Методические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика»





НазваниеМетодические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика»
страница3/5
Дата публикации18.09.2013
Размер0.62 Mb.
ТипОбщие методические указания
100-bal.ru > Физика > Общие методические указания
1   2   3   4   5

Решение. Энергия конденсатора WU2/2; емкость конденсатора C=ε0S/d, следовательно, W = . Отсюда



Напряженность поля конденсатора



Объемная плотность энергии поля:



Ответ: d= 0,004 м; Е= 1,51 · 105 В/м; w= 1 · 10 -3 Дж/м3.

5. Плотность тока в никелиновом проводнике длиной 25 м равна 1 МА/м2. Определить напряжение на концах проводника.

Дано: l = 25 м; j= 1 · 106 А/м2; ρ = 4· 10 -7 Ом ·м.

Найти: U.

Решение. По закону Ома в дифференциальной форме плотность тока j в проводнике пропорциональна напряженности Е поля в проводнике j = γE, где - удельная проводимость; ρ –удельное сопротивление проводника. С другой стороны , где U-напряженность на концах проводника длиной ℓ. Тогда , откуда U=jpl = 1 · 106 · 4 · 10 -7 ·25 = 10 В.

Ответ: U=10 В.

6. Определить электродвижущую силу аккумуляторной батареи, ток короткого замыкания которой равен 10 А, если при подключении к ней резистора сопротивлением 2 Ом сила тока в цепи равна 1 А.

Дано: Iкз=10 A; R = 2 Ом; I=1 А.

Найти: ε.

Решение. По закону Ома и , где r - внутреннее сопротивление батареи. При коротком замыкании цепи внешнее сопротивление R = 0 и Iкз = ε/r, откуда r=ε/Iкз. Тогда ε= I(R+ε/Iкз), или

Ответ: ε = 2,2 В.

7. Изолированный прямолинейный проводник изогнут в виде прямого угла со стороной длиной 20 см. В плоскости угла помещен кольцевой проводник радиусом 10 см так, что стороны угла являются касательными к нему (рис. 3). Найти индукцию в центре кольца. Силы токов в проводнике равны 2 А. Влия­ние проводящих проводов не учитывать.

Дано: /=0,2 м; /о = 0,1 м; /, = /2 = /=2 А.

Найти: В.

Решение: Индукция dВ в точке поля от элемента любой конфигурации проводника dℓ с током I определяется по закону Био - Савара - Лапласа:

, (1)

где г-расстояние от элемента до точки, где определяется индукция; a - угол, составленный векторами dℓ и r; μo - магнитная постоянная. Направление вектора индукции перпендикулярно плос­кости, содержащей dℓ и г, и определяется правилом правого винта. Например, в центре окружности (см. рис. 3) векторы индукции от всех элементов перпендикулярны плоскости окружности и направлены на нас. Интегрируя выражение (1), получаем индукцию в центре окружности радиуса г0:

Индукция, создаваемая в точке М отрезками АВ и ВС прямого проводника на расстоянии г0 от него, равна:.



рис.3

Векторы индукции В2 и В3 в точке М совпадают по направлению с В1. По условию задачи α1 = 45°, α2= 135° и индукция от двух сторон угла составляет:



Результирующая индукция в центре кольца равна сумме:





Ответ: В =18,22 мкТл.

8. На рис. 4 изображены сечения трех прямолинейных бесконечно длинных проводников с токами. Расстояния АВ= ВС=5 см, токи I1= I2 = I;

I3 =2I. Найти точку на прямой АС, в которой напряженность магнитного поля, вызванного токами I1, I2, I3, равна нулю.

Дано: АВ=ВС=а=5 см; I1, = I2 = I; I3 = 2I.

Найти: r.

Рис. 4

Решение: Напряженность Н магнитного поля, созданного каждым из проводников на расстоянии R от проводника, определяется по формуле:

Н =. С учетом направления токов искомая точка находится на отрезке АВ на расстоянии r от проводника с током I1.



Как видно из рис. 4. Н13 = Н2.



Решая уравнение относительно г, получим г = 3,33 см.

Ответ: г=3,33 см.

9. Квадратная рамка со стороной 1 см содержит 100 витков и помещена в однородное магнитное поле напряженностью 100 А/м. Направление поля составляет угол 30° с нормалью к рамке (рис. 5). Какая работа совершается при повороте рамки на 30° в одну и другую сторону, если по ней течет ток 1 А?

Дано: а = 0,04 м; N= 100; Н= 100 А/м; α0 = 30°; I=1А.

Найти: А1 и А2.

Решение: При повороте рамки на 30° по часовой стрелке угол α1 между В и n будет равен 0°, т. е. рамка расположится перпендикулярно полю. При повороте рамки на 30° в другую сторону угол α2 между В и n будет равен 60°. Работа поворота рамки А=IΔФ, где I -ток; ΔФ= Ф0- Ф - изменение магнитного потока, пронизываю­щего плоскость рамки. Ф=BScosα, где S -площадь рамки, S=a2;

рис. 5

В- индукция магнитного поля, B=μ0Н; μ0 - магнитная постоянная; Н- напряженность магнитного поля.

; ;

Тогда ;

;

Ответ: А1=2,6·10-6 Дж; А2=7,3·10-6Дж.

10. Электрон с энергией 300 эВ движется перпендикулярно линиям индукции однородного магнитного поля напряженностью 465 А/м. Определить силу Лоренца, скорость и радиус траектории электрона.

Дано: Е=300 эВ = 4,8 · 10-17 Дж; Н=465 А/м; m = 9,1·10-31 кг.

Найти: Fл; ν; r.

Решение. Кинетическая энергия электрона E=mv2/2, откуда



Сила Лоренца

F=qvB,

где q- заряд; В- индукция магнитного поля, B=μμ0H; μ-магнитная проницаемость среды; μ0 - магнитная постоянная; Н- напряженность поля.



В магнитном поле электрон движется по окружности радиуса r под действием центростремительной силы Fц=, численно равной силе Лоренца: Fл=Fц, тогда



Ответ: Fл = 1· 10 -15 Н; ν= 1 · 107 м/с; r =0,1 м.

11. Перпендикулярно линиям индукции однородного магнитного поля индукцией 0,1 мТл по двум параллельным проводникам движется без трения перемычка длиной 20 см (рис. 6). При замыкании цепи, содержащей эту перемычку, в ней идет ток 0,01 А. Определить скорость движения перемычки. Сопротивление цепи 0,1 Ом.

Дано: В=1·10-4 Тл; l=0,2 м; I1=0,01A; R=0,1 Ом.

Найти: ν.



Рис. 6

Решение: Если проводник длиной ℓ движется перпендикулярно линиям индукции В магнитного поля со скоростью , то на концах его возникает ЭДС индукции εi, равная скорости изменения маг­нитного потока Ф. . Магнитный поток Ф=BS, где S- площадь, которую пересекает проводник при своем перемещении (на рис. 6 заштрихована).



Если в перемычке с сопротивлением R возникает ток ℓ, значит на концах ее возникла ЭДС, равная εi = IR. Эта ЭДС равна



Приравнивая правые части этих выражений, получим I1 R=Bvl, откуда



Ответ: = 50 м/с.

12. Цепь состоит из соленоида и источника тока. Соленоид без сердечника длиной 15 см и диаметром 4 см имеет плотную намотку из двух слоев медного провода диаметром 0,2 мм. По соленоиду течет ток 1 А. Определить ЭДС самоиндукции в соленоиде в тот момент времени после отключения его от источника, когда сила тока уменьшилась в два раза. Сопротивлением источника и подво­дящих проводов пренебречь.

Дано: l =15 см = 0,15 м; D=4 см = 4- 10 -2 м; n = 2; d=0,2 мм = = 2∙10 -4 м; I0=1А, I=Iо/2; ρ = 1,7 – 10 -8 Ом ∙ м.

Найти: ε.

Решение: При размыкании цепи сила тока I = I0exp , где R и L - сопротивление и индуктивность соленоида. ЭДС самоиндукции . В момент t, когда I=I0/2, ЭДС самоиндукции . Сопротивление провода , где - длина провода; -его сечение. Таким образом, , следовательно,



Ответ: ε=51В.

13. Соленоид без сердечника имеет плотную однослойную намотку провода диаметром 0,2 мм и по нему течет ток 0,1А. Длина соленоида 20 см, диаметр 5 см. Найти энергию и объемную плотность энергии магнитного поля соленоида.

Дано: I=0,1 A; D=0,05; ℓ=0,2 м; μ=1.

Найти: W, w.

Решение. Энергия магнитного поля соленоида W=LI2/2, где L- индуктивность соленоида, 0-магнитная постоянная; n- число витков на 1 м длины соленоида, при плотной намотке n=1/d; l- длина соленоида; S=πD2/4 – площадь сечения соленоида. Тогда:

.

Объемная плотность энергии определяется по формуле:



Ответ: W=6,2∙10-5 Дж; w=0,16 Дж/м3.


Контрольная работа 3

Таблица вариантов для специальностей, учебными планами которых предусмотрено по курсу физики шесть контрольных работ

Вариант

Номера задач

0

310

320

330

340

350

360

370

380

1

301

311

321

331

341

351

361

371

2

302

312

322

332

342

352

362

372

3

303

313

323

333

343

353

363

373

4

304

314

324

334

344

354

364

374

5

305

315

325

335

345

355

365

375

6

306

316

326

336

346

356

366

376

7

307

317

327

337

347

357

367

377

8

308

318

328

338

348

358

368

378

9

309

319

329

339

349

359

369

379


301. Два заряда находятся в керосине на расстоянии 1 см друг от друга и взаимодействуют с силой 2,7 Н. Величина одного заряда в три раза больше, чем другого. Определить величину каждого заряда.

302. Два точечных заряда, находясь в воде (ε1 = 81) на расстоянии ℓ друг от друга, взаимодействуют с некоторой силой F. Во сколько раз необходимо уменьшить расстояние между ними, чтобы они взаимодействовали с такой же силой в воздухе?

303. Два шарика одинакового объема, обладающие массой 6 ∙ 10-4 г каждый, подвешены на шелковых нитях длиной 0,4 м так, что их поверхности соприкасаются. Угол, на который разошлись нити при сообщении шарикам одинаковых зарядов, равен 60°. Найти величину зарядов и силу электростатического отталкивания.

304. В углах при основании равнобедренного треугольника с боковой стороной 8 см расположены заряды Q1 и Q2. Определить силу, действующую на заряд величиной 1 нКл, помещенный в вершине треугольника. Угол при вершине 120°. Рассмотреть случай: а) Q1 = Q2 = 2 нКл; б) Q1 = -Q2 = 2 нКл.

305. Два равных отрицательных заряда по 9 нКл каждый находятся в воде на расстоянии 8 см друг от друга. Определить напряженность и потенциал поля в точке, расположенной на расстоянии 5 см от зарядов.

306. Две бесконечно длинные равномерно заряженные нити с линейной плотностью зарядов 6 ∙ 10-5 Кл/м расположены на расстоянии 0,2 м друг от друга. Найти напряженность электрического поля, созданного в точке, удаленной на 0,2 м от каждой нити.

307. Две параллельные металлические пластины, расположенные в диэлектрике (ε = 2,2), обладают поверхностной плотностью заряда 3 и 2 мкКл/м2. Определить напряженность и индукцию электрического поля между пластинами и за пределами пространства между ними.

308. В вершинах квадрата со стороной 0,1 м помещены заряды по 0,1 нКл каждый. Определить напряженность и потенциал поля в центре квадрата, если один из зарядов отличается по знаку от остальных.

309. Пространство между двумя параллельными бесконечными плоскостями с поверхностной плотностью зарядов +5∙10 -8 Кл/м2 и -9 ∙ 10-8 Кл/м2 заполнено стеклом. Определить напряженность поля: а) между плоскостями; б) вне плоскостей.

310. Заряды по 1 нКл каждый помещены в вершинах равностороннего треугольника со стороной 0,2 м. Равнодействующая сил, действующих на четвертый заряд, помещенный в середине одной из сторон треугольника, равна 0,6 мкН. Определить величину этого заряда, напряженность и потенциал поля в точке его расположения.

311. Точечные заряды Q1 = 20 мкКл, Q2=-10 мкКл находятся на расстоянии d = 5 см друг от друга. Определить напряженность поля в точке, удаленной на r1 = 3 от первого и на г2 = 4 см от второго заряда. Определить также силу F, действующую в этой точке на точечный заряд Q=l мкКл.

312. Три одинаковых точечных заряда Q1 = Q2 =Q3 = 2 нКл находятся в вершинах равностороннего треугольника со сторонами а=10см. Определить модуль и направление силы F, действующей на один из зарядов со стороны двух других.

313. Два положительных точечных заряда Q и 9Q закреплены на расстоянии d= 100 см друг от друга. Определить, в какой точке на прямой, проходящей через заряды, следует поместить третий заряд так, чтобы он находился в равновесии. Указать, какой знак должен иметь этот заряд для того, чтобы равновесие было устойчивым, если перемещения зарядов возможны только вдоль прямой, проходящей через закрепленные зapяды.

314. Два одинаково заряженных шарика подвешены в одной точке на нитях одинаковой длины. При этом нити разошлись на угол α. Шарики погружают в масло. Какова плотность ρ масла, если угол расхождения нитей при погружении в масло остается неизменным? Плотность материала шариков ρо== 1,5-103 кг/м3, диэлектрическая проницаемость масла ε = 2,2.

315. Четыре одинаковых заряда Q1=Q2=Q3=Q4 =40 кНл закреплены в вершинах квадрата со стороной а=10см. Найти силу F, действующую на один из этих зарядов со стороны трех остальных.

316. Точечные заряды Q1=30 мкКл и Q2= -20 мкКл находятся на расстоянии d=20см друг от друга. Определить напряженность электрического поля Е в точке, удаленной от первого заряда на расстояние r1= 30 cм, a от второго - на r2 = 15 см.

317. В вершинах правильного треугольника со стороной а=10см находятся заряды Q1=10мкКл, Q2 =20 мкКл и Q3 = 30 мкКл. Определить силу F, действующую на заряд Q1 со стороны двух других зарядов.

318. В вершинах квадрата находятся одинаковые заряды Q1 = Q2= Qз= Q4=8∙10 -10 Кл. Какой отрицательный заряд Q нужно поместить в центре квадрата, чтобы сила взаимного отталкивания положительных зарядов была уравновешена силой притяжения отрицательного заряда?

319. На расстоянии d = 20 см находятся два точечных заряда: Q1 = -50 нКл и Q2=100 нКл. Определить силу F, действующую на заряд Qз =-10 нКл, удаленный от. обоих зарядов на одинаковое расстояние, равное d.

320. Расстояние d между двумя точечными зарядами Q1 = 2 нКл, и Q2 = 4 нКл, равно 60 см. Определить точку, в которую нужно поместить третий заряд Q3 так, чтобы система зарядов находилась в равновесии. Определить заряд Q3 и его знак. Устойчивое или неустойчивое будет равновесие?

321. Пылинка массой 8 ∙10 -15 кг удерживается в равновесии между горизонтально расположенными обкладками плоского воздушного конденсатора. Разность потенциалов между обкладками 49 В, а расстояние между ними 1 см. Определить, во сколько раз заряд пылинки больше элементарного заряда.

322. Заряд, равный 1 нКл, переносится в воздухе из точки, находящейся на расстоянии 1 м от бесконечно длинной, равномерно заряженной нити, в точку, находящуюся на расстоянии 10 см от нее. Определить работу, совершаемую против сил поля, если линейная плотность заряда нити равна 1 мкКл/м.

323. Заряд равный 1 нКл находится на расстоянии 0,2 м от бесконечно длинной равномерно заряженной нити. Под действием поля нити заряд перемещается на 0,1 м. Определить линейную плотность заряда нити, если работа сил поля равна 0,1 мкДж.

324. Заряд, равный 1 нКл, переносится из бесконечности в точку, находящуюся на расстоянии 1 см от поверхности заряженного шара радиусом 9 см. Поверхностная плотность положительного заряда равна 1•10 -4 Кл/м2. Определить совершаемую при этом работу.

325. Какую работу надо совершить, чтобы заряды, равные 1 и 2 нКл, с расстояния 0,5 м сблизились до расстояния 0,1 м?

326. Заряд -1 нКл переместился в поле заряда +1,5 нКл из точки с потенциалом 100В в точку с потенциалом 600 В. Определить работу сил поля и расстояние между этими точками.

327. В поле бесконечной равномерно заряженной плоскости с поверхностной плотностью заряда 10 мкКл/м2 из точки, находящейся на расстоянии 0,5 м от нее, перемещается заряд. Определить его величину, если при этом совершается работа, равная 1 мДж.

328. Заряд на каждом из двух последовательно соединенных конденсаторов емкостью 18 и 10 мкФ равен 0,09 нКл. Определить емкость батареи конденсаторов и напряжение на этой батарее и на каждом конденсаторе.

329. Вычислить емкость батареи, состоящей из трех конденсаторов емкостью 1 мкФ каждый, при всех возможных случаях их соединения.

330. К одной из обкладок плоского конденсатора прилегает стеклянная плоскопараллельная пластина (ε1=7) толщиной 9 мм. После того как конденсатор отключили от источника напряжения 220 В и вынули стеклянную пластину, между обкладками установилась разность потенциалов 976 В. Определить зазор между обкладками конденсатора.

331. Тонкий стержень длиной ℓ=20 см несет равномерно распределенный заряд τ=0,1 мкКл. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке А, лежащей на оси стержня на расстоянии а = 20 см от его конца.

332. По тонкому полукольцу радиуса R= 10 см равномерно распределен заряд с линейной плотностью τ=1мкКл/м. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца.

333. Тонкое кольцо несет распределенный заряд Q=0,2 мкКл. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке А, равноудаленной от всех точек кольца на расстояние r = 20 см. Радиус кольца R=10см.

334. Треть тонкого кольца радиуса R=10 см несет распределенный заряд Q= 50нКл. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца.

335. Бесконечный тонкий стержень, ограниченный с одной стороны, несет равномерно распределенный заряд с линейной плотностью τ =0,5 мкКл/м. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке А, лежащей на оси стержня на расстоянии а=20 см от его начала.

336. По тонкому кольцу радиусом R=20 см равномерно распределен с линейной плотностью τ= 0,2 мкКл/м заряд. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке А, находящейся на оси кольца на расстоянии h = 2R от его центра.

337. По тонкому полукольцу равномерно распределен заряд Q=20 мкКл с линейной плотностью τ=0,1 мкКл/м. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца.

338. Четверть тонкого кольца радиусом R=10 см несет равномерно распределенный заряд Q=0,05 мкКл. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца.

339. По тонкому кольцу равномерно распределен заряд Q=10 нКл с линейной плотностью τ=0,01 мкКл/м.; Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке А, лежащей на оси кольца и удаленной от его центра на расстояние, равное радиусу кольца.

340. Две трети тонкого кольца радиусом R=10 см несут равномерно распределенный с линейной плотностью τ=0,2 мкКл/м заряд. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца.

341. Батарею из двух конденсаторов емкостью 400 и 500 мкФ соединили последовательно и включили в сеть с напряжением 220 В. Потом батарею отключили от сети, конденсаторы разъединили и соединили параллельно обкладкам с одноименными зарядами. Определить напряжение на зажимах полученной батареи.

342. Со скоростью 2•107 м/с электрон влетает в пространство между обкладками плоского конденсатора в середине зазора в направлении параллельном обкладкам. При какой минимальной разности потенциалов на обкладках электрон не вылетит из конденсатора, если длина конденсатора 10 см, а расстояние между его обкладками 1 см?

343. Как изменяется электроемкость и энергия плоского воздушного конденсатора, если параллельно его обкладкам ввести металлическую пластину толщиной 1 мм. Площадь обкладки конденсатора и пластины 150 см2, расстояние между обкладками 6 мм. Конденсатор заряжен до 400 В и отключен от батареи.

344. Заряд конденсатора 1 мкКл, площадь пластин 100 см2, зазор между пластинами заполнен слюдой. Определить объемную плотность энергии поля конденсатора и силу притяжения пластин.

345. Электроемкость плоского воздушного конденсатора 1 нФ, зазор между обкладками 4 мм, площадь обкладок 100 см2. На помещенный между обкладками заряд 4,9 нКл действует сила 98 мкН. Определить напряженность поля и разность потенциалов между обкладками, энергию и объемную, плотность энергии поля.

346. Под действием силы притяжения 1 мН диэлектрик между обкладками конденсатора находится под давлением 1 Па. Определить энергию и объемную плотность энергии поля конденсатора, если расстояние между его обкладками 1 мм.

347. Напряженность поля плоского воздушного конденсатора, заряженного до разности потенциалов 300 В, равна 300 кВ/м. Площадь пластин 1 см2. Определите емкость и энергию конденсатора.

348. Найти объемную плотность энергии электрического поля, создаваемого заряженной металлической сферой радиусом 5 см на расстоянии 5 см от ее поверхности, если поверхностная плотность заряда на ней составляет 2 ∙10 -6 Кл/м2.

349. Энергия плоского воздушного конденсатора 0,4 нДж, разность потенциалов на обкладках 60 В, площадь пластин 1 см2. Определить расстояние между обкладками, напряженность поля и объемную плотность энергии поля конденсатора.

350. Пластины плоского слюдяного (ε = 6) конденсатора площадью 0,01 м2 притягиваются с силой 30 мН. Найти заряд пластины, напряженность и объемную плотность энергии поля.

351. Пылинка массой m=200 мкг, несущая на себе заряд Q=40нКл, влетела в электрическое поле в направлении силовых линий. После прохождения разности потенциалов U==200В в пылинка имела скорость v=10 м/с. Определить скорость v0 пылинки до того, как она влетела в поле.

352. Электрон, обладавший кинетической энергией Т=10 эВ , влетел в однородное электрическое поле в направлении силовых линий поля. Какой скоростью будет обладать электрон, пройдя в этом поле разность потенциалов U=8 В?

553. Найти отношение скоростей ионов Си++ и К+, прошедших одинаковую разность потенциалов.

554. Электрон с энергией Т=400эВ (в бесконечности) движется вдоль силовой линии по направлению к поверхности металлической заряженной сферы радиусом R=10см. Определить минимальное расстояние а, на которое приблизится электрон к поверхности сферы, если заряд ее Q=-10 нКл.

355. Электрон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобрел скорость v=105 м/с. Расстояние между пластинами d=8 мм. Найти: 1) разность потенциалов U между пластинами; 2) поверхностную плотность заряда σ на пластинах.

356. Пылинка массой m=5 нг, несущая на себе N=10электронов, прошла в вакууме ускоряющую разность потенциалов U=1МВ. Какова кинетическая энергия Т пылинка? Какую скорость v приобрела пылинка?

357. Какой минимальной скоростью vmin должен обладать протон, чтобы он мог достигнуть поверхности заряженного до потенциала φ=400 В металлического шара (рис. 7)

рис.7
358. В однородное электрическое поле напряженностью Е=220 В/м влетает (вдоль силовой линии) электрон со скоростью v0=2Мм/с. Определить расстояние ℓ, которое пройдет электрон до точки, в которой его скорость будет равна половине начальной.

359. Электрическое поле создано бесконечной заряженной прямой линией с равномерно распределенным зарядом (τ=10 нКл/м). Определить кинетическую энергию Т2 электрона в точке 2, если в точке 1 его кинетическая энергия Т1=200 эВ. Рис. 8.

рис.8

360. Электрон движется вдоль силовой линии однородного электрического поля. В некоторой точке поля с потенциалом φ1=100 В электрон имел скорость V1=6Мм/с. Определить потенциал φ2 точки поля, дойдя до которой электрон потеряет половину своей скорости.

361. В медном проводнике сечением 6 мм2 и длиной 5 м течет ток. За 1 мин в проводнике выделяется 18 Дж теплоты. Определить напряженность поля, плотность и силу тока в проводнике.

362. Внутреннее сопротивление аккумулятора 2 Ом. При замыкании его одним резистором сила тока равна 4 А, при замыкании другим резистором - 2 А. Во внешней цепи в обоих случаях выделяется одинаковая мощность. Определить ЭДС аккумулятора и внешние сопротивления цепей.

363. ЭДС батареи равна 20 В. Коэффициент полезного действия батареи составляет 0,8 при силе тока 4 А. Чему равно внутреннее сопротивление батареи?

364. Сила тока в резисторе сопротивлением 10 Ом за 4 с линейно возрастает от 0 до 8 А. Определить количество теплоты, выделившейся в резисторе за первые 3 с.

365. Батарея состоит из 5 последовательно соединенных элементов. Внутреннее сопротивление и ЭДС каждого 0,3 Ом и 1,4 В соответственно. При каком токе полезная мощность батареи равна 8 Вт?

366. Напряжение на концах проводника сопротивлением 5 Ом за 0,5 с равномерно возрастает от 0 до 20 В. Какой заряд проходит через проводник за это время?

367. Сила тока в проводнике равномерно возрастает от 0 до 2 А в течение 5 с. Определить заряд, прошедший по проводнику.

368. Сила тока в проводнике сопротивлением 100 Ом равномерно убывает с 10 до 0 А за 30 с. Определить количество теплоты, выделившейся в проводнике за это время.

369. Плотность тока в медном проводнике равна 0,1 МА/м2. Определить объемную плотность тепловой мощности тока.

370. Определить плотность тока, если за 2 с через проводник сечением 1,6 мм2 прошло 2∙ 1019 электронов.

371. За время t = 20 с при равномерно возраставшей силе тока от нуля до некоторого максимума в проводнике сопротивлением R = 5 Ом выделилось количество теплоты Q = 4 кДж. Определить скорость нарастания силы тока, если сопротивление проводника R = 5 Ом.

372. Сила тока в проводнике изменяется со временем по закону I = Iое -αt, где I0 = 20 А, α= 102с-1. Определить количество теплоты, выделившееся в проводнике за время t = 10 -2 с.

373. Сила тока в проводнике сопротивлением R = 10 Ом за время t = 50 с равномерно нарастает от I1= 5 А до I2 = 10 А. Определить количество теплоты Q, выделившееся за это время в проводнике.

374. В проводнике за время t = 10 с при равномерном возрастании силы тока от I1 = 1А до I2 = 2А выделилось количество теплоты Q = 5 кДж. Найти сопротивление R проводника.

375. Сила тока в проводнике изменяется со временем по закону

I= I0sinωt. Найти заряд Q, проходящий через поперечное сечение проводника за время t, равное половине периода Т, если начальная сила тока I0 = 10 А, циклическая частота ω = 50πс -1.

376. За время t = 10 с при равномерно возрастающей силе тока от нуля до некоторого максимума в проводнике выделилось количество теплоты Q = 40 кДж. Определить среднюю силу тока в проводнике, если его сопротивление R = 25 Ом.

377. За время t = 8 с при равномерно возраставшей силе тока в проводнике сопротивлением R = 8 Ом выделилось количество теплоты Q = 500 Дж. Определить заряд q, проходящий в проводнике, если сила тока в начальный момент времени равна нулю.

378. Определить количество теплоты Q, выделившееся за время t = 10 с в проводнике сопротивлением R = 10 Ом, если сила тока в нем, равномерно уменьшаясь, изменилась от I1 = 10 А до I2 = 0.

379. Сила тока в цепи изменяется по закону I=I0sinωt. Определить количество теплоты, которое выделится в проводнике сопротивлением R= 10 Ом за время, равное четверти периода (от t1 = 0 до t2 = Т/4, где где Т= 10 с).

380. Сила тока в цепи изменяется со временем по закону I=Iое αt. Определить количество теплоты, которое выделится в проводнике сопротивлением R=20Ом за время, в течение которого ток уменьшится в е раз. Коэффициент α принять равным 2∙10-2 с-1.
1   2   3   4   5

Похожие:

Методические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика» iconМетодические указания и контрольные задания для студентов заочников...
Охватывают такие вопросы, как определение амплитуд скорости, ускорения и энергии, периода механических колебаний, силы тока, напряжения,...
Методические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика» iconМетодические указания и контрольные задания для студентов-заочников...
Методические указания предназначены для студентов-заочников экономических специальностей сельско­хозяйственных высших учебных заведений,...
Методические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика» iconМетодические указания и контрольные задания для студентов-заочников...
Методические указания и контрольные задания для студентов-заочников Салаватского индустриального колледжа
Методические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика» iconМетодические указания и контрольные задания для студентов-заочников...
Методические указания и контрольные задания для студентов-заочников Салаватского индустриального колледжа
Методические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика» iconРоссийской Федерации Омский государственный технический университет
Контрольные задания по немецкому языку для студентов – заочников технических специальностей
Методические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика» iconМетодические указания и контрольные задания для студентов-заочников...
...
Методические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика» iconМетодические указания и контрольные задания для студентов первого...
Английский язык: Методические указания и контрольные задания для студентов первого
Методические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика» iconМетодические указания и контрольные задания для студентов-заочников...
Государственное образовательное учреждение среднего профессионального образования
Методические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика» iconМетодические указания и контрольные задания для студентов специальности 240801. 65
Методические указания по курсу «Безопасность жизнедеятельности» разработаны в соответствии с рекомендациями Минобразования России...
Методические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика» iconМетодические указания и контрольные задания для студентов-заочников...

Методические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика» iconМетодические указания и контрольные задания по немецкому языку для...
Министерство образования и науки Российской Федерации Государственное бюджетное профессиональное образовательное учреждение «Авиационный...
Методические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика» iconМетодические указания и контрольные задания для студентов-заочников
Методические указания составлены в соответствии с рабочей программой по дисциплине "Грузоподъемные механизмы и транспортные средства"...
Методические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика» iconМетодические указания для выполнения контрольных заданий для студентов...
Методические указания предназначены для студентов I курса фдо инженерных специальностей. В методических указаниях содержатся контрольные...
Методические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика» iconМетодические рекомендации к выполнению домашних письменных работ
Методические указания предназначены для организации семинарских занятий по курсу «Психология делового общения» для факультетов технических...
Методические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика» iconМетодические рекомендации к выполнению домашних письменных работ
Методические указания предназначены для организации семинарских занятий по курсу «Психология делового общения» для факультетов технических...
Методические указания и контрольные задания для студентов заочников инженерно технических специальностей по курсу «Общая физика» iconРабочая программа, методические указания и контрольные задания для студентов всех специальностей
Культурология: рабочая программа, метод указания и контр задания для студентов всех специальностей идо / Сост. Т. А. Чухно, Н. А....


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск