Исследовательская работа. Тема: Баллистическое движение тел Работу





НазваниеИсследовательская работа. Тема: Баллистическое движение тел Работу
страница2/3
Дата публикации18.04.2015
Размер0.5 Mb.
ТипИсследовательская работа
100-bal.ru > Физика > Исследовательская работа
1   2   3

Установка


Крутильные весы

Установка представляет собой деревянное коромысло с прикреплёнными к его концам небольшими свинцовыми шарами. Оно подвешено на нити из посеребрённой меди длиной 1 м. К шарам подносят шары большего размера массой 159 кг, сделанные также из свинца. В результате действия гравитационных сил коромысло закручивается на некий угол. Жёсткость нити была такой, что коромысло делало одно колебание за 15 минут. Угол поворота коромысла определялся с помощью луча света, пущенного на зеркальце на коромысле, и отражённого в микроскоп. Зная упругие свойства нити, а также угол поворота коромысла, можно вычислить гравитационную постоянную.

Для предотвращения конвекционных потоков установка была заключена в ветрозащитную камеру. Угол отклонения измерялся при помощи телескопа.

Списав закручивание нити на магнитное взаимодейстивие железного стержня и свинцовых шаров, Кавендиш заменил его медным, получив те же результаты.

Вычисленное значение

В «Британнике» утверждается, что Г. Кавендиш получил значение G=6,754·10-11 м³/(кг·с³)[1]. Это же утверждают Е. P. Коэн, К. Кроув и Дж. Дюмонд[2] и А. Кук. [3].

Л. Купер в своём двухтомном учебнике физики приводит другое значение: G=6.71·10-11м³/(кг·с³)[4].

О. П. Спиридонов — третье: G=(6.6 ± 0.04)·10-11м³/(кг·с³)[5].

Однако в классической работе Кавендиша не было приведено никакого значения G. Он рассчитал лишь значение средней плотности Земли: 5.48 плотностей воды[6] (современное значение 5,52 г/см³). Вывод Кавендиша о том, что средняя плотность планеты 5,48 г/см³ больше поверхностной ~2 г/см³, подтвердил, что в глубинах сосредоточены тяжёлые вещества.

Гравитационная постоянная была впервые введена, по-видимому, впервые только С. Д. Пуассоном в «Трактате по механике» (1811)[7]. Значение G было вычислено позже другими учеными из данных опыта Кавендиша. Кто впервые рассчитал численное значение G, историкам неизвестно.


Практическая часть

Применение баллистики на практики
Представим себе, что  изодной точки выпустили несколько снарядов, под различными углами. Например, первый снаряд под углом 30°, второй под углом 40°, третий под углом 60°,а четвертый под углом 75°(рис № 6).



                                                                                                                                      (рис№6)       1)На рисунке №6 зеленым цветом изображен график снаряда выпущенного под углом  30°, белым под углом 45°, фиолетовым под углом 60°, а красным под углом 75°. А теперь посмотрим на графики полёта снарядов и сравним их.(начальная скорость одинакова, и равна 20 км/ч)

Сравнивая эти графики можно вывести некоторую закономерность: с увеличением угла вылета снаряда, при одинаковой начальной скорости, дальность полёта уменьшается, а высота увеличивается.

2)Теперь рассмотрим другой случай, связанный с различной начальной скоростью, при одинаковом угле вылета. На рисунке №7 зеленым цветом изображен график снаряда выпущенного с начальной скоростью 18 км/ч, белым со скоростью 20 км/ч, фиолетовым со скоростью 22 км/ч, а красным со скоростью 25 км/ч. А теперь посмотрим на графики полёта снарядов и сравним их (угол полёта одинаков и равен 30°). Сравнивая эти графики можно вывести некоторую закономерность: с увеличением начальной скорости вылета снаряда, при одинаковом угле вылета, дальность и высота полёта снаряда увеличиваются.



                                                                                                                                      (рис№7)

Вывод: с увеличением угла вылета снаряда, при одинаковой начальной скорости, дальность полёта уменьшается, а высота увеличивается, а с увеличением начальной скорости вылета снаряда, при одинаковом угле вылета, дальность и высота полёта снаряда увеличиваются.

Применение теоретических расчётов к управлению баллистическими ракетами
А) траектория баллистической ракеты.

Наиболее существенной чертой, отличающей баллистические ракеты от ракет других классов, является характер их траектории. Траектория баллистической ракеты состоит из двух участков – активного и пассивного. На активном участке ракета движется с ускорением под действием силы тяги двигателей.

При этом ракета запасает кинетическую энергию. В конце активного участка траектории, когда ракета приобретёт скорость, имеющую заданную величину

и направление, двигательная установка выключается. После этого головная часть ракеты отделяется от её корпуса и дальше летит за счёт запасённой кинетической энергии. Второй участок траектории (после выключения двигателя) называют участком свободного полёта ракеты, или пассивным участком траектории. Ниже для краткости будем обычно говорить о траектории свободного полёта ракеты, подразумевая при этом траекторию не всей ракеты, а только её головной части.

Баллистические ракеты стартуют с пусковых установок вертикально вверх. Вертикальный пуск позволяет построить наиболее простые пусковые установки и обеспечивает благоприятные условия управления ракетой сразу же после старта. Кроме того, вертикальный пуск позволяет снизить требования к жёсткости корпуса ракеты и, следовательно, уменьшить вес её конструкции.

Управление ракетой осуществляется так, что через несколько секунд после старта она, продолжая подъём вверх, начинает постепенно наклоняться в сторону цели, описывая в пространстве дугу. Угол между продольной осью ракеты и горизонтом (угол тангажа) изменяется при этом на 90º до расчетного конечного значения. Требуемый закон изменения (программа) угла тангажа задается программным механизмом, входящим в бортовую аппаратуру ракеты. На завершающем отрезке активного участка траектории угол тангажа выдерживается, постоянны и ракета летитпрямолинейно, а когда скорость достигает расчетной величины - двигательную установку  выключают. Кроме величины скорости, на завершающем отрезке активного участка траектории устанавливают с высокой степенью точности также и заданное направление полёта ракеты (направление вектора её скорости). Скорость движения в конце активного участка траектории достигает значительных величин, но ракета набирает эту скорость постепенно. Пока ракета находится в плотных слоях атмосферы, скорость её мала, что позволяет снизить потери энергии на преодоление сопротивления среды.

Момент выключения двигательной установки разделяет траекторию баллистической ракеты на активный и пассивный участки. Поэтому точку траектории, в которой выключаются двигатели, называют граничной точкой. В этой точке управление ракетой обычно заканчивается и весь дальнейший путь к цели она совершает в свободном движении. Дальность полёта баллистических ракет вдоль поверхности Земли, соответствующая активному участку траектории, равна не более чем 4-10% общей дальности. Основную часть траектории баллистических ракет составляют участок свободного полёта.

 

Для существенного увеличения дальности нужно применять многоступенчатые ракеты.

Многоступенчатые ракеты состоят из отдельных блоков-ступеней, каждая из которых имеет свои двигатели. Ракета стартует с работающей двигательной установкой первой ступени. Когда топливо первой ступени израсходуется, включается двигатель второй ступени, а первая ступень сбрасывается. После сброса первой ступени сила тяги двигателя должна сообщить ускорение меньшей массе, что приводит к значительному возрастанию скорости vв конце активного участка траектории по сравнению с одноступенчатой ракетой, имеющей ту же начальную массу.

Расчеты показывают, что уже при двух ступенях можно получить начальную скорость, достаточную для полёта головной части ракеты на межконтинентальные расстояния.

Идею применения многоступенчатых ракет для получения больших начальных скоростей и, следовательно, больших дальностей полёта, выдвинул К.Э. Циолковский. Эту идею используют при создании межконтинентальных баллистических ракет и ракет-носителей для запуска космических объектов.

Б) траектории управляемых снарядов.

Траектория ракеты – это линия, которую  в пространстве описывает её центр тяжести. Управляемый снаряд – это беспилотный летательный аппарат, обладающий средствами управления, с помощью которых можно влиять на движение аппарата на всей траектории или на одном из участков полёта. Управление снарядом на траектории потребовалось для того, чтобы поразить цель, оставаясь на безопасном от неё расстоянии. Существуют два главных класса целей: подвижные и неподвижные. В свою очередь реактивный снаряд может запускаться с неподвижного стартового устройства или с подвижного (например, с самолёта). При неподвижных целях и стартовых устройствах данные, необходимые для поражения цели, получаются из известного относительного расположения места старта и цели. При этом траектория движения реактивного снаряда может быть заранее рассчитана, а снаряд снабжен устройствами, обеспечивающими его движение по определённой рассчитанной программе.

В других случаях относительное расположение места старта и цели непрерывно меняется. Для поражения цели в этих случаях необходимо иметь устройства, следящие за целью и непрерывно определяющие взаимное положение снаряда и цели. Сведения, получаемые от этих устройств, используются для управления движением снаряда. Управление должно обеспечивать движение ракеты к цели по наивыгоднейшей траектории.

Для того чтобы полностью охарактеризовать полёт ракеты, недостаточно знать только такие элементы её движения, как траектория, дальность, высота, скорость полёта и другие величины, характеризующие движение центра тяжести ракеты. Ракета может занимать в пространстве различные положения относительно своего центра тяжести.

Ракета представляет собой тело значительных размеров, состоящее из множества узлов и деталей, изготовленных с известной степенью точности. В процессе движения она испытывает различные возмущения, связанные с неспокойным состоянием атмосферы, неточностью работы силовой установки, различного рода помехи и т. п. Совокупность этих погрешностей, не предусмотренных расчётом, приводит к тому, что фактическое движение сильно отличается от идеального. Поэтому для эффективного управления ракетой необходимо устранить нежелательное влияние случайных возмущающих воздействий, или, как говорят, обеспечить устойчивость движения ракеты.

в) координаты, определяющие положение ракеты в пространстве.

Изучение разнообразных и сложных движений, совершаемых ракетой может быть значительно упрощено, если движение ракеты представить как сумму поступательного движения её центра тяжести и вращательного движения относительно центра тяжести. Примеры, приведенные выше, наглядно показывают, что для обеспечения устойчивости движения ракеты чрезвычайно важно иметь её устойчивость относительно центра тяжести, т. е. угловую стабилизацию ракеты. Вращение ракеты относительно центра тяжести можно представить как сумму вращательных движений относительно трёх перпендикулярных осей, имеющих определённую ориентацию в пространстве. На рис.№7 изображена идеальная оперенная ракета, летящая по рассчитанной траектории. Начало систем координат, относительно которой мы будем стабилизировать ракету, поместим в центр тяжести ракеты. Ось X направим по касательной к траектории в сторону движения ракеты. Ось Y проведём в плоскости траектории перпендикулярно к оси X, а ось

Z -перпендикулярно к первым двум осям, как показано на рис.№8.

С ракетой свяжем прямоугольную систему координат XYZ,аналогичную первой, причём ось Xдолжна совпадать с осью симметрии ракеты. В идеально стабилизированной ракете оси X ,Y ,Z совпадают с осями X, Y, Z, что показано на рис №8

Под действием возмущений ракета может поворачиваться вокруг каждой из ориентированных осей X, Y, Z. Поворот ракеты вокруг оси X называют креном ракеты. Угол крена  лежит в плоскости YOZ. Его можно определить, измерив в этой плоскости угол между осями Z и Z или Y и Y.Поворот вокруг оси

Y – рыскание ракеты. Угол рыскания  находится в плоскости XOZ как угол между осями X и Xили Z и Z . Угол поворота вокруг оси Z называют углом тангажа. Он определяется углом между осями X и X или Y и Y, лежащими в плоскости траектории.



(рис №8)

Автоматические устройства стабилизации ракеты должны придавать ей такое положение, когда  = 0 или . Для этого на ракете должны находиться чувствительные устройства, способные изменить её угловое положение.

Траектория ракеты в пространстве определяется текущими координатами

X, Y, Z её центра тяжести. За начало отсчёта берут точку старта ракеты. Для ракет дальнего действия за ось X принимают прямую, касательную к дуге большого круга, соединяющего старт с целью. Ось Y направляют при этом вверх, а ось Z- перпендикулярно к двум первым осям. Эта система координат называется земной (рис№9).



(Рис.№9)

Расчётная траектория баллистических ракет лежит в плоскости XOY, называемой плоскостью стрельбы, и определяется двумя координатами X и Y.

Невесомость
Мы живем в век начала освоения космоса, в век полётов космических кораблей вокруг Земли, на Луну и на другие планеты Солнечной системы. Нам часто приходится слышать и читать о том, что лётчики-космонавты и все предметы на космическом корабле во время его полёта находятся в особом состоянии, называемом состоянием невесомости. Само слово невесомость говорит о том, что у тела отсутствует вес, то есть оно не давит на опору и не растягивает подвес. Причина невесомости заключается в том, что сила всемирного тяготения (взаимное притяжение всех тел во Вселенной) сообщает телу и его опоре одинаковые ускорения. Поэтому всякое тело, которое движется под действием только силы всемирного тяготения, находится в состоянии невесомости.

Длительную невесомость человек испытывает в космосе, в космическом корабле, на орбитальной станции. Невесомость - главное отличие космической жизни от земной. Она влияет на всё: на кровообращение, дыхание, настроение, физиологические и биологические процессы. Невесомость - уникальное явление космического полёта. На Земле мы привыкли, если, например, дождевая капля упадёт с ветки или листа, то она обязательно попадёт на землю. На орбитальной станции всё иначе: лети, куда хочешь, и не упадёшь. Тяжесть - самое надежное качество, которым обладает каждый предмет на Земле. Тяжесть - это то, что природа распределила равномерно: поровну на каждую единицу массы. В течение всего времени орбитального полёта космонавты находятся в состоянии невесомости. Они теперь не ходят, а плавают, отталкиваясь как от опоры, от стен или от заземлённых предметов. Космонавты могут, образно говоря, ходить по потолку. Сила притяжения отсутствует, тело делается непривычно лёгким, при этом кровь тоже делается невесомой.

Несмотря на кажущуюся лёгкость, передвижение в невесомости - дело непростое. Оказавшись в невесомости, - рассказывает космонавт - у космонавта вся кровь и жидкость приливает в голову. Голова тяжёлая, заложен нос, глаза красные, плохо думается. После длительного полёта в невесомости организм космонавта испытывает резкий переход к большим перегрузкам, которые будут вызваны включением тормозной установки корабля. Длительное пребывание в невесомости - отрицательно сказывается на здоровье космонавта. Влияние невесомости на организм человека так полностью и не разгадано.

Невесомость можно испытывать не только в космосе, но и на Земле. Но на Земле может быть получена только кратковременная невесомость. Например, она наблюдается в первые 1-2 секунды при свободном падении тела. Невесомость возникает при прыжках на батуте: здесь она длится 1-2 секунды. Более длительную невесомость можно получить на самолёте, когда он движется по специальной траектории. Самолёт стремительно набирает высоту, потом двигатели выключают, он начинает падать, и здесь возникает невесомость, которая длится около минуты. Некоторое подобие статической невесомости возникает, когда человека помещают в бассейн с жидкостью, равной средней плотности его тела.

Рассмотрим невесомость на опытах: 1). Тело подвешено к пружине, конец которой закреплён. Представим себе, что нить, удерживающую пружину, пережгли. Теперь пружина вместе с грузом свободно падает. При этом мы замечаем, что растяжение исчезло. И пока пружина с телом падает, она остается нерастянутой. Следственно падающее тело не действует на падающую вместе с ним пружину и вес тела равен нулю, но сила тяжести не равна нулю, она по-прежнему действует на тело и заставляет его падать.

2). Между гирями закладывают полоску бумаги, свободный конец которой закрепляют в лапке штатива. Если медленно опускать груз, то полоска натягивается и рвется. Из этого следует, что бумажная полоска была достаточно сильно зажата грузами. Заменив порванную полоску бумаги на целую, грузу позволяют свободно падать. Бумажная полоска повисает при этом неповрежденной. Этот опыт показывает, что при свободном падении давление гири на опору отсутствует, то есть гиря при падении стала невесомой.




3). Одновременно с парашютистами с самолета сбросили большой пустой ящик. Два человека, тоже выпрыгнувшие из самолета пока не раскрывают парашютов. Они летят с такой же скоростью, что и ящик. Один парашютист протянул руку, схватился за летящий рядом ящик, открыл в нем дверцу и втянулся внутрь. Теперь из двух человек один летит, кувыркаясь внутри ящика, а другой снаружи. У них будут совершенно разные ощущения. Тот, который летит снаружи, видит и чувствует, что он стремительно летит вниз. В ушах у него свистит ветер. Вдали видна приближающая Земля. Мимо проносятся облака. А этот, который летит внутри ящика, закрыл дверцу, и начал, отталкиваясь от стенок "плавать" по ящику. Ему кажется, что ящик спокойно стоит на земле, а он, потеряв вес, плавает в воздухе, как рыба в аквариуме. Строго говоря, разницы между обоими парашютистами нет никакой. Оба с одной и той же скоростью летят к земле. Но один сказал бы: " Я лечу", а другой: " Я плаваю на месте". Дело в том, что один ориентируется по Земле, а другой по ящику, в котором летит. Вот именно так возникает состояние невесомости в кабине космического корабля.

Сейчас космонавты совершают длительные полеты. Но никто еще не может сказать с твердой уверенностью, что с невесомостью можно обращаться на "ты". Это явление, интересующее очень многих, требуемого и последовательного изучения.

Перегрузки, испытываемые космонавтами в невесомости
При совершении космического полета космонавт подвергается воздействию ряда факторов: невесомость, перегрузки, шумы, вибрации, ограничение подвижности, изоляция, существование в замкнутом ограниченном пространстве и пр.

Ни одна профессиональная деятельность человека не связана с воздействием на него всех этих факторов в тех количественных соотношениях, как при полетах в космос. Так, состояние длительной невесомости, которое испытывает космонавт, не может быть испытано человеком в земных условиях.

В земных условиях человек может испытать только состояние кратковременной невесомости, например, если человек находится в лифте, движущемся по вертикали вниз с ускорением a = g.  Где g – ускорение свободного падения, т.е. ускорение силы тяжести.


























Последние минуты экипажа 21-ой экспедиции на МКС на Земле
(17 сек./1.19Mb)

Уменьшить плеерДобавить видео в блог

Как и сила тяжести, ускорение свободного падения зависит от широты места j и высоты его над уровнем моря Н. Приблизительно ускорение свободного падения = 978,049 (1 + 0,005288 sin2j – 0,000006 sin22 j – 0,0003086 Н. На широте Москвы на уровне моря g = 981,56 см/сек.

Но при а = g – тело и лифт совершают свободное падение и никаких взаимных давлений друг на друга не оказывают, в результате организм воспринимает оказываемое на него давление как состояние невесомости.

Состояние космической невесомости имеет отличия от состояния невесомости в земных условиях, что вызывает изменения ряда его жизненных функций в организме человека. Так, невесомость ставит центральную нервную систему и рецепторы многих анализаторных систем (вестибулярного аппарата, мышечно-суставного аппарата, кровеносных сосудов) в необычные условия функционирования. Поэтому невесомость рассматривают как специфический интегральный раздражитель, действующий на организм человека и животного в течение всего орбитального полета. Ответом на этот раздражитель являются приспособительные процессы в физиологических системах; степень их проявления зависит от продолжительности невесомости и в значительно меньшей степени от индивидуальных особенностей организма.

С наступлением состояния невесомости у космонавта могут возникнуть вестибулярные расстройства, длительное время сохраняется чувство тяжести в области головы (за счет усиленного притока крови к ней). Вместе с тем адаптация к невесомости происходит, как правило, без серьезных осложнений: человек сохраняет работоспособность и успешно выполняет различные рабочие операции, в том числе те из них, которые требуют тонкой координации или больших затрат энергии. Двигательная активность в состоянии невесомости требует гораздо меньших энергетических затрат, чем аналогичные движения в условиях весомости.

Если в полете не применяются средства профилактики, то в первые часы и сутки после приземления (период реадаптации к земным условиям) у человека, совершившего длительный космический полет, наблюдается следующий комплекс изменений:

1. Нарушение процессов обмена веществ, особенно водно-солевого обмена, что сопровождается относительным обезвоживанием тканей, снижением объема циркулирующей крови, уменьшением содержания в тканях ряда элементов, в частности калия и кальция;
2. Нарушение кислородного режима организма при физических нагрузках;
3. Нарушение способности поддерживать вертикальную позу в статике и динамике; ощущение тяжести частей тела (окружающие предметы воспринимаются как необычно тяжелые; наблюдается растренированность в дозировании мышечных усилий);
4. Нарушение гемодинамики при работе средней и высокой интенсивности; возможны предобморочные и обморочные состояния после перехода из горизонтального положения в вертикальное;
5. Снижение иммунобиологической резистентности (ослабление иммунитета);
 вестибуловегетативные расстройства.































Установка "Союз ТМА-16" на стартовую площадку
(104 сек./7.27Mb)

Уменьшить плеерДобавить видео в блог

Нарушения работы организма человека, вызванные невесомостью, обратимы. Ускоренное восстановление нормальных функций может быть достигнуто с помощью физиотерапии и лечебной физкультуры, а также применением лекарственных препаратов. Неблагоприятное влияние невесомости на организм человека в полете можно предупредить или ограничить с помощью различных средств и методов (мышечная тренировка, электростимуляция мышц, отрицательное давление, приложенное к нижней половине тела, фармакологические и др. средства).

Другим фактором, оказывающим значительное влияние на человеческий организм при совершении космического полета, являются перегрузки.

Перегрузки космонавт испытывает при старте и возвращении космического корабля.

При старте на космонавта действует ускорение, величина которого изменяется от 1 до 7 g. Другими словами, вес космонавта во время запуска корабля как бы увеличивается в семь раз.

Человек легче всего переносит перегрузки, действующие в горизонтальной плоскости, хуже – в вертикальной. Однако способность переносить перегрузки (величина допустимых перегрузок) у разных людей различна и зависит от ряда факторов, например от скорости нарастания перегрузки, температуры окружающей среды, содержания кислорода во вдыхаемом воздухе, длительности пребывания космонавта в условиях невесомости до начала ускорения и даже от эмоционального состояния космонавта. Существуют, несомненно, и другие более сложные или менее уловимые факторы, влияние которых еще не совсем выяснено.

Перегрузки, связанные с ускорением, вызывают значительное ухудшение функционального состояния организма человека: замедляется ток крови в системе кровообращения, снижаются острота зрения и мышечная активность.

Под действием ускорения, превышающего 1 g, у космонавта могут появиться нарушения зрения. При ускорении 3 g в вертикальном направлении, длящемся более 3 секунд, могут возникнуть серьезные нарушения периферического зрения.

С увеличением перегрузок острота зрения уменьшается, поэтому в отсеках космического корабля необходимо увеличивать уровень освещенности. При продольном ускорении у космонавта возникают зрительные иллюзии. Ему кажется, что предмет, на который он смотрит, смещается в направлении результирующего вектора ускорения и силы тяжести.

При угловых ускорениях возникает кажущееся перемещение объекта зрения в плоскости вращения. Эта так называемая окологиральная иллюзия является следствием воздействия перегрузок на полукружные каналы (органы внутреннего уха).

Чтобы ослабить действие высоких ускорений, космонавта помещают в космическом корабле таким образом, чтобы перегрузки были направлены по горизонтальной оси.























Сборка пилотируемого корабля "Союз ТМА-16"
(53 сек./3.73Mb)

Уменьшить плеерДобавить видео в блог

Такое положение обеспечивает эффективное кровоснабжение головного мозга космонавта при ускорениях до 10 g, а кратковременно даже до 25 g.

При возвращении космического корабля на Землю, когда он входит в плотные слои атмосферы, космонавт испытывает перегрузки торможения, то есть отрицательного ускорения. По интегральной величине торможение соответствует ускорению при старте.

Космический корабль, входящий в плотные слои атмосферы, ориентируют так, чтобы перегрузки торможения имели горизонтальное направление. Таким образом, их воздействие на космонавта сводится к минимуму, как и во время запуска корабля.

По статистике, космонавты редко испытывают перегрузки, превышающие 4g.


 Маневренные возможности пилотируемых ЛА ограничиваются способностью людей, находящихся на его борту, переносить перегрузки.
Чем большую перегрузку можно создать на самолете, тем меньше будет радиус кривизны траектории, тем будет маневр
В зависимости от направления центростремительного ускорения субъективная сила тяжести человеческого тела (его вес) может быть больше нормального (положительная перегрузка), обращаться в нуль (невесомость) и принимать отрицательные значения (отрицательная перегрузка).

      При выходе самолета из пикирования, когда инерционная сила направлена вниз, летчика прижимает к сиденью, на него действует положительная перегрузка в направлении голова - таз. При входе самолета в пикирование, когда инерционная сила направлена вверх, летчика отрывает от сиденья, на него действует отрицательная перегрузка в направлении таз - голова.




      На рисунке показаны предельные перегрузки n в различных направлениях, переносимые человеком в зависимости от продолжительности их действия t. Переносимость перегрузки связана с механическим воздействием опоры (кресла, сиденья, ложемента) на тело человека, с приливами и отливами крови (с нарушением мозгового кровообращения).

      Рисунок объясняет, почему космонавты возвращаются на Землю в летательных аппаратах с низким аэродинамическим качеством (т.е. по баллистическим траекториям) лежа в специальных креслах спиной к направлению полета – при таком положении тела легче всего переносить перегрузки.

      Тренированные люди в специальных противоперегрузочных костюмах способны переносить достаточно высокие перегрузки в течение длительного времени. Поэтому маневренные самолеты (например, перехватчики) могут достигать эксплуатационных перегрузок (т.е. перегрузок, действующих на самолёт в процессе его нормальной эксплуатации) порядка 10–13.
Для неманевренных самолетов (пассажирские, самолеты для транспортировки грузов) эксплуатационные перегрузки не превышают 2.

Баллистические ракеты подводных лодок
1   2   3

Похожие:

Исследовательская работа. Тема: Баллистическое движение тел Работу iconБлок Свободное падение тел. Баллистическое движение. Содержание темы
Свободное падение тел – движение тел под действием силы тяжести в отсутствии сопротивления воздуха
Исследовательская работа. Тема: Баллистическое движение тел Работу iconНаучно-исследовательская работа Научно-исследовательская работа Научно-исследовательская...
Научно-исследовательская работа (нир) относится к циклу «Практики и научно-исследовательская работа» магистерской программы «Русский...
Исследовательская работа. Тема: Баллистическое движение тел Работу iconКонспект урока по математике проведенного 19. 03. 2009 в 4в классе
...
Исследовательская работа. Тема: Баллистическое движение тел Работу iconПрограмма по формированию навыков безопасного поведения на дорогах...
Прямолинейное равномерное движение тел 27 часов тема Прямолинейное равномерное движение 4 часа
Исследовательская работа. Тема: Баллистическое движение тел Работу iconУрок по теме «Движение и взаимодействие тел» ( 7 класс) Тип урока:...
Цель урока: повторить изученный материал по теме «Движение и взаимодействие тел», подготовиться к контрольной работе
Исследовательская работа. Тема: Баллистическое движение тел Работу iconИсследовательская работа «Тайна имени». Выполнила ученица 6 класса...
Научно-исследовательская деятельность в Мокрушинской школе Канского района Красноярского края
Исследовательская работа. Тема: Баллистическое движение тел Работу iconАктуальность данной программы
Свободное падение тел – движение тел под действием силы тяжести в отсутствии сопротивления воздуха
Исследовательская работа. Тема: Баллистическое движение тел Работу iconПрограмма по формированию навыков безопасного поведения на дорогах...
Физика в школе. Движение и взаимодействие тел. Движение и силы. Электронный учебник
Исследовательская работа. Тема: Баллистическое движение тел Работу iconИсследовательская работа школьников. 2007 №3 «Ученику необходимо...
Леонтович А. В. Исследовательская деятельность учащихся в современном образовательном пространстве: итоги научно-практической конференции....
Исследовательская работа. Тема: Баллистическое движение тел Работу iconПлан-конспект урока смутное время
Свободное падение тел – движение тел под действием силы тяжести в отсутствии сопротивления воздуха
Исследовательская работа. Тема: Баллистическое движение тел Работу iconПубличный отчёт о работе Детского сада №56
Свободное падение тел – движение тел под действием силы тяжести в отсутствии сопротивления воздуха
Исследовательская работа. Тема: Баллистическое движение тел Работу iconТема. Реактивное движение
Демонстрации: взаимодействие г-образной трубки с движущейся водой в ней, движение воздушного шарика при выходе воздуха из него, таблицы...
Исследовательская работа. Тема: Баллистическое движение тел Работу iconНаучно-исследовательская работа по теме «Тригонометрия и тригонометрические...
Я решил писать данную работу, чтобы узнать побольше об истории появления тригонометрии, способах решения тригонометрических уравнений...
Исследовательская работа. Тема: Баллистическое движение тел Работу iconФи ученика
Исследовательские работы школьников были представлены следующими жанрами: исследовательский реферат – 2, исследовательская работа...
Исследовательская работа. Тема: Баллистическое движение тел Работу iconДомашнее задание с 05. 02. 2013г по 11. 02. 2013г
Свободное падение тел – движение тел под действием силы тяжести в отсутствии сопротивления воздуха
Исследовательская работа. Тема: Баллистическое движение тел Работу iconДомашнее задание с 05. 02. 2013г по 11. 02. 2013г
Свободное падение тел – движение тел под действием силы тяжести в отсутствии сопротивления воздуха


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск