Мичио Каку Физика будущего





НазваниеМичио Каку Физика будущего
страница9/54
Дата публикации03.09.2013
Размер5.65 Mb.
ТипДокументы
100-bal.ru > Физика > Документы
1   ...   5   6   7   8   9   10   11   12   ...   54

Две проблемы с роботами



Учитывая очевидные ограничения компьютеров по сравнению с человеческим мозгом, несложно понять, почему нам до сих пор не удается научить компьютеры решать две ключевые задачи, которые человеческий мозг выполняет автоматически, без всякого труда. Эти задачи — распознавание образов и следование здравому смыслу — уже более полувека не даются ученым. Именно поэтому в основном у нас до сих пор нет роботов-горничных, роботов-дворецких и роботов-секретарей.

Первая из названных задач — задача распознавания образов. Роботы видят намного лучше человека, но не понимают, что видят. Входя в комнату, робот раскладывает ее изображение на множество цветных точек, а затем, обрабатывая точки, получает набор линий, окружностей, квадратов и прямоугольников. После этого робот пытается соотнести полученную мешанину деталей по очереди с каждым из объектов, хранящихся в его памяти, — чрезвычайно нудная задача даже для компьютера. После многих часов вычислений ему, может быть, удастся соотнести линии на картинке со стульями, столами и людьми, находящимися в комнате. В отличие от роботов, мы, входя в комнату, за долю секунды схватываем взглядом стулья, письменные столы и людей. В самом деле, человеческий мозг — это по сути машина для распознавания образов.

Кроме того, у роботов нет здравого смысла. Роботы могут слышать намного лучше, чем люди, но они не понимают, что слышат. Рассмотрим, к примеру, следующие утверждения.
•Дети любят сладости, но не любят наказания.

•За веревку можно тянуть, но нельзя толкать.

•Палкой можно толкать, но нельзя тянуть.

•Животные не умеют говорить и не понимают по-английски.

•От вращения у человека может закружиться голова.
Для нас каждое из этих утверждений очевидно и проистекает из обычного здравого смысла. У роботов все не так. Не существует ни одного положения логики, ни одной строки программного кода, в которых бы утверждалось, что бечевкой ничего нельзя толкнуть. Сами мы убедились в истинности этих и многих других «очевидных» утверждений на опыте, их никто не вкладывал в готовом виде нам в память.

При подходе «сверху вниз» основная проблема заключается в том, что для программирования человеческого здравого смысла, необходимого для имитации нашего мышления, потребовалось бы слишком много строк кода. К примеру, на описание принципов здравого смысла в объеме, доступном шестилетнему ребенку, ушли бы сотни миллионов строк. Ганс Моравек (Hans Moravec), бывший начальник лаборатории искусственного интеллекта в Университете Карнеги-Меллон, жалуется: «До сего дня программы ИИ не способны продемонстрировать ни крупицы здравого смысла. К примеру, медицинская диагностическая программа способна прописать антибиотик, если предложить ей для исследования сломанный велосипед. Дело в том, что у нее нет ни модели человека, ни модели болезни, ни модели велосипеда».

Тем не менее некоторые ученые упрямо верят, что единственное препятствие к овладению здравым смыслом — недостаток вычислительных мощностей. Они считают, что масштабный национальный проект наподобие Манхэттенского (в рамках которого была создана атомная бомба) наверняка смог бы преодолеть все препятствия и решить для роботов проблему здравого смысла. В 1984 г. была запущен проект под названием CYC, призванный создать «энциклопедию мысли» для роботов. Однако за прошедшие с тех пор несколько десятилетий все усилия участников проекта не увенчались сколько-нибудь серьезным успехом.

Цель проекта CYC была проста: освоить «100 млн вещей — примерно столько, сколько знает о мире средний человек, — к 2007 г.». Этот срок, как и несколько предыдущих, пришел и прошел, а успех так и не был достигнут. В ходе работы были Достигнуты многие формальные рубежи из тех, что намечали для себя инженеры CYC, но ученым и по сей день не удалось ни па шаг приблизиться к овладению основами разума.

Человек против машины



Однажды мне довелось помериться мыслями с роботом — принять участие в интеллектуальном состязании с машиной Томазо Поджо (Tomaso Poggio) из MIT. Роботы не способны распознавать простые образы, как это делаем мы, но Поджо сумел создать компьютерную программу, которая может потягаться по скорости с человеком в одной достаточно специфической области: в «мгновенном распознавании». Речь идет об уникальной способности человека мгновенно, даже не сознавая того, узнать объект. (Мгновенное распознавание играло важную роль в эволюции человека — ведь у наших предков была лишь доля секунды на то, чтобы обнаружить притаившегося в кустах тигра, а осознать и обдумать этот факт можно было и потом.) Первое время робот Поджо стабильно набирал в особом визуальном тесте больше баллов, чем человек-участник.

Состязание между мной и машиной выглядело очень просто. Я садился в кресло и некоторое время вглядывался в обычный компьютерный экран. Затем на экране на долю секунды мелькала картинка, а я должен был как можно быстрее нажать одну из двух кнопок — показать, вижу я на картинке какое-нибудь животное или нет. Решение нужно было принимать как можно быстрее — не дожидаясь восприятия картинки сознанием. Компьютер должен был принять по той же картинке аналогичное решение.

Стыдно признаться, но после множества тестов результаты машины и мои оказались примерно одинаковыми. Но иногда машина работала значительно лучше и оставляла меня далеко позади. Я проиграл компьютеру. (Единственным утешением было то, что, как мне сказали, компьютер дает правильный ответ в 82 % случаев, а человек в среднем лишь в 80 %.)

Ключ к успеху программы Поджо в том, что в ней использованы уроки матери-природы. Многие ученые только сейчас начинают понимать истинность утверждения «Колесо уже изобретено, почему бы не скопировать его?». Приведем пример.

Обычно робот, глядя на картинку, пытается разложить ее на элементы и представить как совокупность линий, кругов, квадратов и других геометрических форм. А вот робот Поджо действует иначе.

Человек, глядя на картинку, сначала воспринимает контуры объектов, затем детали внутри каждого объекта, затем оттенки внутри деталей и т. д. Таким образом, мы как бы расщепляем изображение на множество слоев. Компьютер, обработав один слой изображения, объединяет его со следующим и включает в общую картину. Так, шаг за шагом, слой за слоем, он имитирует иерархическую обработку изображения, которую использует наш мозг. (Программе Поджо недоступны невероятные возможности распознавания образов, которые мы с вами воспринимаем как нечто само собой разумеющееся, — трехмерная визуализация, распознавание тысяч объектов под самыми разными углами и т. д., — но все же нельзя не признать, что это серьезное достижение.)

Позже мне довелось увидеть в действии оба подхода к созданию ИИ. Сначала я побывал в Центре искусственного интеллекта Стэнфордского университета и встретился с роботом STAIR (Stanford artificial intelligence robot), созданным на базе традиционного подхода. STAIR — робот ростом около 120 см с огромной механической рукой на шарнирах. Этой рукой робот может брать со стола предметы. Кроме того, STAIR мобилен и может самостоятельно передвигаться по офису или жилищу. У него есть 3D-камера, которая фокусируется на объекте и подает в компьютер его трехмерное изображение, при помощи которого механическая рука может правильно захватить объект. Вообще, роботы научились брать объекты еще в 1960-х гг., и вскоре такие роботы появились на автомобильных заводах Детройта.

Но внешность обманчива. STAIR способен на большее. В него, в отличие от детройтских роботов, не заложен жесткий сценарий. Он действует сам по себе. Если вы, к примеру, попросите робота взять апельсин, то он проанализирует лежащие на столе предметы, сравнит их с тысячами изображений, заранее заложенных в его память, узнает апельсин и поднимет его со стола своей механической рукой. Кроме того, он способен идентифицировать предмет более точно, если возьмет в руку и будет поворачивать и рассматривать со всех сторон.

Чтобы проверить возможности STAIR, я перемешал предметы на столе и посмотрел, как робот будет действовать. STAIR корректно проанализировал новое расположение предметов, протянул руку и взял то, что я попросил. Создатели этого робота ставят перед собой цель научить его свободно передвигаться в доме или офисе, брать различные предметы, взаимодействовать с различными объектами и инструментами и даже разговаривать с людьми на упрощенном языке. Если это удастся, робот будет способен выполнять практически все функции, которые выполняет в офисе мальчик на побегушках. STAIR — образец подхода «сверху вниз»: все его действия запрограммированы от начала и до конца. (Хотя STAIR может распознавать предметы под разными углами, но количество предметов, которые он вообще способен распознать, пока ограничено. Окажись такой робот на улице в окружении случайных объектов, он будет мгновенно парализован.)

Позже у меня появилась возможность посетить Нью-Йоркский университет, где Янн ЛеКун (Yann LeCun) экспериментирует с совершенно другим созданием. Его робот носит имя LAGR (Learning applied to ground robots — обучение в приложении к наземным роботам) и представляет собой образец подхода «снизу вверх»: ему приходится учиться всему с нуля, натыкаясь на самые разные предметы. LAGR — робот размером с маленький гольф-мобильчик, оборудованный двумя цветными стереокамерами; он постоянно сканирует ландшафт и распознает встречающиеся предметы. После этого он начинает двигаться среди этих предметов, старательно их объезжая и узнавая что-то новое с каждым проездом. Робот оборудован GPS-приемником и имеет два инфракрасных датчика, способные засекать предметы на его пути. Он содержит три мощных процессора Pentium и подсоединен к гигабитной сети Ethernet. Мы с роботом отправились гулять по близлежащему парку, где LAGR учился объезжать возникающие на его пути помехи. Каждый раз, проходя маршрут, он приобретал новую сноровку и учился лучше обходить препятствия.

Между LAGR и STAIR есть очень важное различие, состоящее в том, что LAGR специально разработан для самообучения. Каждый раз, наталкиваясь на какое-то препятствие, он объезжает вокруг этого объекта и учится узнавать и миновать его, чтобы в следующий раз не натолкнуться. Если в памяти STAIR хранятся изображения тысяч предметов, то в памяти LAGR нет практически никаких изображений; вместо этого робот создает как бы мысленную карту всех встреченных препятствий и на каждом проходе обновляет и уточняет ее. В отличие от автомобиля-робота, который жестко запрограммирован и движется по маршруту, заранее проложенному для него при помощи системы GPS, LAGR движется совершенно самостоятельно, без всяких указаний со стороны человека. Вы говорите ему, куда двигаться, и он пускается в путь. Со временем подобных роботов можно будет обнаружить на Марсе, на поле боя и в наших жилищах.

Энтузиазм и энергия этих исследователей произвели на меня сильное впечатление. Сами они глубоко убеждены, что закладывают основы искусственного интеллекта и что когда-нибудь результаты их работы вызовут в обществе глобальные изменения, которые человечество сегодня только начинает осознавать. Но взгляд со стороны позволил мне увидеть, как далеко им еще до успеха. Даже тараканы способны распознавать предметы и учиться обходить их. Мы же пока находимся на той стадии, когда даже самые примитивные из созданий матери-природы способны победить в состязании с нашими самыми умными роботами.

1   ...   5   6   7   8   9   10   11   12   ...   54

Похожие:

Мичио Каку Физика будущего iconМитио Каку Физика невозможного
В данный момент Вы держите в руках книгу, которая представляет собой огромную силу, и я верю, что Вы так же серьезно отнесетесь к...
Мичио Каку Физика будущего iconРабочая программа по дисциплине б физика
«Физика» является изучение студентами основополагающих физических представлений о строении материального мира и фундаментальных закономерностях...
Мичио Каку Физика будущего iconПрограмма по формированию навыков безопасного поведения на дорогах...
Ы программы традиционны: механика, молекулярная физика и термодинамика, электродинамика, квантовая физика (атомная физика и физика...
Мичио Каку Физика будущего iconДве концепции будущего России и процессы трансформации национального...
...
Мичио Каку Физика будущего iconПояснительная записка рабочая программа дисциплины «Иностранный язык...
«Физика», магистерские программы «Техническая физика в нефтегазовых технологиях», «Физика наноструктур и наносистем»
Мичио Каку Физика будущего iconПрограмма «Живая физика», Институт новых технологий cd «Репетитор»
«Открытая физика. Версия 2,5», «Физикон» сd «Физика. Библиотека наглядных пособий 7-11», «Физикон»
Мичио Каку Физика будущего iconПрограмма по формированию навыков безопасного поведения на дорогах...
«Физика 7-9 классы», авторами которой являются А. В. Перышкин и Е. М. Гутник; обучение рассчитано на работу по учебникам: «Физика...
Мичио Каку Физика будущего iconПрограмма по формированию навыков безопасного поведения на дорогах...
«Физика 7-9 классы», авторами которой являются А. В. Перышкин и Е. М. Гутник; обучение рассчитано на работу по учебникам: «Физика...
Мичио Каку Физика будущего iconВашего профессионального будущего будет исполнено, стоит только его...
Если сегодня сделать выбор будущего профессионального обучения, то Вы поступили бы учиться
Мичио Каку Физика будущего iconСочинение ученика 5 класса Федорова Кирилла на тему «Роль моей семьи...

Мичио Каку Физика будущего iconРабочая программа составлена в соответствии с требованиями фгос впо...
Физика. Магистерская программа «Техническая физика в нефтегазовых технологиях», «Физика наноструктур и наносистем»
Мичио Каку Физика будущего iconФизика Магистерская программа 011200 07. 68 – "Физика наносистем и наноэлектроника"
Области профессиональной деятельности: являются все виды наблюдающихся в природе физических явлений, процессов и структур, в том...
Мичио Каку Физика будущего iconУчебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика;...
...
Мичио Каку Физика будущего iconПрограмма по формированию навыков безопасного поведения на дорогах...
Живая физика. Живая геометрия; Готовимся к егэ. Физика; Готовимся к егэ. Математика; Физика. 7 9 класс ч. 1
Мичио Каку Физика будущего iconОсновная образовательная программа магистратуры (далее магистерская...
Общая характеристика магистерской программы «Физика конденсированного состояния» по направлению подготовки 03. 04. 02 «Физика»
Мичио Каку Физика будущего iconКасьянов В. А м.: Дрофа, 2004 рабочая программа реализуется через...
Министерства образования Российской Федерации от 05. 03. 2004 №1089, Сборника нормативных документов. Физика / Сост. Программы для...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск