Конкурс aes и блочная криптосистема Rijndael 44





НазваниеКонкурс aes и блочная криптосистема Rijndael 44
страница2/10
Дата публикации23.07.2013
Размер0.88 Mb.
ТипКонкурс
100-bal.ru > Информатика > Конкурс
1   2   3   4   5   6   7   8   9   10

В XVI веке заметный вклад в развитие криптографии внесли Матео Ардженти, Жовани Батиста Белазо, Джовани Батиста Порта, Кордано и др. Матео Ардженти был криптографом папы римского, именно ему принадлежит идея использования слова-лозунга для придания алфавиту легко запоминаемого смешанного вида. Ардженти также предложил вставлять в шифртекст большое количество букв «пустышек», устранять пунктуацию, не вставлять в шифртекст открытые слова («клер»), заменять буквы шифртекста на цифры. Белазо и Порта развили идеи Ардженти в своих трудах «Шифр сеньора Белазо» и «О тайной переписке».

Существенный вклад в развитие криптографии внес математик, врач и философ Кордано. Предложенный им шифр вошел в историю под названием «решетка Кордано». «Решетка Кордано» - это шифр перестановки, суть которого заключается в следующем. Брался лист плотного материала (картон, пергамент), представляющий собой квадрат в котором вырезаны «окна». При шифровании квадрат накладывался на лист бумаги и сообщение вписывалось в «окна», затем квадрат поворачивался на 90 градусов и сообщение продолжали записывать в «окна» повернутого квадрата. Такая процедура продолжалась до полного поворота квадрата на 360 градусов. Главное требование «решетки Кордано» - при всех поворотах «окна» не должны попадать на дно и тоже место, а при полном повороте квадрата все места в шифртексте оказываются занятыми. Шифртекст считывался по строкам из полученной таблицы. Предложенный Кордано шифр лежит в основе знаменитого шифра Ришелье, в котором шифрованный текст внешне имел вид обычного послания. Накладывая на лист с таким посланием прямоугольник прорезанными с окнами можно было прочесть сообщение. Шифр Ришелье не относиться ни к шифрам замены, ни к шифрам перестановки, он представлял собой стеганографический способ защиты информации. Такого рода шифром пользовался русский писатель и государственный деятель А.С. Грибоедов будучи послом в Персии.

Кордано выдвинул, но не успел целиком реализовать идею «самоключа». Суть ее заключается в использовании в качестве ключа части открытого сообщения.

Познакомившись в трудами Тритемия, Белазо, Кордано и Альберти французский государственный деятель Блез де Виженер разработал собственный шифр, который получил название шифр Виженера. Суть шифра заключалась в том, что выбирался секретное слово, которое являлось ключом шифра. Это слово выписывалось под открытым сообщением периодически. Верхняя буква открытого текста соответствовала столбцу таблицы Тритемия, а нижняя буква ключа ЁC строке таблицы Тритемия, буква, стоящая на пересечение строки и столбца являлась буквой шифртекста. Шифр Виженера представляет собой шифр замены. В последующем этот шифр был несколько упрощен для практического использования начальником первого в Германии государственного дешифровального отдела графом Гронсфельдом. Шифр Виженера и шифр Гронсфельда являются по сути дела родоначальниками широко используемого в настоящее время шифра гаммирования. Шифр Виженера использовался в различных вариантах вплоть до XIX века. Одним из наиболее известных модификаций шифра Виженера является шифр английского адмирала Бофора. Достоинство шифра Бофора заключается в том, что правило зашифрования сообщений и их расшифрования совпадают.

Широкое развитие криптографии в XVI веке было связано в развитие естественных наук, математики. В это же время в Европе появляются первые специальные органы дипломатической службы, которые занимались вопросами шифрования собственной корреспонденции и дешифрования перехваченной корреспонденции. XVII-XVIII века вошли в историю криптографии как эра «черных кабинетов». «Черные кабинеты» - специальный государственный орган по перехвату, перлюстрации и дешифрованию переписки, в первую очередь дипломатической. В штат «черных кабинетов» входили дешифровальщики, агенты по перехвату почты, писцы-копировальщики, переводчики, специалисты по подделке печатей, химики, специалисты по подделке почерков и т.д. Эти специалисты ценились весьма высоко и находились под особым покровительством властей, предательство очень сурово наказывалось.

В XIX веке появляются первые механические шифровальные устройства. Наиболее известными являются изобретения полковника американской армии Д. Уодсворта и английского инженера Ч. Уитстона. Устройство Уодсворта (1817 г.) представляло механический шифратор основными элементами которого были два шифровальных диска, на торце дного располагались буквы английского алфавита, а на торце второго буквы и цифры от 2 до 8. Литеры на втором диске били съемные, что позволяло менять алфавит шифрованного текста. Диски помещались в футляр с прорезанными в нем окнами. При вращении первого диска в верхнем окне выставлялась буква открытого сообщения. Диски были соединены шестеренчатой передачей, поэтому в нижнем окне появлялась соответствующая буква шифртекста. Устройство было снабжено специальной кнопкой для разъединения дисков. Это требовалось для того, чтобы обеспечивать установку устройства в заданное начальное положение. В устройстве Уодсворта просматриваются идеи Альберти, Тритемия, Виженера. Несмотря на то, что устройство было достаточно громоздким, к тому же в это время господствовали «ручные» шифры, которые не требовали специальных приспособлений, оно послужило толчком к развитию механических устройств для шифрования и расшифрования сообщений.

Интересное предложение по созданию механического устройства шифрования сделал Ч. Уитстон во второй половине XX века. В устройстве Уитстона просматриваются идеи Альберти, а также Уодсворта. Внешне устройство Уитстона напоминает диск Альберти, однако в нем реализована парадоксальная идея ЁC алфавит открытого текста содержит большее количество знаков, чем шифрованного. Проблема неоднозначности в определении букв открытого сообщения решена Уитстоном блестяще. На рис. 1.4 представлен внешний вид устройства Уитстона.

Внешний диск, диск алфавита открытого текста, состоял из 27 знаков (26 букв английского алфавита и специального знака "+", означающего пробел). Внутренний алфавит определяет алфавит открытого текста и состоит из обычных 26 букв, расположенных в произвольном ключевом порядке. На той же оси, что и диски (алфавиты) устройства, соединенные шестернями размером 27Ч26 соответственно, расположены две стрелки, как в современных часах.

Рис. 1.4. Внешний вид устройства Ч. Уитстона
В начале шифрования большая (длинная) стрелка указывает на знак "+". Малая стрелка, связанная с большой резьбовой шестеренкой, ставилась в то же положение, т.е. "часы" показывали "12.00". Набор букв открытого текста производился поворотом большой стрелки по направлению движения часовой. После такого поворота малая стрелка указывает знак шифрованного текста. Таким образом, при полном повороте большого диска малый диск смещался на единицу по отношению к исходному взаимному состоянию двух дисков, что приводило к сдвиговому изменению алфавита шифрованного текста по отношению к алфавиту открытого текста. По окончании каждого слова большая стрелка становилась на знак "+", буква, на которую при этом указывала короткая стрелка, записывалась как знак шифрованного текста. Во избежание неоднозначности расшифрования, удвоение букв в открытом тексте не допускается. Повторную букву следует либо пропустить, либо ставить вместо нее какую-нибудь редкую букву, например Q. Например, слово THE APPLE при шифровании записывается как +THE+APLE+ или +THE+APQLE+.

Изобретение Уитстона, также как и Уодсворта, не нашло широкого применения. Однако судьба другого его предложения в области криптографии - шифра биграммной замены - сложилась лучше, хотя шифр несправедливо был назван именем друга изобретателя барона Плейфера. Вместе с тем, сам Плейфер вел себя весьма корректно: популяризируя изобретение, он всегда указывал имя автора ЁC Уитстона, но история распорядилась иначе: шифру было присвоено имя не изобретателя, а популяризатора. Шифр Плейфера будет подробно рассмотрен в следующем разделе.

В начале XX века значительный вклад в развитие криптографии внес американец Г. Вернам. В 1917 году он, будучи сотрудником телеграфной компании, предложил идею автоматического шифрования телеграфных сообщений, суть которой заключается в следующем. Открытый текст представляется в коде Бодо (в виде пятизначных "импульсных комбинаций"). В этом коде, например, буква "А" имела вид (+ + ЎЄ ЎЄ ЎЄ). На бумаге знак "+" означал отверстие, а знак "-" - его отсутствие. При считывании с ленты пятерка металлических щупов "опознавала" отверстия (при наличии отверстия щуп замыкал электрическую цепь). В линию связи посылались импульсы тока. Вернам предложил электромеханически покоординатно складировать импульсы знаков секретного текста с импульсами секретного ключа, представляющего из себя хаотический набор букв того же самого алфавита. Сложение, по современной терминологии, осуществлялось по модулю 2. Г. Вернам создал устройство, производящее операции шифрования автоматически, без участия шифровальщика, тем самым было положено начало так называемому "линейному шифрованию", когда процессы шифрования и передачи сообщения происходят одновременно. До той поры шифрование было предварительным, поэтому линейное шифрование существенно повышало оперативность связи. Шифр Вернама обладает исключительной криптографической стойкостью. В то же время очевиден и недостаток этой системы шифрования - ключ должна иметь ту же длину, что и открытый текст. Для расшифрования на приемном конце связи туда нужно передать (по тайным, защищенным каналам) ключ достаточной длины. При практической реализации это порождает проблемы, причем весьма существенные, что и предопределило скромное распространение шифров Вернама. Сам Вернам не был математиком-криптографом, тем не менее, он настаивал на том, что ключ шифра не должен повторяться при шифровании, и в этом, как показала история криптографии, он был прав. Его идеи породили новые подходы к надежной защите информации при передаче больших объемов сообщений.

Первая половина XX века стала «золотым веком» электромеханических шифровальных машин [11,12]. Наибольшую известность получило семейство немецких электромеханических шифровальных машин Enigma. Различные модификации этой шифровальной машины использовались германскими войсками с конца 1923 года вплоть до 1945 года. В 1943 году союзникам по антигитлеровской коалиции удалось «взломать» машину Enigma, что сыграло большую роль в победе во Второй мировой войне. Для передачи наиболее секретных сообщений во время Второй мировой войне немцами использовалась шифровальная машина Lorenz. В американской армии с 1923 по 1943 год использовалась механическое устройство для шифрования М-94. В основу этого устройства положен диск Альберти. Для защиты дипломатической переписки в США использовалась машина Хеберна MarkII. Шведский криптограф Б. Хагелин разработал для французской секретной полиции шифровальное устройство СD-57, а для французских спецслужб ЁC шифровальную машину М-209. Модификация этой машины использовалась также и американскими военными во Второй мировой войне. С 1939 года по 1952 год японцы использовали шифровальную машину для защиты дипломатической переписки под названием «Тип 97» и ее модификацию. В США эти машины получили красочное обозначение «Пурпурный код» и «Красный код». В СССР перед войной и в годы Великой Отечественной войны широко использовалась малогабаритная дисковая кодировочная машина К-37 «Кристалл». Только в 1940 году было выпущено 100 комплектов этой машины. После войны были подведены итоги эксплуатации К-37 и проводилась работа по ее дальнейшему совершенствованию.

Уже к началу 1930-х годов сформировались разделы математики (теория чисел, теория вероятностей и математическая статистика) являющиеся основой будущей науки ЁC криптологии. Ключевой вехой в развитии криптографии является фундаментальный труд Клода Шеннона «Теория связи в секретных системах», написанный в форме секретного доклада в 1945 году и опубликованный в 1949 году [5,11]. В этой работе впервые был показан подход к криптографии как к математической науке. Были сформулированы ее теоретические основы и введены понятия, с объяснения которых сегодня начинается изучение криптографии.

Развитие во второй половине XX века компьютерной техники и электроники сделало возможным использование более сложных шифров. В 1960-х годах появляются первые блочные шифры, обладающие большей криптостойкостью, чем электромеханические машины. В 1976 году в США принимается государственный стандарт шифрования ЁC DES (Data Encryption Standart), являющийся первым в мире открыто опубликованным стандартом шифрования. На основе используемой в системе DES сети Хорста Фейстеля разработаны множество других криптосистем: российский стандарт ГОСТ 28147-89, криптосистема TEA (Tiny Encryption Algorithm), Twofish, IDEA (International Data Encryption Algorithm).

В 1975 году публикуется работа Уитфилда Диффи и Мартина Хеллмана «Новые направления в криптографии» [2,6-8,10,11]. Данная работа открыла новую область криптографии, теперь называемую криптографией с открытым ключом. Хотя работа У. Диффи и М. Хеллмана создала большой теоретический задел для открытой криптографии, первой реальной криптосистемой с открытым ключом считают криптосистему RSA, названную по имени авторов - Рона Ривеста, Ади Шамира и Леонарда Адлемана. В настоящее время существует большое разнообразие криптосистем с открытым ключом, некоторые из которых являются национальными стандартами шифрования.

Таким образом, используя в качестве критерия периодизации технологические характеристики методов шифрования, историю криптографии можно разделить на следующие периоды.

Первый период (приблизительно с 3 тысячелетия до н.э. до XV века) характеризуется господством моноалфавитных шифров.

Второй период (с XV века по XX век) ознаменован введением многоалфавитных шифров.

Третий период (с начала и до середины XX века) характеризуется внедрением электромеханических шифровальных машин.

Четвертый период (с середины до 70-х годов XX века) ЁC период перехода к математической криптографии.

Современный период (с конца 70-х годов XX века по настоящее время) характеризуется широким использованием криптографии частными лицами коммерческими организациями, что связано с развитием нового направления в криптографии ЁC криптографии с открытым ключом.
1.3. Модели источников открытых текстов
Открытый текст, также как и криптограмма, представляет собой последовательность символов, взятых из конечного набора, называемого алфавитом µ §. Элемент алфавита называется буквой, а число символов алфавита определяет его мощность µ §. Например, алфавит простых букв английского языка имеет мощность µ §, а алфавит английского языка, состоящий из прописных, строчных букв, цифр, а также знаков препинания и пробела имеет мощность µ §. Широко используемыми алфавитами, элементы которых есть двоичные векторы, являются коды ASCII и МТК-2.

Всякий открытый текст, записанный в некотором алфавите, имеет длину µ §, равную числу букв в соответствующей записи. Последовательность µ § соседних букв текста, при µ § называется µ §-граммой, а при µ § - биграммой. Помимо исходного алфавита, часто рассматриваются производные из него алфавиты, представляющие наборы всевозможных µ §-грамм исходного алфавита. Таким образом, каждый открытый текст характеризуется: набором используемых алфавитов; длиной текста; тематикой открытых текстов.

Модели открытых текстов разделяются на два класса: детерминированные и вероятностные [11].
1.3.1 Детерминированные модели

Источники открытых сообщений (ИОС) достаточно многообразны. В качестве ИОС рассматривать можно отдельного человека или группу людей, пункты телеграфной и телефонной сети и т.д. Каждый ИОС порождает тексты в соответствии с правилами грамматики используемого языка, что находит отражение и в статистических характеристиках открытых текстов. Всякий ИОС можно характеризовать разбиением множества µ §-грамм на допустимые (встречающиеся в текстах) и запрещенные (не встречающиеся в текстах). Например, в русском языке буквы Ь и Ъ никогда не соседствуют друг с другом, и не следуют за гласными буквами. Разбиение множества µ §-грамм на допустимые и запрещенные определяет детерминированную модель. В детерминированной модели открытый текст рассматривается как последовательность букв некоторого алфавита, не содержащий запрещенных µ §-грамм. Необходимо отметить, что разделение на допустимые и запрещенные µ §-граммы весьма условно в силу динамичности языка, его способности к развитию. Кроме этого, разделение на допустимые и запрещенные µ §-граммы характеризует не только язык, но и отдельный источник сообщений.
1   2   3   4   5   6   7   8   9   10

Похожие:

Конкурс aes и блочная криптосистема Rijndael 44 iconПрограмма по формированию навыков безопасного поведения на дорогах...
Использование современных педагогических технологий: модульно – блочная технология с применением приемов работы «французских мастерских»,...
Конкурс aes и блочная криптосистема Rijndael 44 iconС. В. Тронин >10. 01. 2013 положение о районном конкурс
Районный конкурс для педагогов на лучшую методическую разработку с использованием интерактивной доски (далее Конкурс) проводится...
Конкурс aes и блочная криптосистема Rijndael 44 icon10 Олимпиада-конференция: научно-технический конкурс, конкурс технического...
Оргкомитет, Методические комиссии, жюри, Экспертные комиссии
Конкурс aes и блочная криптосистема Rijndael 44 iconКонкурс материалов «Информатизация системы образования» Положение...
Конкурс материалов «Информатизация системы образования» (далее – Конкурс) проводится «Журналом руководителя управления образованием»,...
Конкурс aes и блочная криптосистема Rijndael 44 iconКонкурс дитячого малюнка "Охорона праці очима дітей"
Стартує конкурс дитячого малюнка "Охорона праці очима дітей"01 марта 2012 года стартует конкурс детского рисунка «Мама и папа, берегите...
Конкурс aes и блочная криптосистема Rijndael 44 iconКонкурс проводится в муниципальных образовательных организациях,...
Областной конкурс «Лидер чтения – 2014 года» (далее Конкурс) проводится в рамках областного межведомственного культурного проекта...
Конкурс aes и блочная криптосистема Rijndael 44 iconКонкурс представлен работами в 4 номинациях: «Рисую космос»
«Всероссийское педагогическое собрание» проведен конкурс работ педагогов и учащихся образовательных учреждений Воронежской области...
Конкурс aes и блочная криптосистема Rijndael 44 iconИнформация о проведении Месячника чеченского языка и литературы в...
«Даймехкан 1алам», классные часы «Ненан меттах лаьцна дош», конкурс чтецов «Къона поэт», уроки – беседы о чеченском языке «Язык народа...
Конкурс aes и блочная криптосистема Rijndael 44 icon4. Конкурс имеет два уровня: Первая Лига и Высшая Лига
Фонд имени космонавта Павла Романовича Поповича в рамках реализации проекта “Дорога в Космос” проводит Ежегодный международный конкурс...
Конкурс aes и блочная криптосистема Rijndael 44 iconКонкурс «Лучшее школьное методическое объединение 2014». Положение...
Конкурс методических разработок урока в контексте требований фгос ООО для учителей русского языка и литературы «Современный урок:...
Конкурс aes и блочная криптосистема Rijndael 44 iconКонкурс проектных работ Конкурс исследовательских работ конкурс рефератов...
Мау имц г. Томска, тгпу, маоу гимназия №18 г. Томска в феврале-марте 2013г проводят сетевую муниципальную научно-практическую конференцию...
Конкурс aes и блочная криптосистема Rijndael 44 iconУрок конкурс Конкурс профессионального мастерства в группе пк-301
Слова мастера: Вы находитесь в преддверии конкурса профессионального мастерства по профессии «Кондитер» в группе пк-301, и почетное...
Конкурс aes и блочная криптосистема Rijndael 44 iconКонкурс слоганов о сквернословии 5-8 март стенд Конкурс презентаций «Сквернословие и здоровье»

Конкурс aes и блочная криптосистема Rijndael 44 iconКонкурс руководитель результат «Вдохновение» 4б класс 21 уч-ся Всероссийский...

Конкурс aes и блочная криптосистема Rijndael 44 iconКонкурс Чтение наизусть
Данный конкурс оценивается по пятибалльной системе
Конкурс aes и блочная криптосистема Rijndael 44 iconКонкурс проводится в целях пропаганды среди молодежи здорового образа...
«Добрая воля, здоровое сердце, чистая страна!» (далее – Конкурс), требования к участникам и работам Конкурса, порядок их предоставления...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск