Конспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2





НазваниеКонспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2
страница7/10
Дата публикации19.02.2015
Размер1.23 Mb.
ТипКонспект
100-bal.ru > История > Конспект
1   2   3   4   5   6   7   8   9   10

Рис. 6.1.  Газ объема V (a) расширяемый до 2V (б)

Нас интересует вопрос о координате молекулы m газа. В начале (а) мы знали ответ на вопрос и поэтому p1=1 (lnp1=0). Число ответов было пропорционально lnV. После поднятия заслонки мы уже знаем эту координату (микросостояния), т.е. изменение (убыль) информации о состоянии системы будет равно

ΔI = -k ln(2V /V) = -k ln 2 (нат).

Мы получили известное в термодинамике выражение для прироста энтропии в расчете на одну молекулу, и оно подтверждает второе начало термодинамики. Энтропия - мера недостатка информации о микросостоянии статической системы.

Величина ΔI может быть интерпретирована как количество информации, необходимой для перехода от одного уровня организации системы к другому (при ΔI>0 - более высокому, а при ΔI<0 - более низкому уровню организации).

Термодинамическая мера (энтропия) применима к системам, находящимся в тепловом равновесии. Для систем, далеких от теплового равновесия, например, живых биологических систем, мера-энтропия - менее подходящая.

4. Энергоинформационная (квантово-механическая) мера. Энергия (ресурс) и информация (структура) - две фундаментальные характеристики систем реального мира, связывающие их вещественные, пространственные, временные характеристики. Если А - именованное множество с носителем так называемого "энергетического происхождения", а В - именованное множество с носителем "информационного происхождения", то можно определить энергоинформационную меру f: Ahttp://lib.znate.ru/pars_docs/refs/1/367/367_html_m6934ea8b.pngB, например, можно принять отношение именования для именованного множества с носителем (множеством имен) А или В. Отношение именования должно отражать механизм взаимосвязей физико-информационных и вещественно-энергетических структур и процессов в системе.

Отметим, что сейчас актуальнее говорить о биоэнергоинформационных мерах, отражающих механизм взаимосвязей биофизико-информационных и вещественно-энергетических структур и процессов в системе.

Пример. Процесс деления клеток сопровождается излучением квантов энергии с частотами приблизительно до N=1.5×1015 гц. Этот спектр можно воспринимать как спектр функционирования словарного запаса клетки как биоинформационной системы. С помощью этого спектра можно закодировать до 1015 различных биохимических реакций, что примерно в 107 раз больше количества реакций реально протекающих в клетке (их количество - примерно 108), т.е. словарный запас клетки избыточен для эффективного распознавания, классификации, регулирования этих реакций в клетке. Количество информации на 1 квант энергии: I=log21015≈50 бит. При делении клеток количество энергии, расходуемой на передачу 50 бит информации равно энергии кванта (h - постоянная Планка, n - частота излучения):

E=hν=6,62×10-27 (эрг/cек) × 0,5×1015 (сек-1) =3,3×10-12 (эрг).

При этом на 1 Вт мощности "передатчика" или на μ=107 эрг/сек. может быть передано количество квантов:

n=μ/E=107 (эрг/сек)/(3,3×10-12 (эрг))≈3,3×1018 (квант).

Общая скорость передачи информации на 1 Вт затрачиваемой клеткой мощности определяется по числу различных состояний клетки N и числу квантов (излучений) m:

V=n log2N=3,3×1018×50≈1,6×1020 (бит/сек).

Любая информация актуализируется в некоторой системе. Материальный носитель любой системы - сообщение, сигнал. Любая актуализация сопровождается изменением энергетических свойств (изменением состояния) системы. Наши знания (а, следовательно, и эволюция общества) простираются на столько, на сколько углубляется информация и совершенствуется возможность ее актуализации.

5. Другие меры информации. Многими авторами в последнее время рассматриваются различные количественные меры для измерения смысла информации, например, мера, базирующаяся на понятии цели (А. Харкевич и другие); мера, базирующаяся на понятии тезаурус Т=, где X, Y, Z - множества, соответственно, имен, смыслов и значений (прагматики) этих знаний (Ю. Шрейдер и другие); мера сложности восстановления двоичных слов (А. Колмогоров и другие); меры апостериорного знания (Н. Винер и другие); мера успешности принятия решения (Н. Моисеев и другие); меры информационного сходства и разнообразия и другие способы, подходы к рассмотрению мер информации.

Пример. В качестве меры (Колмогорова) восстановления двоичного слова y по заданному отображению f и заданным двоичным словам x из непустого множества X можно взять H(f,y)=min|x|, xhttp://lib.znate.ru/pars_docs/refs/1/367/367_html_6cf3b522.pngX, f(x)=y. Здесь |x| - длина двоичного слова х.

Пример. Если априори известно, что некоторая переменная лежит в интервале (0;1), и апостериори, что она лежит в интервале (a;b)http://lib.znate.ru/pars_docs/refs/1/367/367_html_m6f38c694.png(0;1), тогда в качестве меры (Винера) количества информации, извлекаемой из апостериорного знания, можно взять отношение меры (a;b) к мере (0;1).

Пример. В биологических науках широко используются так называемые индексные меры, меры видового разнообразия. Индекс - мера состояния основных биологических, физико-химических и др. компонент системы, позволяющая оценить силу их воздействия на систему, состояние и эволюцию системы. Индексы должны быть уместными, общими, интерпретируемыми, чувствительными, минимально достаточными, качественными, широко применяемыми, рациональными. Например, показателем видового разнообразия в лесу может служить

ν = √p1 + √p2 +...+√pn

где p1, p2, ..., pn - частоты видов сообщества, обитающих в лесу, n - число видов.

Вопросы для самоконтроля


  1. Что такое мера информации? Каковы общие требования к мерам информации?


  2. В чем смысл количества информации по Хартли и Шеннону? Какова связь количества информации и энтропии, хаоса в системе?


  3. Какова термодинамическая мера информации? Какова квантово-механическая мера информации? Что они отражают в системе?

Задачи и упражнения


  1. Система имеет N равновероятных состояний. Количество информации в системе (о ее состоянии) равно 5 бит. Чему равна вероятность одного состояния? Если состояние системы неизвестно, то каково количество информации в системе? Если известно, что система находится в состоянии номер 8, то чему равно количество информации?


  2. Некоторая система может находиться в четырех состояниях с вероятностями: в первом (худшем) - 0,1, во втором и третьем (среднем) - 0,25, в четвертом (лучшем) - 0,4. Чему равно количество информации (неопределённость выбора) в системе?


  3. Пусть дана система с p0=0,4, p1=0,5 - вероятности достижения цели управления, соответственно, до и после получения информации о состоянии системы. Оцените меру целесообразности управления этой системой (в битах).

Темы для научных исследований и рефератов, интернет-листов


  1. Энтропия и мера беспорядка в системе. Информация и мера порядка в системе.


  2. Квантово-механический и термодинамический подходы к измерению информации.


  3. Семантические и несемантические меры информации - новые подходы и аспекты.

7. Лекция: Система и управление


Рассматриваются проблемы управления системой (в системе), схема, цели, функции и задачи управления системой, понятие и типы устойчивости системы, элементы когнитивного анализа.

Цель лекции: введение в основную проблему (атрибут) системного анализа - управление системой (в системе).

http://lib.znate.ru/pars_docs/refs/1/367/367_html_m331131c9.pnghttp://lib.znate.ru/pars_docs/refs/1/367/367_html_m331131c9.pnghttp://lib.znate.ru/pars_docs/refs/1/367/367_html_m331131c9.pngБлагодаря постоянным потокам информации (от системы к окружающей среде и наоборот) система осуществляет целесообразное взаимодействие с окружающей средой, т.е. управляет или бывает управляема. Информация стала средством не только производства, но и управления.

Своевременная и оперативная информация может позволить стабилизировать систему, приспосабливаться и(или) адаптироваться, восстанавливаться при нарушениях структуры и(или) подсистем. От степени информированности системы, от богатства опыта взаимодействия системы и окружающей среды зависит развитие и устойчивость системы.

Информация обладает также определенной избыточностью: чем больше сообщений о системе, тем полнее и точнее она управляется.

Пример. При передаче сообщений часто применяют способ двукратной (избыточной) последовательной передачи каждого символа (что позволяет избавляться от помех, "шумов" при передаче и осуществлять, например, контроль четности сигналов, по результатам которого выявляется количество сбоев). Пусть в результате сбоя при передаче приемником принято было слово вида "прраосснтоо". Определим, какое осмысленное (имеющее семантический смысл) слово русского языка передавалось передатчиком. Легко заметить, что "претендентами на слово" являются слова "праспо", "проспо", "рроспо", "ррасто", "прасто", "рросто", "просто" и "рраспо". Из всех этих слов осмысленным является только слово "просто".

Суть задачи управления системой - отделение ценной информации от "шумов" (бесполезного, иногда даже вредного для системы возмущения информации) и выделение информации, которая позволяет этой системе существовать и развиваться. Управление - это целенаправленная актуализация знаний. Управление и особая форма - самоуправление, - высшая форма актуализации знаний.

Управление в системе - внутренняя функция системы, осуществляемая независимо от того, каким образом, какими элементами системы она должна выполняться.

Управление системой - выполнение внешних функций управления, обеспечивающих необходимые условия функционирования системы (см. рис. 7.1).

http://lib.znate.ru/pars_docs/refs/1/367/367_html_m3c857d9d.png


Рис. 7.1.  Общая схема управления системой

Управление системой (в системе) используется для различных целей:


  1. увеличения скорости передачи сообщений;


  2. увеличения объема передаваемых сообщений;


  3. уменьшения времени обработки сообщений;


  4. увеличения степени сжатия сообщений;


  5. увеличения (модификации) связей системы;


  6. увеличения информации (информированности).


Как правило, эти цели интегрируются.

В целом информация используется для двух основных глобальных целей: сохранения стабильного функционирования системы и перевода системы в заданное целевое состояние.

Пример. Появление возможности управлять электрическими и магнитными колебаниями сделало массово доступным радио, телевидение, при этом скорость передачи информации достигла скорости света; пропускная способность телеканала по сравнению с пропускной способностью телефонного канала выросла примерно в 2000 раз, ускорение обработки - в миллионы раз. Возросла и сжатость информации, и информативность сообщений.

Управление любой системой (в любой системе) должно подкрепляться необходимыми ресурсами - материальными, энергетическими, информационными, людскими и организационными (административного, экономического, правового, гуманитарного, социально-психологического типа). При этом характер и степень активизации этих ресурсов может повлиять (иногда лишь косвенно) и на систему, в которой информация используется. Более того, сама информация может быть зависима от системы.

Пример. В средствах массовой информации правительство чаще ругают, актеров чаще хвалят, спортсменов упоминают обычно в связи со спортивными результатами, прогноз погоды бывает, как правило, кратким, новости политики - официальными.

Управление - непрерывный процесс, который не может быть прекращен, ибо движение, поток информации в системе не прекращается.

Цикл управления любой системой (в любой системе) таков:

{ сбор информации о системе http://lib.znate.ru/pars_docs/refs/1/367/367_html_m6934ea8b.png

обработка и анализ информации http://lib.znate.ru/pars_docs/refs/1/367/367_html_m6934ea8b.png

получение информации о траектории http://lib.znate.ru/pars_docs/refs/1/367/367_html_m6934ea8b.png

выявление управляющих параметров http://lib.znate.ru/pars_docs/refs/1/367/367_html_m6934ea8b.png

определение ресурсов для управления http://lib.znate.ru/pars_docs/refs/1/367/367_html_m6934ea8b.png

управление траекторией системы }

Основные правила организации информации для управления системой:


  1. выяснение формы и структуры исходной (входной) информации;


  2. выяснение средств, форм передачи и источников информации;


  3. выяснение формы и структуры выходной информации;


  4. выяснение надежности информации и контроль достоверности;


  5. выяснение форм использования информации для принятия решений.


Пример. При управлении полетом ракеты, наземная станция управления генерирует и в определенной форме, определенными структурами посылает входную информацию в бортовую ЭВМ ракеты; при этом сигналы отсеиваются от возможных "шумов", осуществляется контроль входной информации на достоверность и только затем бортовая ЭВМ принимает решение об уточнении траектории, ее корректировке.

Если число возможных состояний системы S равно N, то общее количество разнообразия системы (мера выбора в системе - см. выше "информационные меры") равно

V(N)=log2N.

Пусть управляемая система обладает разнообразием V(N1), а управляющая - V(N2). Цель управляющей системы - уменьшить значение V(N1) за счет изменения V(N2). В свою очередь, изменение V(N1), как правило, влечет изменение и V(N2), а именно, управляющая система может эффективно выполнять присущие ей функции управления лишь при условии, если верно неравенство

V(N2) http://lib.znate.ru/pars_docs/refs/1/367/367_html_4c0ee163.pngV(N1).

Это неравенство выражает принцип Эшби (необходимого разнообразия управляемой системы): управляющая подсистема системы должна иметь более высокий уровень организации (или большее разнообразие, больший выбор), чем управляемая подсистема, т.е. многообразие может быть управляемо (разрушено) лишь многообразием.

Пример. Менеджер фирмы должен быть более подготовлен, более грамотен, организован, свободен в своих решениях, чем, например, продавец фирмы. Малые, средние фирмы, ООО, АО - необходимый фактор разнообразия, успешного развития бизнеса, так как они более динамичны, гибки, адаптируемы к рынку. В развитых рыночных системах они имеют больший вес, например, в США доля крупных корпораций не более 10%.

Функции и задачи управления системой:


  1. Организация системы - полное, качественное выделение подсистем, описание их взаимодействий и структуры системы (как линейной, так и иерархической, сетевой или матричной).


  2. Прогнозирование поведения системы, т.е. исследование будущего системы.


  3. Планирование (координация во времени, в пространстве, по информации) ресурсов и элементов, подсистем и структуры системы, необходимых (достаточных - в случае оптимального планирования) для достижения цели системы.


  4. Учет и контроль ресурсов, приводящих к тем или иным желаемым состояниям системы.


  5. Регулирование - адаптация и приспособление системы к изменениям внешней среды.


  6. Реализация тех или иных спланированных состояний, решений.


Функции и задачи управления системой взаимосвязаны, а также взаимозависимы.

Пример. Нельзя, например, осуществлять полное планирование в экономической системе без прогнозирования, учета и контроля ресурсов, без анализа спроса и предложения - основных регуляторов рынка. Экономика любого государства - всегда управляемая система, хотя подсистемы управления могут быть организованы по-разному, иметь различные элементы, цели, структуру, отношения.

По характеру управления, охвата подсистем и подцелей (цели системы) управление может быть:


  1. стратегическое, направленное на разработку, корректировку стратегии поведения системы;


  2. тактическое, направленное на разработку, корректировку тактики поведения системы.


По времени управляющего воздействия системы могут быть: долгосрочно и краткосрочно управляемые.

Иногда отождествляют стратегическое и долгосрочное, тактическое и краткосрочное управление, но это не всегда верно.

Пример. Любая серьезная экономическая система стратегического управления должна включать в себя управляющую (информационную) подсистему, обрабатывающую, актуализирующую стратегическую информацию об инновационных мероприятиях, инвестиционных условиях, о возможностях и состояниях рынков товаров, услуг, ценных бумаг, доступных ресурсах, финансовых условиях и критериях, принципах и методах управления и др. Такие системы обычно имеют следующие цели и, часто, соответствующие им структуры:


  1. управление координацией (Project Integration Management);


  2. управление целями (Project Scope Management);


  3. управление временем (Project Time Management);


  4. управление стоимостью (Project Cost Management);


  5. управление качеством (Project Quality Management);


  6. управление людскими ресурсами (Project Human Resource Management);


  7. управление коммуникациями (Project Communication Management);


  8. управление рисками (Project Risk Management);


  9. управление поставками (Project Procurement Management).


Все эти функции тесно переплетены между собой.

Выявление управляющих параметров и их использование для управления системой может также способствовать уменьшению сложности системы. В свою очередь, уменьшение сложности системы может сделать систему управляемой.

Система называется устойчивой структурно (динамически; вычислительно; алгоритмически; информационно; эволюционно или самоорганизационно), если она сохраняет тенденцию стремления к тому состоянию, которое наиболее соответствует целям системы, целям сохранения качества без изменения структуры или не приводящим к сильным изменениям структуры (динамики поведения; вычислительных средств; алгоритмов функционирования системы; информационных потоков; эволюции или самоорганизации - см. ниже) системы на некотором заданном множестве ресурсов (например, на временном интервале). Расплывчатое понятие "сильное изменение" каждый раз должно быть конкретизировано, детерминировано.

Пример. Рассмотрим маятник, подвешенный в некоторой точке и отклоняемый от положения равновесия на угол 0http://lib.znate.ru/pars_docs/refs/1/367/367_html_m1ff8ab98.pnghttp://lib.znate.ru/pars_docs/refs/1/367/367_html_m713d875f.pnghttp://lib.znate.ru/pars_docs/refs/1/367/367_html_m1ff8ab98.pnghttp://lib.znate.ru/pars_docs/refs/1/367/367_html_mbb8a078.png. Маятник будет структурно, вычислительно, алгоритмически и информационно устойчив в любой точке, а при http://lib.znate.ru/pars_docs/refs/1/367/367_html_m713d875f.png=0 (состояние покоя маятника) - устойчив и динамически, и эволюционно (самоорганизационные процессы в маятнике на микроуровне мы не учитываем). При отклонении от устойчивого состояния равновесия маятник, самоорганизуясь, стремится к равновесию. При http://lib.znate.ru/pars_docs/refs/1/367/367_html_m713d875f.png=p маятник переходит в динамически неустойчивое состояние. Если же рассматривать лед (как систему), то при температуре таяния эта система структурно неустойчива. Рынок при неустойчивом спросе-предложении неустойчив структурно.

Чем многообразнее входные сигналы (параметры) системы, число различных состояний системы, тем многообразнее обычно выходные сигналы, тем сложнее система, тем актуальнее проблема поиска инвариантов управления.

Понятие сложности детализируется в различных предметных областях по-разному. Для конкретизации этого понятия необходимо учитывать предысторию, внутреннюю структуру (сложность) системы и управления, приводящие систему к устойчивому состоянию. Впрочем, все внутренние связи на практике достаточно трудно не только описать, но и обнаружить. В этих случаях помогает выяснение и описание связности системы, связной и асимптотической устойчивости ее.

Асимптотическая устойчивость системы состоит в возврате системы к равновесному состоянию при thttp://lib.znate.ru/pars_docs/refs/1/367/367_html_m6934ea8b.png∞ из любого неравновесного состояния.

Пример. Известная игрушка "Ванька-встанька" - пример такой системы.

Пусть система S зависит от вектора факторов, переменных x=(x1,x2,...,xn).

Матрицей системы назовем матрицу E=||eij|| из 1 и 0: eij=1 лишь тогда, когда переменная xiоказывает влияние на xj.

Связная устойчивость состоит в асимптотической устойчивости системы при любых матрицах Е.

Пример. Рассмотрим множество друзей X={Иванов, Петров, Сидоров} и городов Y={Москва, Париж, Нальчик}. Тогда можно построить 3D-структуру в R3 (в пространстве трех измерений - высота, ширина, длина), образуемую связыванием элементов X и Y, например, по принципу "кто где был" (рис. 7.2). В этой структуре были использованы сетевые 2D-структуры X, Y (которые, в свою очередь, использовали 1D-структуры). При этом элементы X и Y можно брать как точки, элементы пространства нулевого измерения R0.

http://lib.znate.ru/pars_docs/refs/1/367/367_html_7d6d43d3.png

1   2   3   4   5   6   7   8   9   10

Похожие:

Конспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2 iconКонспект лекций по системному анализу
Социальная геронтология: Учебная программа дисциплины / Сост. Т. В. Коробицина; сфу, 2009
Конспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2 iconКонспект лекций по курсу «операционные системы» Москва 2007 Лекция...
Существует три основных подхода к разработке ос и системного по с точки зрения инструментальных средств
Конспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2 iconЛекция I и проблема языка и сознания лекция II 31 слово и его семантическое...
Монография представляет собой изложение курса лекций, про* читанных автором на факультете психологии Московского государственного...
Конспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2 iconКонспект лекций Р. М. Гимаева Тема Предмет социальной геронтологии....
Государственное бюджетное образовательное учреждение основная общеобразовательная школа с. Покровка муниципального района Кинельский...
Конспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2 iconКонспект лекций по социальной экологии раздел Экологическое знание:...
Программа предназначена для обучающихся 2 курса по профессии «Повар, кондитер» на базе одиннадцати классов, имеющих основные знания...
Конспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2 iconД. соменков д ю. н профессор цикл лекций: подготовка аспирантов на...
Государственный научно-исследовательский институт системного анализа счётной палаты российской федерации
Конспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2 iconКонспект лекций по дисциплине введение в профессию социальная работа...
Техника безопасности – см приложение Сообщается о мерах, которые надо соблюдать по предупреждению травматизма на занятиях по гимнастике....
Конспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2 iconКонспект урока по литературе в 5 классе на тему: Картины природы...
Обучающая: формирование умений и навыков по филологическому анализу поэтического текста, обучение выразительному чтению, элементам...
Конспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2 iconПредмет и методы анализа Предмет и подходы
История детской психологии: Учебник для студ пед вузов. – М.: Гуманит изд центр владос, 1998. – 272 с
Конспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2 iconЛекция по предмету «История искусства»
Представить предмет «История искусства» как взаимосвязанную в своем развитии историю стилей с акцентом на описании
Конспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2 iconСхема системного анализа современного урока
Обучающая: учитель определяет цели урока, информи­рует учащихся о путях реализации целей на уроке
Конспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2 iconЛекция религии современных неписьменных народов: человек и его мир...
Редактор Т. Липкина Художник Л. Чинёное Корректор Г. Казакова Компьютерная верстка М. Егоровой
Конспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2 icon1. Предмет и задачи курса «История государства и права Беларуси»
Лекция Предмет «Истории государства и права Беларуси»: сущность, содержание, особенности
Конспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2 iconКонспект лекций математическое моделирование систем управления
Худенко Е. Д. Требования к планированию и анализу коррекционно- развивающих уроков. [Текст] / Е. Д. Худенко // Развитие и коррекция....
Конспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2 iconУчебно-методический комплекс по дисциплине «Основы системного анализа...
«Основы системного анализа и управления в таможенном деле» составлен в соответствии с требованиями Государственного образовательного...
Конспект лекций по системному анализу Лекция: История, предмет, цели системного анализа 2 iconРеферат по теории систем и системному анализу на тему: «Кибернетика»
Запуском первого искусственного спутника Земли и полетом первого человека в космос наша страна проложила путь к освоению космического...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск