может сузиться и в отношении других экологических факторов, если условия по одному экологическому фактору не оптимальны для организма;

  4. многие факторы среды становятся ограничивающими (лимитирующими) в особо важные (критические) периоды жизни организмов, особенно в период размножения.

К этим положениям также примыкает закон Митчерлиха-Бауле, названный А. Тинеманом законом совокупного действия:

«Совокупность факторов воздействует сильнее всего на те фазы развития организмов, которые имеют наименьшую пластичность — минимальную способность к приспособлению».

Фотопериодизм. Под фотопериодизмом понимают реакцию организма на длину дня (светлого времени суток). При этом длина светового дня выступает и как условие роста и развития, и как фактор-сигнал для наступления каких-то фаз развития или поведе­ния организмов. Сигнальное свойство фотопериодизма выражается в том, что растительные и животные организмы обычно реагируют на длину дня своим поведением, физиологическими процес­сами. Например, сокращение продолжительности дня является сиг­налом для подготовки организмов к зиме. Дня растений это повыше­ние концентрации клеточного сока и т. п. Для животных - накопление жиров, смена накожных покровов, подготовка птиц к перелетам и т. п.

Другие факторы обычно в меньшей мере используются как сиг­нал (например, температура), поскольку они изменяются не с такой строгой закономерностью, как фотопериод, и могут провоцировать наступление у организмов каких-то фаз или явлений преждевре­менно или с запозданием. Хотя определенную корректировку в дей­ствие фотопериодизма они вносят.

Адаптации

Адаптации к ритмичности природных явлений. Наряду с длиной дня организмы эволюционно адаптировались к другим видам периодических явлений в природе. Прежде всего это относится к суточной и сезонной ритмике, приливно-отливным явлениям, ритмам, обусловливаемым солнечной активностью, лунными фазами и дру­гими явлениями, повторяющимися со строгой периодичностью. Че­ловек может нарушать эту ритмику через изменение среды, пере­мещением организмов в новые условия и другими действиями.

Ритмичность действия факторов среды, подверженная строгой пе­риодичности, стала физиологически и наследственно обусловленной для многих организмов. Например, к суточной ритмике адаптирована активность многих животных организмов (интенсивность дыхания, частота сердцебиений, деятельность желез внутренней секреции и т п.). Одни организмы очень стойко сохраняют эту ритмику, другие более пластичны.

Наряду с понятиями «среда», «местообитание», «природная среда», «окружающая среда» широко используется термин «среда жизни». Все разнообразие условий на Земле объединяют в четыре среды жизни: водную, наземно-воздушную, почвенную и организменную (в последнем случае одни организмы являются средой для других).

Водная среда.

Эта среда наиболее однородна среди других. Она мало изменяется в пространстве, здесь нет четких границ между отдельными экосистемами. Амплитуды значений факторов также невелики. Разница между максимальными и минимальными значениями температуры здесь обычно не превышает 50°С (в наземно-воздушной среде - до 100°С). Среде присуща высокая плот­ность. Для океанических вод она равна 1,3 г/см3, для пресных - близка к единице. Давление изменяется только в зависимости от глубины: каждый 10-метровый слой воды увеличивает давление на 1 атмосферу.

Лимитирующим фактором часто бывает кислород. Содержание его обычно не превышает 1% от объема. При повышении темпе­ратуры, обогащении органическим веществом и слабом переме­шивании содержание кислорода в воде уменьшается. Малая дос­тупность кислорода для организмов связана также с его слабой диффузией (в воде она в тысячи раз меньше, чем в воздухе). Вто­рой лимитирующий фактор - свет. Освещенность быстро умень­шается с глубиной. В идеально чистых водах свет может прони­кать до глубины 50-60 м, в сильно загрязненных - только на не­сколько сантиметров.

Организмы обитающие в водной жизненной среде называют гидробионтами. В воде мало теплокровных, или гомойотермных (греч. хомой -одинаковый, термо - тепло), организмов. Это результат двух причин: малое колебание температур и недостаток кислорода. Основной адап­тационный механизм гомойотермии - противостояние неблагопри­ятным температурам. В воде такие температуры маловероятны, а в глубинных слоях температура практически постоянна (+4°С). Под­держание постоянной температуры тела обязательно связано с ин­тенсивными процессами обмена веществ, что возможно только при хорошей обеспеченности кислородом. В воде таких условий нет. Теплокровные животные водной среды (киты, тюлени, морские ко­тики и др.) - это бывшие обитатели суши. Их существование невоз­можно без периодической связи с воздушной средой.

Типичные обитатели водной среды имеют переменную темпе­ратуру тела и относятся к группе пойкилотермных (греч. пойкиос - разнообразный). Недостаток кислорода они в какой-то мере компенсируют увеличением соприкосновения органов дыхания с во­дой. Многие обитатели вод (гидробионты) потребляют кислород через все покровы тела. Часто дыхание сочетается с фильтрационным типом питания, при котором через организм пропускается большое количество воды. Некоторые организмы в периоды ост­рого недостатка кислорода способны резко замедлять жизнедея­тельность, вплоть до состояния анабиоза (почти полное прекраще­ние обмена веществ).

К высокой плотности воды организмы адаптируются в основном двумя путями. Одни используют ее как опору и находятся в состо­янии свободного парения. Плотность (удельный вес) таких орга­низмов обычно мало отличается от плотности воды. Этому спо­собствует полное или почти полное отсутствие скелета, наличие выростов, капелек жира в теле или воздушных полостей. Такие организмы объединяются в группу планктона (греч. планктос -блуждающий). Различают растительный (фито-) и животный (зоо-) планктон. Размеры планктонных организмов обычно невелики. Но на их долю приходится основная масса водных обитателей.

Активно передвигающиеся организмы (пловцы) – группа нектон- адаптируются к преодолению высокой плотности воды. Для них характерна продол­говатая форма тела, хорошо развитая мускулатура, наличие струк­тур, уменьшающих трение (слизь, чешуя). В целом же высокая плот­ность воды имеет следствием уменьшение доли скелета в общей массе тела гидробионтов по сравнению с наземными организмами.

В условиях недостатка света или его отсутствия организмы для ориентации используют звук. Он в воде распространяется намного быстрее, чем в воздухе. Для обнаружения различных препятствий используется отраженный звук по типу эхолокации. Для ориентации используются также запаховые явления (в воде запахи ощущают­ся намного лучше, чем в воздухе). В глубинах вод многие организ­мы обладают свойством самосвечения (биолюминесценции).

Растения, обитающие в толще воды, используют в процессе фотосинтеза наиболее глубоко проникающие в воду голубые, синие и сине-фиолетовые лучи. Соответственно и цвет растений меняется с глубиной от зеленого к бурому и красному.

Адекватно адаптационным механизмам выделяются следующие группы гидробионтов: отмеченный выше планктон - свободнопарящие, нектон (греч. нектос - плавающий) - активно передвига­ющиеся, бентос (греч. бентос - глубина) - обитатели дна, пелагос (греч. пелагос - открытое море) - обитатели водной толщи, нейстон - обитатели верхней пленки воды (часть тела может быть в воде, часть - в воздухе).

Воздействие человека на водную среду проявляется в уменьше­нии прозрачности, изменении химического состава (загрязнении) и температуры (тепловое загрязнение). Следствием этих и других воз­действий является обеднение кислородом, снижение продуктивнос­ти, смены видового состава и другие отклонения от нормы. Подроб­нее эти вопросы рассматриваются в ч. II работы.

Наземно-воздушная среда.

Эта среда относится к наиболее сложной как по свойствам, так и по разнообразию в пространстве. Для нее характерна низкая плотность воздуха, большие колебания температуры (годовые амплитуды до 100°С), высокая подвижность атмосферы. Лимитирующими факторами чаще всего являются недостаток или избыток тепла и влаги. В отдельных случаях, на­пример под пологом леса, недостаток света.

Большие колебания температуры во времени и ее значительная изменчивость в пространстве, а также хорошая обеспеченность кислородом явились побудительными мотивами для появления организмов с постоянной температурой тела (гомойотермных). Гомойотермия позволила обитателям суши существенно расширить место обитания (ареалы видов), но это неизбежно связано с повы­шенными энергетическими тратами.

Обитатели данной среды называются – аэробионтами. Аэробиосфера — область атмосферы, населенная аэробионтами, субстратом жизни которых служит влага воздуха. Аэропланктон — организмы, пассивно переносимые потоками воздуха.

Для организмов наземно-воздушной среды типичны три меха­низма адаптации к температурному фактору: физический, хи­мический, поведенческий.

Физический осуществляется ре­гулированием теплоотдачи. Факторами ее являются кожные покро­вы, жировые отложения, испарение воды (потовыделение у живот­ных, транспирация у растений). Этот путь характерен для пойкилотермных и гомойотермных организмов.

Химические адаптации базируются на поддержании определенной температуры тела. Это требует интенсивного обмена веществ. Такие адаптации свойствен­ны гомойотермным и лишь частично пойкилотермным организмам.

Поведенческий путь осуществляется посредством выбора орга­низмами предпочтительных положений (открытые солнцу или за­тененные места, разного вида укрытия и т. п.). Он свойственен обеим группам организмов, но пойкилотермным в большей степени. Рас­тения приспосабливаются к температурному фактору в основном через физические механизмы (покровы, испарение воды) и лишь частично - поведенчески (повороты пластинок листьев относительно солнечных лучей, использование тепла земли и утепляющей роли снежного покрова).

Адаптации к температуре осуществляются также через разме­ры и форму тела организмов. Для уменьшения теплоотдачи выгод­нее крупные размеры (чем крупнее тело, тем меньше его по­верхность на единицу массы, а следовательно, и теплоотдача, и наоборот). По этой причине одни и те же виды, обитающие в более холодных условиях (на севере), как правило, крупнее тех, которые обитают в более теплом климате. Эта закономерность называется правилом Бергмана: «При продвижении на север средние размеры тела в популяциях эндотермных животных увеличиваются». Регулирование температуры осуществляется также через выступающие части тела (ушные раковины, конечно­сти, органы обоняния). В холодных районах они, как правило, мень­ше по размерам, чем в более теплых (правило Алена: « У видов, живущих в более холодном климате, выступающие части тела (хвост, уши и др.) меньше, чем у родственных видов из более теплых мест»).
1   2   3   4

Похожие:

1. Экология и другие области научного знания iconРабочая программа по экологии Вологодской области (Далее рабочая...
Вологда: издательский центр виро, 2008. – 60с.) и Региональным образовательным стандартом дисциплины «Экология Вологодской области»...
1. Экология и другие области научного знания iconРабочая программа по факультативу «Экология Вологодской области». Составлена учителем
«Экология Вологодской области» для 7 класса разработана на основе программы «Экология Вологодской области» Вологда, виро, 2008г....
1. Экология и другие области научного знания iconВопросы к экзамену по программе кандидатского минимума по курсу «История и философия науки»
Понятие научного метода и его место в системе естественно научного и гуманитарного знания
1. Экология и другие области научного знания iconАдминистрация Белгородской области Белгородская и Старооскольская...
Объектом изучения дисциплины является наука и ее методология, а предметом – генезис научного знания и научной методологии, а также...
1. Экология и другие области научного знания iconРабочая программа элективного курса по биологии «экология человека»
Программа элективного курса содержит новые понятия и материалы, не содержащиеся в изучении предмета экология. Программа включает...
1. Экология и другие области научного знания iconМетодические указания по изучению учебной дисциплины Изучение данной...
Федеральных государственных образовательных стандартов высшего профессионального образования по направлениям подготовки 100700 и...
1. Экология и другие области научного знания iconСущность понятия и особенности научного познания. Формы и методы...
Новосибирской области, освоивших образовательные программы основного общего образования, с участием территориальной экзаменационной...
1. Экология и другие области научного знания iconПрограмма учебной дисциплинЫ «информатика»
Целью дисциплины является обучение бакалавра по направлению подготовки «Экология и природопользование» современным методам обработки...
1. Экология и другие области научного знания icon1 Экология как наука. История экологии
Они частично органической, частично неорганической природы; но как те, так и другие имеют большое значение для организмов, так как...
1. Экология и другие области научного знания icon«политология»
Кемеровского университета. Данный курс выступает важным компонентом профессиональной и общегражданской подготовки студентов и их...
1. Экология и другие области научного знания iconМинистерство образования и науки российской федерации федеральное...
Понятие научного метода и его место в системе естественно научного и гуманитарного знания
1. Экология и другие области научного знания iconРешение: а) Расстояние между точками и определяется по формуле:. (1)
Цель: развитие у студентов культуры научного мышления, углубленного изучения дисциплины, овладения методологией научного познания,...
1. Экология и другие области научного знания iconЗадания по природоведению для желающих
Охватывает фундаментальные основы современного научного знания и включает в себя такой комплекс основных понятий, закономерностей...
1. Экология и другие области научного знания iconУрок 1 Тема : "Введение". Лекция
Охватывает фундаментальные основы современного научного знания и включает в себя такой комплекс основных понятий, закономерностей...
1. Экология и другие области научного знания iconЧто мы знаем о небесных телах?
Охватывает фундаментальные основы современного научного знания и включает в себя такой комплекс основных понятий, закономерностей...
1. Экология и другие области научного знания iconВопросы к кандидатскому экзамену по истории и философии науки Предмет...
Понятие научного метода и его место в системе естественно научного и гуманитарного знания


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск