По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van





Скачать 170.38 Kb.
НазваниеПо всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van
Дата публикации07.01.2015
Размер170.38 Kb.
ТипДокументы
Л
По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик

van_mo_mail@mtu-net.ru или на сотовый:

8-901-7271056 спросить Ваню
екция №1

Ведущая: Голубева Зоя Николаевна

Дата: вторник, 5 сентября 2000 г.

Тема: Введение
Условные обозначения:

: - так, что def – по определению

 – включает ’’’ – [dnf(x)]/dxn=(d/dx)([dn-1f(x)]/dxn)

 - следует, выполняется

 - тогда и только тогда

 - любой

 - существует

] – пусть

! – единственный

[x] – целая часть

~ - эквивалентно

о - малое

Все R представляют десятичной дробью.

Все Q представляют конечной дробью, либо периодичной дробью.

Все иррациональные числа представляют бесконечной десятичной дробью ( не периодичной).
Рассмотрим числовую ось. Числовая ось – направленная прямая с отмеченной точкой и отмеченным масштабом.


x


0 – отвечает за ноль.

Отрезок [0;1] отвечает за единицу

Единица за единицу.

Каждой точки х на числовой прямой отвечает некоторое действительное число. Если длинны отрезков [0;x] из заданного масштаба соизмеримы, тогда числу х отвечает рациональное число. Если не соизмеримы, то иррациональны.

Каждому R отвечает точка на числовой прямой и наоборот, каждой точке отвечает R.

Основные числовые множества.
x

Отрезок: [/////////] x

a b

Обозначается [a;b] ab

Частный случай отрезка точка

Или axb – в виде неравенства.
х

Интервал: (/////////) x – множество точек на числовой прямой.

a b

Обозначается (a;b) или в виде неравенства a
x

Полуинтервал: (/////////] x

a b

x

[/////////) x

a b

Обозначается: [a;b) axb

(a;b] a
Всё это числовые промежутки.
Замечание: один из концов ( а или b) может быть символом .

x

///////////////] x (-;b] или -
b
x

///////////////) x (-;b) или -
b

Вся числовая прямая – R=(-;+)

Окрестности.

Определение: ε –окрестностью числа а называется множество чисел х удовлетворяющие неравенству

a-εε(а)

ε>0 а-ε а а+ε
Оε(а)={xR:x-a<ε}
Проколотая ε окрестность – Оε(а) это множество таких чисел включающих R, и отстаёт от точки на ε и не принадлежит а.

Оε(а)={xR:0<x-a<ε}

(////////) x

а-ε а а+ε

Правая ε поло окрестность точки а: О+ε(а)={xR:ax  ///////) x

a a+ε

Проколотая правая ε поло окрестность точки а: Оε(а)={xR:aа.

Левая ε поло окрестность точки а: O-ε(a)={xR:a-ε
(//////// x

a-ε a
Проколотая, левая ε поло окрестность точки а: О-ε(а)={xR:a-εа.

Модуль и основные неравенства.
x; x>0

х= 0; x=0

-x; x<0




|x|h x>h

h>0 x<-h



  1.  а,b  R: |ab|a|+|b|

  2.  а,b  R: |a-b|||a|-|b||

Можно рассматривать окрестности бесконечности:

Оε(+)={xR:x>ε} (////////// x

ε>0 ε

Оε(-)={xR:x<-ε} ///////////)  x

ε>0 -ε 0
Оε()={xR:x>ε} \\\\\\) (////// x

x>ε;x<-ε -ε ε

Функция. Монотонность. Ограниченность.

х – называется независимой переменной.

у – зависимой.

Функцию можно задавать равенством (у=х2)

Таблицей

Х

Х1

Х2

Х3

Х4

У

У1

У2

У3

У4

Графиком, то есть множеством точек с координатами (x,f(x)) на плоскости:


Определение f(x) монотонности: Пусть Х принадлежит области определение D ( ]xD)

Пусть Х подмножество в области определения в f(x).

Функция у=f(x) называется:

  1. Возрастающая на Х, если для любого х1;х2 принадлежащие Х: х12f(x1)2)



  1. Убывающий на Х, если для любого х1;х2 принадлежащие Х: х12f(x1)>f(x2)



3) Не убывающий на Х, если для любого х1;х2 принадлежащие Х: х12f(x1)f(x2)



  1. Не возрастающая на Х, если для любого х1;х2 принадлежащие Х: х12f(x1)f(x2)



Определение:

Ограниченность. Пусть Х включает D y=f(x) называется:

  1. Ограниченной сверху на Х если существует В, так что для любого х принадлежащего Х выполняется xR

  2. Ограниченной снизу на Х если существует А, так что для любого х принадлежащего Х выполняется Ах

  3. Ограниченной и сверху и снизу на Х если существует А,В, так что для любого х принадлежащего Х выполняется АхВ, или существует С, так что для любого х принадлежащего Х выполняется хС



Лекция №2

Ведущая: Голубева Зоя Николаевна

Дата: вторник, 12 сентября 2000 г.

Тема: Функции

Определение (сложная функция):

Пусть задано D,E,G,C,R

На D: y=f(x) с областью значения E

На E: z=g(y) с областью значения G

Тогда на множестве D определена сложная функция z=g(f(x)) с областью значения G. Тогда говорят, что g(f(x)) есть суперпозиция функций g,f.
Пример: Пример

z=sin ex w=arctgcos exx-ln x

y=ex=f(x)

z=sin y=g(y)

D=R

E=R+

G=[-1;1]
Определение (обратной функции):

Пусть существует D,E,C,R

На D: y=f(x) с областью значений Е. Если для каждого у из y=f(x) найдётся единственный х, то говорят, что на множестве Е задана функция обратная к функции f(x), с областью значений D. Иными словами две функции y=f(x) и x=g(y) являются взаимно обратными если выполняется тождества:




y=f(g(y)),  yE y=f(g(y)), для любого уЕ



x=g(f(x)),  xD x=g(f(x)), для любого хD
Примеры:

1)y=x3  x=3y

D=R

E=R
2)y=x2  x=y

D=R+ {0}=[0;+)

E=[0;+)

D=R- {0}=(-;0]

E=[0;) x=-y
3)y=sinx

D=[-/2;/2]

E=[-1;1]

x=arcsiny

y[-1;1]; x[-/2;/2]




Пусть y=f(x)

D=[a;b]

E=[A;B]


Определение: y=f(x), nN

a1=f(1)

a2=f(2)

an=f(n)

{an} – множество значений силовой последовательности nN или аn

{аn}={1,1/2,1/3,…,1/n,…}

аn=1/n

n}={sin1;sin2;sinn}

аn=sinn

аn=(-1)n/n

{(-1)n}={-1;1;-1;1;-1;1…}


Ограниченные последовательности.

  1. Ограниченная сверху, то есть существует В так что аnВ, для любого nN

  2. Ограниченная снизу, то есть существует А так что Аbn, для любого nN

  3. Ограниченная, то есть существует А,В так что АаnВ, для любого nN  существует С>0 так что аnС, для любого nN.



Монотонные последовательности


  1. возрастающая ann+1,  nN

  2. убывающая an>an+1,  nN

  3. не возрастающая anan+1,  nN

  4. не убывающая anan+1,  nN


Пределы последовательности.

Определение: числа а , называется пределом числовой последовательности аn, если для любого сколь угодно малого числа ε>0, найдётся натуральный номер N такой, что для всех чисел nN выполняется модуль разности an-a<ε   ε>0  N :  nN an-a<ε.

Начиная с этого номера N все числа этой последовательности попадают в ε окрестность числа а. Другими словами начиная с номера N вне интервала а-ε;а+ε может находиться не более конечного числа членов последовательности.
Lim an=0

n

Примеры: Доказать, что ln(-1)2/n=0

Зададим любое ε>0, хотим чтобы (-1)n-0<ε, начиная с некоторого номера N, 1/n<ε  n>1/ε

N=[1/ε]+1

ε=0.01

N=[1/0.01]+1=101

|an|<0.01, если n101

* * *

an=1-1/n2

lim(1-1/n2)=1

n+

Для любого ε>0 (1-1/n2)-1<ε

-1/n2<ε  1/n2<ε  n2>1/ε  n>1/ε

N=[1/ε]+1


Лекция №3

Ведущая: Голубева Зоя Николаевна

Дата: среда, 13 сентября 2000 г.

Тема: Последовательности

Бесконечно малые последовательности



Последовательность аn называется бесконечно малой , это означает, что предел этой последовательности после равен 0.

an – бесконечно малая  lim an=0 то есть для любого ε>0 существует N, такое что для любого n>N выполняется

n+

an<ε

Важные примеры бесконечно малой последовательности:

1)n=1/n Докажем, что для любого ε>0 1/n<ε  1/n<ε n>1/ε N[1/ε]+1

Докажем, что lim1/n=0

n+

2) n= sin(1/n). Докажем, что для любого ε>0 sin(1/n)<ε, заметим, что 1/n принадлежит первой четверти, следовательно 1sin(1/n)>0, следовательно sin(1/n)<ε



Следовательно 1/n1/arcsinε N=[1/arcsinε]+1. Докажем, что lim sin1/n=0

n+

3) n=ln(1+1/n)

n0; 1/n; 1+1/n1

lim ln(1+1/n)=0

n+

Докажем ln(1+1/n)<ε ln(1+1/n)<ε  1+1/nε

1/nε-1

n>1/eε-1 N=[1/eε-1]+1



  1. n=1-cos(1/n)

lim(1-cos(1/n))=0

n+

Докажем ε>0 1-cos(1/n)<ε

1/n первой четверти cos первой четверти положительный 0
cos(1/n)>1-ε (считаем, что 0<ε<1)



1/n1/arcos(1-ε)

N=[1/arcos(1-ε)]+1

Свойства бесконечно малой последовательности.
Теорема. Сумма бесконечно малой есть бесконечно малое.

nnбесконечно малое  n+n – бесконечно малое.

Доказательство.

Дано:

n- бесконечно малое  ε>0  N1:n>N1  n<ε

n- бесконечно малое  ε>0  N2:n>N2  n<ε

Положим N=max{N1,N2}, тогда для любого n>N  одновременно выполняется оба неравенства:




n<ε n+nn+n<ε+ε=2ε=ε1n>N

n<ε
Зададим ε1>0, положим ε=ε1/2. Тогда для любого ε1>0 N=maxN1N2 :  n>N  n+n<ε1  lim(n+n)=0, то

n

есть n+n – бесконечно малое.
Теорема Произведение бесконечно малого есть бесконечно малое.

n,n – бесконечно малое  nn – бесконечно малое.

Докозательство:

Зададим ε1>0, положим ε=ε1, так как n и n – бесконечно малое для этого ε>0, то найдётся N1:  n>N  n<ε

N2:  n>N2  n<ε

Возьмем N=max {N1;N2}, тогда n>N = n<ε

n<ε

nn=nn<ε21

 ε1>0 N:n>N nn<ε21

lim nn=0  nn – бесконечно малое, что и требовалось доказать.

n

Теорема Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность

аn – ограниченная последовательность

n –бесконечно малая последовательность  ann – бесконечно малая последовательность.

Доказательство: Так как аn – ограниченная  С>0: nN  anC

Зададим ε1>0; положим ε=ε1/C; так как n – бесконечно малая, то ε>0 N:n>N n<ε ann=ann1/C=ε1

ε1>0 N: n>N  ann=Cε=ε1  lim ann=0 ann – бесконечно малое

n
Замечание: в качестве ограниченной последовательности можно рассматривать const  произведение постоянно.

Теорема о представление последовательности имеющий конечный предел.
lim an=a  an=a+n

n+

Последовательность an имеет конечный предел а тогда и только тогда, когда она представлена в виде an=a+n

где n – бесконечно малая.

Доказательство:

lim an   ε>0 N:n>N  an-a<ε. Положим an-a=n  n<ε, n>N, то есть n - бесконечно малая

n+

an=a+n что и требовалось доказать

Доказательство (обратное): пусть an=a+n, n – бесконечно малая, то есть n=an-a  ε>0 N: n>N 

n=an-a<ε, то есть lim an

n+

Теоремы о пределах числовых последовательностей.

  1. Теорема о пределе суммы:

Пусть lim an=a lim bn=b  lim an+n=a+b

n+ n+ n+

Докозательство: an=a+n bn=b+n Сложим an+bn=a+b+n+n=a+b+n lim an+bn=a+b

n+

2) Теорема о произведение пределов:

Пусть lim an=a lim bn=b  lim anbn=ab

n+ n+ n+

Доказательство: an=a+n bn=b+n  anbn=(a+n)(b+n) anbn=ab+an+bn+nn=ab+n lim anbn=ab что и

n+

требовалось доказать.

  1. Теорема о пределе частного

Пусть lim an=a lim bn=b b0 lim an/bn=a/b

n+ n+ n+

Доказательство: an=a+n bn=b+n так как b0, то N1: n>N1bn0

bn

0 (////////b/////////) x

an/bn=an/bn-a/b+a/b=a/b+(ban-abn)/bbn=a/b+[b(a+n)-a(b+n)]/b(b+n)=a/b+n/b(1+bn/b)

lim an/bn=a/b

n+
Лекция №4

Ведущая: Голубева Зоя Николаевна

Дата: понедельник, 19 сентября 2000 г.

Тема: Бесконечно большие последовательности .
аn=(-1)n – не имеет предел.

{bn}={1,1…}

{an}={-1;1;-1;1…} – предел не существует.
Бесконечно большие последовательности.

an=2n



N:n>N  an

bn=(-1)n2n



N:n>N  bn>ε

cn=-2n



N:n>N cn<-ε

Определение (бесконечно большие последовательности)

1) lim an=+, если ε>0N:n>N  an>ε где ε- сколь угодно малое.

n

2)lim an=-, если ε>0 N:n>N  an<-ε

n+

3) lim an=  ε>0 N:n>N  an>ε

n+

Последовательностью имеющий конечный предел называют сходящимися. В противном случае последовательность называют расходящимися. Среди них есть последовательности, которые расходятся в бесконечность. О них мы говорим, что они имеют бесконечный предел.

Доказательство:

an=2n

Берём ε>0; хотим 2n

n>log2ε

N=[log2ε]+1

Правило формирования обратного утверждения: нужно поменять местами значки  и , а знак неравенства на дополнительный.

Пример:

Утверждение lim an=a< aR ε>0 NN:n>N  an-a<ε

n

Обратное утверждение aR ε>0 NN: n>N  an-a<ε
Всякая бесконечно большая не ограниченная. Обратное утверждение неверно.

bn{2;0;2n;0;23;0….}



Теорема (об ограниченной сходящейся последовательности)

Пусть lim an=a<  an - ограниченная

n+

Доказательство:

Дано:

ε>0N:n>N  an-a<ε

Раз ε>0 возьмем ε=1  N:n>N  an-a<1

a-1n<1+a, n>N

Этому неравенству может быть не удовлетворять только первые N члены последовательности.

N1=max{a1;a2;…an;1+a;a-1}

anc, n>N
Теорема (о единстве предела сходящейся последовательности).

Если lim an=a <, то а- единственное.

n+

Доказательство:(от противного)

Предположим, что  b: lim an=b и ba ε=b-a/2>0 для определенности пусть b>a N1:n>N1 an-a<ε

n+

N2:n>N2  an-b<ε N=max{N1;N2}, тогда оба неравенства выполняются одновременно 

 -(b-a)/2n-a<(b-a)/2

-(b-a)/2n-b<(b-a)/2

an-a<(b-a)/2

-

an-b>-(b-a)/2

b-a
0<0 – противоречие  предположение, что b>a неверно. Аналогично доказывается, что b
Связь между бесконечно большими и бесконечно малыми величинами.

Теорема:

1)an- бесконечно большая  1/an – бесконечно малая

2)т – бесконечно малая, n0 (n>N0) 1/n – бесконечно большая

Доказательство:

1)an- бесконечно большая  lim an=  для достаточно больших номеров n an0. Зададим любое сколько

n+

угодно малое ε>0, положим ε=1/ε>0

Для ε N1:n>N1 an>ε, то есть an>1/ε N=max{N1;N0}

Тогда n>N  1/an<ε, то есть lim 1/an=0, то есть 1/an – бесконечно малое

n+

2)n – бесконечно малое lim n=0

n+

Дано: n0, n>N0 зададим ε>0 положим ε=1/ε>0

N1:n>N1 n<ε=1/ε

N=max{N0;N1}: n>N  1/n=, то есть 1/n – бесконечно большая.

Основные теоремы о существование предела последовательности.

Теорема Вейрштрасса:

Пусть an- ограниченная и моннатонна. Тогда  lim an=а<

n+

Лемма. Среднее арифметическое чисел больше среднего геометрического. Равенство достигается только если все числа равны.

Добавить документ в свой блог или на сайт

Похожие:

По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van iconПо всем вопросам регистрации
...
По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van iconПрограмма по формированию навыков безопасного поведения на дорогах...
На сайте имц imc-gd ru в разделе «Педагогам» размещены материалы для педагогов, желающих принять участие в конкурсе «Педагог-2009»....
По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van iconУрок по физике и биологии, 7 класс Тема: «Трение в природе, технике, быту»
На полу у доски стоит тяжелый ящик. Ученик, одетый в рубаху с протертыми рукавами и стоптанными башмаками, пробует передвинуть ящик....
По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van iconКонспект лекций по дисциплине «Финансы предприятия» Содержание
Оборудование: плакаты, карточки со словами, ящик для жетонов, жетоны с изображением клоунов
По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van iconРекомендации и предложения по дальнейшему развитию проекта по подготовке...
Мероприятие 5 «Распространение во всех субъектах Российской Федерации современных проектов энергосбережения в образовательных учреждениях»....
По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van iconТема Перинатальная патология нервной системы
Используя материалы лекций, учебника и дополнительной литературы, подготовить рефераты и сообщения по вопросам
По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van iconГ. А. Кулабухова моу «Подолешенская средняя общеобразовательная школа»
России привело к широкому распространению в среде молодежи негативного отношения к своему Отечеству. Современная действительность...
По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van iconУчебно-тематический план по формам обучения (д/о,в/о) содержание...
Задания для самостоятельной работы по разделам курса: задачи и проблемные ситуации
По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van iconПрограмма по формированию навыков безопасного поведения на дорогах...
Ведущий: Всем-всем добрый день! Всем-всем лучезарных улыбок и хорошего настроения! Потому что сегодня действительно добрый день –...
По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van iconО проведении в Российской Федерации
В целях привлечения внимания общества к вопросам развития культуры, сохранения культурно-исторического наследия и роли российской...
По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van iconФилософия
Карате уже завоевало сердца молодых людей во всем мире. Они обратились к каратэ в надежде реализовать мечту, свойственную всем людям,...
По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van iconВсем всем всем Акция «Человек года Гимназии №5»
Конкретный набор мероприятий определяют в процессе проектирования путем технико-экономического сравнения вариантов проектных решений...
По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van iconАннотация рнп 2 4148 «Комплексное решение коллекционно-поисковых,...
Рнп 2 4148 «Комплексное решение коллекционно-поисковых, инфраструктурно-ориентированных и информационно-сопроводительных задач по...
По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van iconМетодические рекомендации по «Экологическим основам природопользования»
Пособие включает в себя краткий курс лекций, вопросы для самоконтроля, методические указания по выполнению контрольной работы и реферата,...
По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van iconМетодические разработки по различным вопросам организации педагогического...
Методические указания предназначены для организации и проведения практических занятий с обучающимися 1 и 2 курсов по всем темам рабочей...
По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик van iconПамятка для поступающего в аспирантуру Обращаться к Cурковой Валентине...
Обращаться к Cурковой Валентине Константиновне, или к ученому секретарю Шевчук Наталье Евгеньевне, тел. (347) 273-51-08, с 00 – 15....


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск