«астрономия»





Название«астрономия»
страница12/12
Дата публикации23.03.2015
Размер1.62 Mb.
ТипКонспект
100-bal.ru > Астрономия > Конспект
1   ...   4   5   6   7   8   9   10   11   12

Другие галактики

1. Открытие других галактик. В начале XX в. было доказано, что некоторые туманные пятна, видимые в телескоп в разных участках неба, находятся вне нашей Галактики и представляют собой другие галактики, каждая из которых, подобно нашей, состоит из многих миллиардов звезд. Огромные расстояния, отделяющие Солнечную систему от этих миров, почти лишают нас возможности видеть их невооруженным глазом. Зато телескоп раскрывает перед человеком поистине глубины Вселенной: крупнейшим современным телескопам доступна область Вселенной, в которой находятся миллиарды галактик. Исследованием мира галактик занимается внегалактическая астрономия. Подобно физике элементарных частиц, проникающей в тайны невидимого микромира, внегалактическая астрономия изучает разнообразные, очень далекие от нас, не видимые невооруженным глазом космические объекты безграничного мегамира, непрерывно расширяя наши представления о Вселенной.

2*. Определение размеров, расстояний и масс галактик. Один из методов определения расстояния до галактик основан на определении видимых и абсолютных звездных величин цефеид, новых и сверхновых звезд, открываемых в других галактиках. По формуле (41) можно вычислить расстояние до тех галактик, в которых обнаружены цефеиды, новые и сверхновые звезды.

Обозначив расстояние до галактики через г, линейный диаметр — О, угловой диаметр — а", легко вывести следующую формулу для определения диаметра галактики
Линейный диаметр Туманности Андромеды, не менее 40 кпк, т. е. превышает диаметр нашей Галактики.

Смещение спектральных линий, наблюдаемое в различных частях какой-нибудь близкой к нам галактики, свидетельствует о том, что галактики вращаются. Если область галактики, расположенная на окраине (на расстоянии К от ее центра), имеет линейную скорость вращения υ, то центростремительное ускорение этой области будет υ2/R. Приравняем его к гравитационному ускорению, получаемому из закона всемирного тяготения GM/R2, где М – масса ядра галактики:

GM/R22/R,

Отсюда найдём массу ядра галактики:

М=Rυ2/G. (52)

Масса всей галактики на один-два порядка больше массы ее ядра. Например, масса ядра галактики в созвездии Андромеды порядка 1040 кг (примерно 1010 масс Солнца), а всей галактики — примерно в 100 раз больше (такова же примерно и масса нашей Галактики).

3. Многообразие галактик. Мир галактик поражает своим разнообразием. Галактики резко отличаются размерами, числом входящих в них звезд, светимостями, внешним видом. Они обозначаются номерами, под которыми их вносят в каталоги. Одни и те же галактики фигурируют в разных каталогах под разными номерами. Например, М 31, М 82 (каталог Мессье) или NGC224, NGC 3034.

По внешнему виду галактики условно разделены на три основных типа: эллиптические, спиральные и неправильные.

Пространственная форма эллиптических галактик — эллипсоиды с разной степенью сжатия. Среди эллиптических галактик встречаются гигантские и карликовые. Почти четверть всех изученных галактик относится к эллиптическим. Это наиболее простые по структуре галактики. Распределение звезд в них равномерно убывает от центра, пыли и газа почти нет. Самые яркие звезды — красные гиганты.

Спиральные галактики — самый многочисленный тип галактик. К нему относятся наша Га лактика и гигантская Туманность Андромеды (М 31 или NGC 224, рис. 97), удаленная от нас примерно на 2,5 млн св. лет. Это одна из немногих галактик, видимых невооруженным глазом. Массы спиральных галактик — порядка 109—1012 масс Солнца. Ближайшая к нам галактика М 31 не только красива, но и опасна. Через несколько миллиардов лет она может столкнуться с Галактикой...

Неправильные галактики не имеют центральных ядер и не обнаруживают закономерностей в своем строении. Жители Южного полушария Земли могут невооруженным глазом видеть две неправильные галактики — Большое и Малое Магеллановы Облака, являющиеся спутниками нашей Галактики. Они находятся сравнительно недалеко от нас, на расстоянии всего лишь в полтора раза большем диаметра Галактики. Магеллановы Облака значительно меньше нашей Галактики по массе и размерам. Изучение Магеллановых Облаков позволяет получить ценнейшие сведения о звездах, звездных скоплениях и диффузной материи. Вспомните, например, об открытии сверхновой звезды в Большом Магеллановом Облаке.

Нередко встречаются и другие виды галактик, которые по своим свойствам отличаются от эллиптических, спиральных и неправильных. Таковы, например, взаимодействующие галактики. Они обычно находятся на небольших расстояниях друг от друга, связаны «мостами» из светящейся материи, иногда как бы пронизывают одна другую.

  1. Радиогалактики и активность ядер галактик. Некоторые галактики обладают исключительно мощным радиоизлучением, превосходящим видимое излучение. Это радио-галактики. Одна из них находится в созвездии Лебедя (Лебедь А). Ее видимая звездная величина — примерно 18™ (будучи столь слабым объектом в оптическом диапазоне, эта галактика даже не была внесена в каталог N00). Но абсолютная звездная величина галактики Лебедь А, находящейся от нас на расстоянии около 200 Мпк, достигает -20,5т. Это такая же гигантская система, как и наша Галактика. Но, в отличие от нашей и других «нормальных» галактик, Лебедь А излучает в радиодиапазоне больше энергии, чем в оптическом диапазоне. В Лебеде А видно два ядра, образование которых скорее всего связано с мощным взрывом в центре этой галактики (хотя, возможно, это результат столкновения двух галактик).

Другой известный источник радиоизлучения — шаровая галактика NGC 5128 в созвездии Центавра (рис. 100). На фотографии этой галактики четко выделяются огромные облака темной пылевой материи, которые как бы разделяют галактику на две части.

В одной из ближайших к нам радиогалактик (Дева А; М 87 или NGC 4486) хорошо видна газовая струя, устремленная из ядра. Длина струи достигает нескольких тысяч световых лет, внутри нее заметны отдельные сгущения.

Еще недавно считалось, что самые грандиозные проявления взрывных процессов — вспышки сверхновых. Однако при взрывах в ядрах галактик выделяется во много раз больше энергии. Наблюдаемая активность ядер галактик проявляется в следующих основных формах: непрерывное истечение потоков вещества; выбросы сгустков газа и облаков газа с массой в миллионы солнечных масс; нетепловое (т. е. не связанное с нагреванием) радиоизлучение из околоядерной области; взрывы, превращающие галактику в радиогалактику. Причина активности ядер галактик пока не выяснена. На протяжении многих лет активность ядер галактик в нашей стране исследовали академик В. А. Амбар-цумян (1908—1996) и его ученики.

5. Квазары. Радионаблюдения привели в 1963 г. к открытию удивительных звездоподобных источников радиоизлучения. Они были названы квазарами. Сейчас их открыто более тысячи. Самый яркий квазар, имеющий обозначение ЗС 273 (ЗС — сокращенное название третьего Кембриджского каталога радиоисточников), виден как звезда 12,6т. В действительности этот квазар, находящийся от нас на расстоянии около 3 млрд. св. лет, излучает больше энергии в оптическом диапазоне, чем самые яркие галактики. Светимость этого квазара в 500 раз превосходит светимость галактики в Андромеде. В радиодиапазоне мощность излучения ЗС 273 сравнима с радиоизлучением Лебедя А. Кроме того, этот квазар оказался одним из самых мощных источников рентгеновского излучения. Сравнивая между собой старые фотографии участка звездного неба, полученные в то время, когда эта «слабая звезда» ничем не привлекала к себе внимание, обнаружили, что блеск квазара не оставался постоянным. Это позволило оценить размеры квазара. Они не превышают одного светового года. Следовательно, квазар, по крайней мере, больше обычных звезд, но гораздо меньше, например, нашей Галактики.

Квазары не похожи на обычные звезды и своими массами. Вычисления показывают, что массы квазаров достигают многих миллионов солнечных масс. Чтобы вызвать и длительное время поддерживать сверхмощное излучение ква-заров, требуется энергия, которую не может обеспечить ни один из известных ныне источников, включая термоядерный синтез. Свет и радиоизлучение от самых далеких из известных ныне квазаров идет к нам более 10 млрд. лет. Скорее всего квазары это исключительно активные ядра очень далеких галактик.
Метагалактика

1. Системы галактик и крупномасштабная структура Вселенной. Галактики, подобно звездам, наблюдаются группами. Например, нашу Галактику, Магеллановы Облака и еще около 20 небольших спутников нашей Галактики можно рассматривать как кратную систему. Кратной оказалась и Туманность Андромеды, окруженная несколькими эллиптическими галактиками-спутниками.

неболшую систему, так содержащие сотни и ты-


Наша Галактика и Туманность Андромеды входят в Местную группу (систему) галактик, размеры которой достигают сотен тысяч парсек. Местная группа представляет собой сравнительно как существуют скопления, сячи галактик. Ближайшее к нам скопление галактик находится в созвездии Девы и насчитывает сотни крупных галактик. Рас стояние до него порядка 20 Мпк, это система диаметром более 6 Мпк. Крупные скопления галактик находятся в созвездиях Волосы Вероники, Северная Корона, Геркулес и др.

Не входят ли скопления в состав еще больших систем? Данные внегалактической астрономии указывают на то, что, возможно, существует Местное сверхскопление галактик, насчитывающее примерно 10 тыс. галактик и имеющее диаметр около 50 Мпк. В его центре расположено скопление галактик в созвездии Девы. Открыто несколько десятков других сверхскоплений (два ближайших находятся от нас на расстоянии 100 Мпк). Таким образом, Вселенной на самых разных уровнях присуща структурность: от ядер атомов до гигантских сверхскоплений галактик.

В конце 70-х гг. XX в. астрономы обнаружили, что галактики в сверхскоплениях распределены не равномерно, а сосредоточены вблизи границ ячеек, внутри которых галактик почти нет. Теоретически предвидели возможность такого распределения галактик, а потому открытие не было неожиданным. Следовательно, согласно современным представлениям, для Вселенной характерна ячеистая (иногда говорят сетчатая, или пористая) структура, которую можно видеть на специально обработанных фотографиях участков звездного неба. Она напоминает «паутинную сетку».

Вообразим себе достаточно большую «сеть», содержащую множество ячеек. Если не обращать внимания на индивидуальные особенности каждой отдельно взятой ячейки, то в больших масштабах ее различные части выглядят сходным образом.

Мы рассматривали картину распределений сверхскоплений галактик в проекции на небесную сферу. А каково их пространственное распределение? Оказывается, «пустоты» существуют не только внутри ячеек. Недавно они обнаружены (и названы «черными областями») при исследовании распределения галактик в пространстве: найдены огромные объемы пространства (порядка миллиона кубических мега-парсек), в которых галактик пока не обнаружено.

В свете этих открытий пространственной моделью структуры Вселенной может служить кусок пемзы. В целом она однородна, хотя в небольших выделенных объемах пемза неоднородна (в ней есть вещество и пузырьки воздуха). Так и во Вселенной: в небольших масштабах, например в масштабах Солнечной системы или Галактики, вещество распределено явно неравномерно, но в масштабах сверхскоплений галактик вещество распределено практически равномерно. Итак, в крупномасштабной структуре Вселенной не существует каких-либо особых, чем-то выделяющихся мест или направлений, поэтому в больших масштабах (более 100—200 Мпк) Вселенную можно считать не только однородной, но и изотропной.

2. Метагалактика и ее расширение. Вся охваченная современными методами астрономических наблюдений часть Вселенной называется Метагалактикой (или нашей Вселенной). В Метагалактике пространство между галактиками заполнено чрезвычайно разреженным межгалактическим газом, пронизывается космическими лучами, в нем существуют гравитационные и электромагнитные поля, а возможно, и невидимые массы вещества (не только «обычного», но и, например, состоящего из нейтрино).

От наиболее удаленных метагалактических объектов свет идет до нас миллиарды лет. И все-таки нет оснований отождествлять Метагалактику со «всей Вселенной». В принципе возможно существование других, пока неизвестных нам метагалактик.

В 1929 г. американский астроном Э. Хаббл открыл замечательную закономерность: линии в спектрах подавляющего большинства галактик смещены к красному концу, причем смещение тем больше, чем дальше от нас находится галактика. Это интересное явление называется красным смещением.

Объяснив красное смещение эффектом Доплера, ученые пришли к выводу о том, что расстояние между нашей и другими галактиками непрерывно увеличивается. Конечно, галактики не разлетаются во все стороны от нашей Галактики, которая не занимает никакого особого положения в Метагалактике, а происходит взаимное удаление всех галактик. Это означает, что наблюдатель, находящийся в любой галактике, мог бы, подобно нам, обнаружить красное смещение, ему казалось бы, что от него удаляются все галактики.

Таким образом, Метагалактика нестационарна. Открытие расширения Метагалактики свидетельствует о том, что Метагалактика в прошлом была не такой, как сей час, и иной станет в будущем, т. е. Метагалактика эволюционирует.

По красному смещению определены скорости удаления галактик. У многих галактик они очень велики, соизмеримы со скоростью света. Самыми большими скоростями, иногда превышающими 250 000 км/с, обладают некоторые квазары, считающиеся самыми удаленными от нас объектами Метагалактики.

Закон, согласно которому красное смещение (а значит, и скорость удаления галактик!) возрастает пропорционально расстоянию от галактик (закон Хаббла), можно записать в виде:

υ = Нr,

гдеυ — лучевая скорость галактики; г — расстояние до нее; Н — постоянная Хаббла (НиЬЫе), точнее параметр Хаббла.

По современным оценкам, значение Н заключено в пределах 50 км/(с∙Мпк) < Н < 100 км/(с∙Мпк). Следовательно, наблюдаемый темп расширения Метагалактики таков, что галактики, разделенные расстоянием 1 Мпк (3,08 • 1019 км), удаляются друг от друга со скоростью от 50 до 100 км/с. Если скорость удаления галактики определена по формуле (44), то формула (53) дает возможность вычислить расстояние до далеких галактик. Наиболее вероятное значение параметра Хаббла Н = 70 км/(с∙Мпк).

Пример. На каком расстоянии от нас находится галактика, имеющая скорость удаления 1,5-104км/с?

Закон Хаббла наиболее точно выполняется для далеких галактик (и их скоплений), разделенных расстояниями 100—300 Мпк. Отклонения от этого закона наблюдаются прежде всего у относительно близких к нам галактик, у которых, как и у наиболее близких к нам звезд, весьма ощутимы индивидуальные движения внутри скоплений галактик. Кроме того, закон Хаббла нельзя считать точным для очень далеких внегалактических объектов, например квазаров, у которых v > 100 000 км/с.

Итак, мы живем в расширяющейся Метагалактике Это явление имеет свои особенности. Например, системы, подобные нашей Солнечной системе, кратным системам звезд или даже отдельным галактикам, в расширении Метагалактики не участвуют (этому препятствуют силы тяготения, действующие между Солнцем и планетами, звездами в кратных системах или между звездами, входящими в состав галактик). Следовательно, расширение Метагалактики проявляется только на уровне скоплений и сверхскоплений галактик, т. е. систем, элементами которых являются галактики. Галактики в скоплениях иногда сравнивают с атомами нагреваемого вещества. При нагревании объем вещества увеличивается, возрастает расстояние между атомами, что, конечно, не отражается на размерах самих атомов.

О другой особенности расширения Метагалактики вы уже знаете. Она заключается в том, что не существует центра, от которого разбегаются галактики.

Расширения Метагалактики не только подтверждают наблюдения (оптические и радиоастрономические), но и были предсказаны теорией. В России в 1922 г., за несколько лет до открытия Хаббла, А А Фридман (1888—1925), основываясь на теории относительности А Эйнштейна (1879—1955), показал, что геометрические свойства Вселенной должны изменяться, т. е. расстояния между галактиками не могут оставаться постоянными. Открытие Хаббла, как вы знаете, свидетельствует о расширении Метагалактики.

Если допустить, что в прошлом расширение Метагалактики происходило таким же темпом, что и сейчас, то можно рассчитать, когда началось расширение. Так как любые две галактики, отстоящие друг от друга на 1 Мпк, удаляются со скоростью 50—100км/с, то 1/H — величина, обратная постоянной Хаббла, — дает нам представление о промежутке времени от начала расширения Метагалактики. Этот промежуток времени (это и есть возраст нашей Вселенной), по новейшим данным, составляет 13,7 млрд лет.

Расширение Метагалактики самое грандиозное из известных в настоящее время явлений природы. Правильное его истолкование имеет исключительно большое мировоззренческое значение. Не случайно в объяснении причины этого явления резко проявилось коренное отличие философских взглядов ученых. Некоторые из них, отождествляя Метагалактику со всей Вселенной, пытаются доказать, что расширение Метагалактики подтверждает религиозное представление о сверхъестественном, божественном происхождении Вселенной. Однако во Вселенной известны естественные процессы, которые в прошлом могли вызвать наблюдаемое расширение. По всей вероятности, это взрывы. Их масштабы поражают нас уже при изучении отдельных видов галактик. Можно представить, что расширение Метагалактики также началось с явления, напоминающего колоссальный взрыв вещества («Большой взрыв»), обладавшего огромной температурой и плотностью.
Астрономические каталоги и звездные карты
Экваториальные координаты светил, полученные непосредственно из наблюдений и исправленные за рефракцию, называются видимыми. Если из видимых координат исключить влияние аберрации света, то получим истинные координаты. И наконец, если из истинных координат исключить влияние нутации, то получим средние экваториальные координаты светила в момент наблюдения. Средние экваториальные координаты светила можно вычислить и для любого другого момента, если учесть влияние прецессии. Средние экваториальные координаты звезд, отнесенные к началу какого-нибудь года, заносятся в списки, которые называются каталогами положений или звездными каталогами. Начало года, для которого даны средние координаты звезд, называется равноденствием каталога. Каталоги положений делятся на абсолютные (полученные из абсолютных наблюдений) и относительные (полученные дифференциальным методом). В абсолютных и относительных каталогах, кроме экваториальных координат, обязательно указывается средняя дата наблюденй каждой звезды (эпоха наблюдений).

На основании абсолютных и относительных каталогов, полученных в разные эпохи, составляются фундаментальные каталоги положений звезд. В этих каталогах, кроме экваториальных координат, для каждой звезды даются собственное движение ma , md и другие характеристики звезды, а также прецессионные величины. Фундаментальные каталоги и являются фундаментальной системой отсчета в астрономии.

Наиболее обширным из фундаментальных каталогов является “Общий каталог” Босса (сокращенно GC), опубликованный в 1937 г. и содержащий положения и собственные движения 33 342 звезд. Наиболее точные координаты и собственные движения 1532 звезд содержатся в четвертом фундаментальном каталоге Астрономического общества (сокращенно FK4). Все данные астрономических ежегодников вычисляются на основе этого каталога.

Кроме точных каталогов положений, составляются так называемые “обозрения неба”, содержащие приближенные значения координат звезд. Основное назначение этих каталогов — облегчить отождествление перечисленных в них звезд при наблюдениях и при исследованиях фотографий звездного неба. Иногда такие каталоги публикуются в виде звездных карт. Наиболее известно “Боннское обозрение” (сокращенно BD), составленное в 1859-1887 гг. и содержащее приближенные координаты 324 000 звезд до 10-11 звездной величины, имеющих склонение в пределах от + 90° до —23°. Продолжением BD для южного полушария неба являются Капское фотографическое обозрение (CPD) и Кордовское обозрение (CD или CoD).

Кроме звездных каталогов, имеются каталоги других небесных объектов. Так, каталог Мессье (1784 г.) содержит сведения о 108 туманностях и звездных скоплениях. Общепринятый сейчас “Новый общий каталог туманностей и звездных скоплений” (сокращенно NGC), составленный Дрейером и изданный в 1888 г., содержит сведения о 7840 объектах, а два дополнения к нему (IC и IC II) содержат сведения о 5386 объектах. Существуют также каталоги, содержащие сведения о параллаксах, лучевых скоростях, звездных величинах и спектральных характерстиках звезд.
1   ...   4   5   6   7   8   9   10   11   12

Похожие:

«астрономия» iconРабочая программа по предмету «Астрономия»
«Астрономия 11 класс», Е. П. Левитан, 2000г. Календарно-тематический план ориентирован на использование базового учебника «Астрономия...
«астрономия» iconИнформационно-исследовательский проект «Волшебная астрономия»
Астрономия влечет молодежь глубиной и загадочностью космоса, возможностью собственными глазами наблюдать удивительный мир небесных...
«астрономия» iconКонкурс Учащихся 1 7-х классов «Первые шаги в науку» Секция астрономия Солнце
Астрономия влечет молодежь глубиной и загадочностью космоса, возможностью собственными глазами наблюдать удивительный мир небесных...
«астрономия» iconРабочая программа учебной дисциплины бз. В. 12 «Астрономия»
Программа предназначена для построения курса лекционных и лабораторных занятий для студентов направления «Педагогическое образование»...
«астрономия» iconПрограмма вступительных экзаменов в аспирантуру Укрупненная группа...
...
«астрономия» iconТема : Атмосферы планет земной группы
Оборудование: Энциклопедия «Аванта» Астрономия (три штуки), Журнал «Древо познания» ( три штуки), учебник астрономия 11 (три штуки),...
«астрономия» iconПрограмма элективного курса для учащихся 11-х классов по физике. Физика и астрономия
Образовательная программа предназначена для 11 класса муниципальной средней общеобразовательной школы. Основная задача программы...
«астрономия» iconПрограмма дисциплины опд. Р. 04 «Астрономия»
Программа предназначена для построения курса лекционных и практических занятий для студентов направления Физико-математическое образование...
«астрономия» iconАнглийский язык 2 астрономия 5 биология

«астрономия» iconКтп рабочей программы рассчитано на 1 час в неделю и ориентирована...
Ктп рабочей программы рассчитано на 1 час в неделю и ориентирована на использование учебника «Астрономия 11 класс», Е. П. Левитан,...
«астрономия» iconПрограмма курсов повышения квалификации «Астрономия в современной...

«астрономия» iconРефератов по дисциплине «Астрономия»
Свет, озаривший Вселенную. (Образование Вселенной, молодая Вселенная, реликтовое излучение)
«астрономия» iconПрограмма дисциплины дисциплина Астрономия и навигация
Федеральным государственным образовательным стандартом высшего профессионального образования по
«астрономия» iconУчебное пособие для обучающихся в спбгу по направлениям астрономия,...
Учебное пособие для обучающихся в спбгу по направлениям астрономия, информатика, математика, механика, прикладная математика, физика,...
«астрономия» iconРеферат Отчет 38 стр
Ключевые слова: космология, внегалактическая астрономия, звезды, межзвездная среда, активные ядра
«астрономия» iconРеферат Отчет 17 стр
Ключевые слова: космология, внегалактическая астрономия, звезды, межзвездная среда, активные ядра


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск