«астрономия»





Название«астрономия»
страница8/12
Дата публикации23.03.2015
Размер1.62 Mb.
ТипКонспект
100-bal.ru > Астрономия > Конспект
1   ...   4   5   6   7   8   9   10   11   12

Лекция 7
Солнечная система.
Строение Солнечной системы
Солнце и совокупность космических тел, обращающихся вокруг него, образуют Солнечную систему.

В Солнечную систему входят: Солнце, являющееся динамическим центром всей системы, 9 больших планет, 32 спутника планет, более 1800 малых планет или астероидов, много комет (наблюдались появления свыше 500 комет) и множество метеорных тел.

Тщательные научные исследования дали обширную информацию о движении этих тел в пространстве, что позволяет составить достаточно точный план строения Солнечной системы. В приложениях к этой книге даны таблицы с числовыми характеристиками больших планет и их спутников — основных и наиболее массивных (после Солнца) членов Солнечной системы. Здесь же мы ограничимся лишь общим описанием ее строения.

Все большие планеты движутся вокруг Солнца в одном направлении, против часовой стрелки, если смотреть со стороны северного полюса эклиптики (прямое движение). Их невозмущенные орбиты — эллипсы, с небольшими эксцентриситетами и малыми наклонениями к эклиптике. Вращение почти всех больших планет, а также Солнца и Луны, вокруг осей происходит в том же направлении, в котором планеты движутся вокруг Солнца (прямое вращение). Исключением являются Уран и Венера, у которых вращение обратное. Расстояния планет от Солнца образуют закономерную последовательность: промежутки между орбитами увеличиваются с удалением от Солнца, правило Тициуса-Боде). Среднее расстояние от Солнца самой далекой планеты Плутон составляет 39,75 а.е. Если это расстояние принять за радиус Солнечной системы, то он окажется примерно в 700 раз меньше расстояния до ближайшей звезды Проксимы Центавра.

Спутники обращаются вокруг планет, подобно тому как планеты обращаются вокруг Солнца. Большинство спутников движется в прямом направлении, исключая 11 спутников с обратным движением, при этом 5 из них (спутники Урана) имеют, следовательно, то же направление движения, что и вращение планеты.

Малые планеты, или астероиды, движутся вокруг Солнца, как и большие планеты, в прямом направлении. Их орбиты имеют в среднем большие эксцентриситеты и большие наклоны, чем орбиты больших планет. Большинство орбит астероидов расположено между орбитами Марса и Юпитера, однако некоторые из них могут заходить внутрь орбиты Меркурия (Икар) и удаляться до орбиты Сатурна (Гидальго). У некоторых астероидов обнаружено вращение вокруг осей, причем в ряде случаев оно оказывается обратным.

Движение комет отличается большим разнообразием. Невозмущенные орбиты большинства комет — очень сильно вытянутые эллипсы с эксцентриситетами, близкими к 1. В редких случаях, в результате возмущений от планеты, кометы вблизи Солнца движутся по гиперболам (е > 1), но те же возмущения могут возвратить кометы на эллиптические орбиты. Расстояние в афелии у некоторых комет достигает 50 000-100 000 а.е., а период обращения — нескольких миллионов лет. У немногих короткопериодических комет орбиты почти круговые. Наклонения орбит комет также разнообразны и часто превышают 90°, т.е. кометы движутся вокруг Солнца как в прямом, так и в обратном направлении.

Движение отдельных метеорных тел очень сложное, но многие из них образуют метеорные потоки, движущиеся по орбитам, подобным орбитам комет.

Видимые движения планет
Планеты по своим видимым движениям делятся на дне группы: нижние (Меркурий, Венера) и верхние (все остальные, кроме Земли).

Движения по созвездиям нижних и верхних планет различны. Меркурий и Венера всегда находятся на небе либо в том же созвездии, где и Солнце, либо в соседнем. При этом они могут находиться и к востоку и к западу от Солнца, но не дальше 18-28° (Меркурий) и 45-48° (Венера). Наибольшее угловое удаление планеты от Солнца к востоку называется ее наибольшей восточной элонгацией, к западу — наибольшей западной элонгацией. При восточной элонгации планета видна на западе, в лучах вечерней зари, вскоре после захода Солнца, и заходит через некоторое время после него.

Затем, двигаясь попятным движением (т.е. с востока к западу сначала медленно, а потом быстрее, планета начинает приближаться к Солнцу, скрывается в его лучах и перестает быть пилимой. В это время наступает нижнее соединение планеты с Солнцем; планета проходит между Землей и Солнцем. Эклиптические долготы Солнца и планеты равны. Спустя некоторое время после нижнего соединения планета становится снова видимой, но теперь уже на востоке, в лучах утренней зари, незадолго перед восходом Солнца. В это время она продолжает двигаться попятным движением, постепенно удаляясь от Солнца. Замедлив скорость попятного движения и достигнув наибольшей западной элонгации, планета останавливается и меняет направление своего движения на прямое. Теперь она движется с запада на восток, сначала медленно, затем быстрее. Удаление ее от Солнца уменьшается, и, наконец, она скрывается в утренних лучах Солнца. В это время планета проходит за Солнцем, эклиптические долготы обоих светил снова равны — наступает верхнее соединение планеты с Солнцем, после которого спустя некоторое время она снова видна на западе в лучах вечерней зари. Продолжая двигаться прямым движением, она постепенно замедляет свою скорость.

Достигнув предельного восточного удаления, планета останавливается, меняет направление своего движения на попятное, и все повторяется сначала. Таким образом, нижние планеты совершают как бы “колебания” около Солнца, как маятник около своего среднего положения.

Видимые движения верхних планет происходят иначе. Когда верхняя планета видна после захода Солнца на западном небосклоне, она перемещается среди звезд прямым движением, т.е. с запада на восток, как и Солнце. Но скорость ее движения меньше, чем у Солнца, которое постепенно нагоняет планету, и. она на некоторое время перестает быть видимой, так как восходит и заходит почти одновременно с Солнцем. Затем, когда Солнце обгонит планету, она становится видимой на востоке, перед восходом Солнца. Скорость ее прямого движения постепенно уменьшается, планета останавливается и затем начинает перемещаться среди звезд попятным движением, с востока на запад (рис. 22). Через некоторое время планета снова останавливается, меняет направление своего движения на прямое, снова ее с запада нагоняет Солнце и она опять перестает быть видимой — и все явления повторяются в том же порядке.


В середине дуги своего попятного движения планета находится в созвездии, противоположном тому, в котором в это время находится Солнце. Разность эклиптических долгот планеты и Солнца равна 180°. Такое положение планеты называется противостоянием с Солнцем. В середине дуги прямого движения планеты, когда Солнце и планета находятся в одном и том же созвездии, их эклиптические долготы равны. Это положение называется соединением планеты с Солнцем.

Расположение планеты от Солнца на 90° к востоку называется восточной квадратурой, а на 90° к западу — западной квадратурой. Средние значения дуг попятных движений у планет таковы: Меркурий — около 12°, Венера — около 16°, Марс —15°, Юпитер — 10°, Сатурн — 7°, Уран — 4°, Нептун — 3°, Плутон — 2°.

Положения планет относительно Солнца, описанные выше, называются конфигурациями планет.
Конфигурация планет
При своем движении по орбитам планеты могут занимать различные положения относительно Солнца и Земли. Пусть в некоторый момент Земля Т занимает на своей орбите некоторое положение относительно Солнца С. Нижняя или верхняя планета может находиться в этот момент в любой точке своей орбиты.

Если нижняя планета V находится в одной из четырех указанных на чертеже точек V1 , V2 , V3 или V4 , то она видна с Земли в нижнем (V1 ) или в верхнем (V3 ) соединении с Солнцем, в наибольшей западной (V2 ) или в наибольшей восточной (V4 ) элонгации. Если верхняя планета М находится в точках М1 , М2 , М3 или М4 своей орбиты, то она видна с Земли в противостоянии (М1 ) , в соединении (M3 ) , в западной (М2 ) или в восточной (М4 ) квадратуре.

Нижняя планета находится ближе всего к Земле в момент нижнего соединения и дальше всего — в момент верхнего соединения. Верхняя планета приближается к Земле на наименьшее расстояние в момент противостояния и удаляется от нее на максимальнее расстояние в момент соединения. Так объясняются конфигурации планет.


Суть объяснения прямых и попятных движений планет заключается в сопоставлении орбитальных линейных скоростей планеты и Земли.

Когда верхняя планета (рис. 25) находится около соединения (M3 ) , то ее скорость направлена в сторону, противоположную скорости Земли (Т3 ). С Земли планета будет казаться движущейся прямым движением, т.е. в сторону ее действительного движения, справа налево. При этом скорость ее будет казаться увеличенной. Когда верхняя планета находится около противостояния (M1 ) , то ее скорость и скорость Земли направлены в одну сторону. Но линейная скорость Земли больше линейной скорости верхней планеты, и поэтому с Земли планета будет казаться движущейся в обратную сторону, т.е. попятным движением, слева направо.


Подобные же рассуждения объясняют, почему нижние планеты (Меркурий и Венера) около нижнего соединения (V1 ) движутся среди звезд попятным движением, а около верхнего соединения (V3 ) — прямым движением (рис. 26).
Синодические и сидерические периоды обращения планет
Синодическим периодом обращения (S) планеты называется промежуток времени между ее двумя последовательными одноименными конфигурациями.

Сидерическим или звездным периодом обращения (Т) планеты называется промежуток времени, в течение которого планета совершает один полный оборот вокруг Солнца по своей орбите.

Сидерический период обращения Земли называется звездным годом (ТÄ ) . Между этими тремя периодами можно установить простую математическую зависимость из следующих рассуждений. Угловое перемещение по орбите за сутки у планеты равно , а у Земли . Разность суточных угловых перемещений планеты и Земли (или Земли и планеты) есть видимое смещение планеты за сутки, т.е. . Отсюда для нижних планет
(2.1)

для верхних планет
(2.2)
Эти равенства называются уравнениями синодического движения.

Непосредственно из наблюдений могут быть определены только синодические периоды обращений планет S и сидерический период обращения Земли, т.е. звездный год ТÄ. Сидерические же периоды обращений планет Т вычисляются по соответствующему уравнению синодического движения.

Продолжительность звездного года равна 365,26... средних солнечных суток.

Продолжительность синодических и сидерических периодов обращения планет см. в приложениях.

Общие сведения о Солнце

Солнце играет исключительную роль в жизни Земли. Весь органический мир нашей планеты обязан Солнцу своим существованием. Солнце — не только источник света и тепла, но и первоначальный источник многих других видов энергии (энергии нефти, угля, воды, ветра).

Издавна у разных народов Солнце было объектом поклонения. Его считали самым могущественным божеством. Культ непобедимого Солнца был одним из самых распространенных (Гелиос — греческий бог Солнца, Аполлон — бог Солнца у римлян, Митра — у персов, Ярило — у славян и т. д.). В честь Солнца воздвигали храмы, слагали гимны, приносили жертвы. Ушло в прошлое религиозное поклонение дневному светилу. Сейчас ученые исследуют природу Солнца, выясняют его влияние на Землю, работают над проблемой применения практически неиссякаемой солнечной энергии.

Солнце — это наша звезда. Изучая Солнце, мы узнаем о многих явлениях и процессах, происходящих на других звездах и недоступных непосредственному наблюдению из-за огромных расстояний, которые отделяют нас от звезд.

2. Вид Солнца в телескоп. Наблюдения Солнца требуют большой осторожности. Нельзя смотреть на Солнце, не защитив глаза очень плотным (темным) светофильтром! Но даже со светофильтром не рекомендуется смотреть на Солнце в школьный тел ескоп. Лучше установить на окулярном конце телескопа экран с листом белой бумаги и рассматривать изображение Солнца на экране. Это позволит увидеть на Солнце темные пятна (солнечные пятна) и светлые участки (факел ы), которые заметнее вокруг пятен вблизи края солнечного диска. На современных обсерваториях для наблюдения Солнца применяют телескопы специальных конструкций — солнечныетелескопы. Таким телескопом оснащена, например, Крымская астрофизическая обсерватория.

3. Вращение Солнца. Если сравнить несколько последовательных фотографий Солнца, то можно заметить, как меняется положение всех пятен на диске. Это происходит из-за вращения Солнца. Солнце вращается не как твердое тело. Пятна, находящиеся вблизи экватора Солнца, опережают пятна, расположенные в средних широтах. Следовательно, скорости вращения разных слоев Солнца различны. Экваториальные области делают один оборот вокруг оси Солнца за 25 земных суток, а области вблизи полюсов Солнца — примерно за 30 суток. Линейная скорость вращения на экваторе Солнца составляет 2 км/с. Наблюдения показывают, что все пятна перемещаются от восточного края к западному. Следовательно, Солнце вращается вокруг своей оси в направлении движения планет вокруг него.

4. Размеры, масса и светимость Солнца. Радиус Солнца в 109 раз, а объем примерно в 1 300 000 раз больше соответственно радиуса и объема Земли. Велика и масса Солнца. Она примерно в 330 000 раз больше массы Земли и почти в 750 раз больше суммарной массы движущихся вокруг него планет.

Энергия, получаемая Землей от Солнца, характеризуется солнечной постоянной. Солнечной постоянной называется величина, определяемая полной энергией, которая падает в 1 с на площадку 1 м2, расположенную перпендикулярно солнечным лучам вне земной атмосферы на среднем расстоянии Земли от Солнца.

Для измерения солнечной постоянной на высокогорных станциях определяют количество теплоты, которое получает вода, налитая в специальные сосуды, от зачерненного металлического диска, нагреваемого солнечными лучами. В результате тщательных измерений, выполненных с учетом поглощения видимого, инфракрасного и ультрафиолетового излучения в земной атмосфере, нашли, что солнечная постоянная равна 1400 Вт/м2 (более точное значение несколько меньше).

равный 5,67-10~8 Вт/(м2·К4). Из формул (26) и (27) следует, что



σT4=Измерения солнечной постоянной проводились на протяжении многих лет. Оказалось, что значение солнечной постоянной практически не меняется. Значит, полная энергия, излучаемая Солнцем в единицу времени, постоянна. Если умножить солнечную постоянную на площадь сферы, радиус которой равен среднему расстоянию Земли от Солнца, то получится общая энергия, излучаемая Солнцем в единицу времени (Lо). Lo — это светимость Солнца (или мощность его излучения):

Lo ~ 4 • 1026 Вт.

5. Температура Солнца и состояние вещества на Солнце. Чтобы выяснить, в каком состоянии находится вещество на Солнце, необходимо прежде всего знать температуру Солнца. Существуют различные способы определения температуры Солнца, все они основаны на физических законах, открытых на Земле и действующих во всей доступной наблюдениям части Вселенной. Один из способов определения температуры Солнца заключается в следующем. Мы знаем светимость Солнца Lo. Известен и радиус Солнца R0, а следовательно, и площадь видимой поверхности Солнца 4πRо2. Зная это, вычислим энергию, излучаемую единицей площади поверхности Солнца в единицу времени, ε. Очевидно, что Подставляя числовые значения входящих в формулу (28') величин, находим: Т ~ 6000 К. Полученную таким методом температуру называют эффективной температурой.

Мы применили закон Стефана — Больцмана, считая, что Солнце излучает как некоторое идеальное (его называют черным) тело, хотя на самом деле это не совсем так. Абсолютно черное тело — это идеальный поглотитель излучения (оно полностью поглощает весь падающий на него поток излучения) и идеальный излучатель (оно излучает в диапазоне всех длин волн). Все реальные тела, излучающие энергию, включая Солнце и другие звезды, лишь с определенной степенью точности можно принимать за абсолютно черные тела. Исследование свойств вещества, из которого состоят видимые наружные слои Солнца, показывает, что это вещество действительно очень хорошо поглощает излучение (чем и оправдывается применение формулы (27)). На рисунке 71 показана зависимость энергии, излучаемой Солнцем и другими источниками излучения, от длины волны. Из рисунка видно, что, чем выше температура, тем меньше длина волны (λmax), соответствующая максимуму излучаемой энергии. Более точно эта зависимость выражается законом Вина:

(29)

λmax=
При температуре 6000 К вещество находится на Солнце в газообразном состоянии, причем атомы некоторых химических элементов ионизованы. С глубиной температура растет (достигает в центре Солнца 1,5·107 К), а вместе с тем увеличивается число ионизованных атомов. Поэтому основное состояние, в котором находится вещество на Солнце, — это плазма, а Солнце это раскаленный плазменный шар.

6. Химический состав Солнца. Даже в прошлом веке некоторые ученые считали, что мы никогда не узнаем, из чего состоит Солнце. Однако применение спектрального анализа к исследованию Солнца опровергло такое предположение. Спектр Солнца — это непрерывный спектр, пересеченный множеством узких темных линий поглощения (называемых фраунгоферовыми линиями, по имени немецкого оптика И. Фраунгофера (1787—1826), впервые наблюдавшего и зарисовавшего их в 1814 г.).

Отождествление линий в спектре Солнца с линиями в спектрах химических элементов, изучаемых в лабораторных условиях, позволяет определить состав атмосферы Солнца. На Солнце обнаружено более 70 химических элементов. Никаких «неземных» элементов Солнце не содержит. Самые распространенные элементы на Солнце — водород (около 70% всей массы Солнца) и гелий (более 28%). Гелий («солнечный газ») был впервые открыт на Солнце и только почти через 30 лет — на Земле.



Элементы физики Солнца

Условно в атмосфере Солнца выделяют три основных слоя: фотосферу (самый нижний слой), хромосферу и корону.

1. Фотосфера. Доступная непосредственному наблюдению светящаяся «поверхность» Солнца называется фотосферой. Никакой «поверхности» в обычном смысле этого слова Солнце, конечно, не имеет. На самом деле фотосфера представляет собой нижний слой солнечной атмосферы, толщина которого 300—400 км. Именно она излучает практически всю приходящую к нам солнечную энергию, так как из-за непрозрачности вещества фотосферы солнечное излучение из более глубоких слоев Солнца к нам уже не доходит и их увидеть невозможно. Плотность фотосферы не превышает порядка 10~4 кг/м3, а число атомов преобладающего в фотосфере водорода — порядка 1017 в объеме 1 см3. Температура в фотосфере растет с глубиной, в среднем она близка к 6000 К.

На рисунке 72 показан участок фотосферы, сфотографированный с помощью телескопа, поднятого на стратостате. На нем видно крупноесолнечное пятно и множество зерен (гранул). Гранулы ярче и, следовательно, горячее, чем окружающие его участки фотосферы. Размеры гранул неодинаковы и составляют в среднем несколько сотен километров. Время существования отдельных гранул — около 8 мин. Непрерывно появляющиеся и исчезающие гранулы свидетельствуют о том, что вещество, из которого состоит фотосфера, находится в движении. Один из видов движений в фотосфере и подфотосферных слоях — вертикальный подъем и опускание вещества. Такое колебательное движение связано с конвекцией: начиная с некоторой глубины (примерно 0,3 радиуса Солнца) вещество на Солнце перемешивается, подобно воде в сосуде, подогреваемой снизу. Гранулы — это верхушки конвективных потоков, проникающих в фотосферу. Гранулы всегда наблюдаются на всей поверхности Солнца, которую иногда сравнивают с кипящей рисовой кашей. Другие детали фотосферы (пятна, факелы) появляются лишь время ют' времени.

Еще задолго до изобретения телескопа люди замечали на неярком заходящем Солнце или на Солнце, видимом сквозь легкие облака, темные пятна. Прежде не только не знали, что представляют собой пятна, но и не допускали мысли о том, что пятна находятся на Солнце. Лишь теперь, спустя три с половиной столетия с тех пор, как Галилей доказал, что пятна — это реальные образования на поверхности Солнца, начинает выясняться их физическая природа.

Солнечные пятна значительно крупнее гранул. Диаметры наибольших пятен достигают десятков тысяч километров. Пятна — непостоянные, изменчивые детали фотосферы, существующие от нескольких дней до нескольких месяцев. Иногда на Солнце не бывает пятен совсем, а иногда одновременно наблюдаются десятки крупных пятен. Многолетние наблюдения пятнообразовательной деятельности Солнца показали, что имеются циклические колебания числа пятен. Средняя продолжительность цикла составляет примерно 11 лет (рис. 73).

Центральная часть пятна — ядро (или тень) — окружена волокнистой полутенью. Вблизи края солнечного диска круглое пятно видно как эллиптическое, а совсем близко от края диска — как узкая полоска

Рис. 73. Цикличность наблюдаемых на Солнце пятен. Очередной (23-й) 11-летний цикл начался в 1996 г. и достиг максимума в начале XXI в. (IV — относительное число солнечных пятен: ТУ = 10 § + I, где § — число групп пятен, / — число пятен).
полутени. Это можно объяснить тем, что пятно представляет собой коническую воронку, глубина которой примерно 300—400 км. Пятна кажутся темными лишь по контрасту с фотосферой. На самом деле температура ядра (самой холодной части пятна) около 4300 К, т. е. выше температуры электрической дуги, на которую, как известно, невозможно смотреть без защитных очков. Линии в спектре пятен заметно расщеплены. Это явление объясняется тем, что вещество пятен подвержено действию сильных магнитных полей. Обычно пятна наблюдаются группами. Пятно в группе, которое располагается первым по направлению вращения Солнца, называется головным, последнее пятно в группе — хвостовым. Головные и хвостовые пятна имеют противоположную полярность, например головные — северный магнитный полюс, а хвостовые — южный, т. е. в целом группа пятен напоминает гигантский магнит. Магнитное поле пятен в тысячи раз превосходит общее магнитное поле Солнца. Поэтому солнечные пятна подобны «магнитным островам» в фотосфере Солнца. Замечательно, что в соседних 11-летних циклах группы пятен изменяют свою полярность. Например, если в данном 11-летнем цикле все головные пятна групп в северном полушарии Солнца имели северный магнитный полюс, то в следующем цикле северный магнитный полюс будет у хвостовых пятен.

Магнитное поле пятен — одна из наиболее важных характеристик. Именно с магнитным полем связана и причина появления солнечных пятен. Дело в том, что сильное магнитное поле способно замедлить конвекцию плазмы. В местах, где конвекция замедлена, на поверхность поступает меньше энергии, там образуются более холодные и темные участки фотосферы — солнечные пятна.

Фотосферные факелы — детали более светлые (а значит, и более горячие), чем фотосфера. Если группа пятен находится вблизи края солнечного диска, то вокруг нее обычно видно множество факелов — факельное поле. Факелы возникают незадолго до появления солнечных пятен и существуют в среднем в три раза дольше пятен. В местах, где наблюдаются факелы, на поверхность Солнца выносится более горячее вещество, чем в других участках фотосферы. Это связано с местным усилением конвекции в подфотосфер-ных слоях.

2. Хромосфера. В моменты полных солнечных затмений хорошо видны внешние области атмосферы Солнца — хромосфера (розового цвета) и серебристо-жемчужнаякорона. Яркость хромосферы и короны во много раз меньше яркости фотосферы. Из-за рассеяния солнечного света в земной атмосфере эти слабосветящиеся внешние оболочки не удается видеть вне затмения без специальных приспособлений.

Хромосфера простирается до высоты 10—14 тыс. км. В ее самых нижних слоях температура около 5000 К, а затем, по мере подъема над фотосферой, она начинает постепенно расти, достигая в верхних слоях атмосферы (2 • 104— 5-Ю4) К.

Вне затмения хромосферу можно наблюдать, если выделить очень узкий участок спектра и получить изображение Солнца в монохроматическом свете, длина волны которого соответствует какой-нибудь одной спектральной линии, например водородной линии На. Тогда можно увидеть, что хромосфера состоит из темных и светлых узелков, образующих сетку. Размеры ячеек хромосферной сетки значительно превосходят размеры гранул фотосферы, достигая 30— 50 тыс. км. Яркость хромосферы неодинакова. Наиболее яркие ее участки (хромосферные факелы) расположены над фотосферными факелами и пятнами.

В хромосфере наблюдаются самые мощные и быстро развивающиеся процессы, называемые вспышками. В ходе развития вспышки сначала увеличивается яркость небольшого участка хромосферы, но затем становится яркой область, охватывающая десятки миллиардов квадратных километров. Слабые вспышки исчезают через 5—10 мин, а самые мощные продолжаются несколько часов. Небольшие вспышки происходят на Солнце по нескольку раз в сутки, мощные наблюдаются значительно реже. Обычно вспышки появляются над пятнами, особенно над теми, которые быстро изменяются. По характеру явления (стремительность развития, огромное энерговыделение — до 1026— 1026 Дж) вспышки представляют собой взрывные процессы, при которых освобождается энергия магнитного поля солнечных пятен. Вспышки сопровождаются мощным ультрафиолетовым, рентгеновским и радиоизлучением. В межпланетное пространство выбрасываются электрически заряженные частицы (корпускул ы).

На краю солнечного диска хорошо видны протуберанцы — гигантские яркие выступы или арки, как бы опирающиеся на хромосферу и врывающиеся в солнечную корону. Спокойные протуберанцы существуют несколько недель и даже месяцев. Вещество протуберанцев поглощает и рассеивает идущее снизу излучение, а потому, проецируясь на яркий диск Солнца, протуберанцы выглядят как темные волокна. В отличие от спокойных протуберанцев, часто наблюдаются протуберанцы, для которых характерны очень быстрые движения и выбросы веществ в корону.

3. Солнечная корона. Внутренние области короны, удаленные от фотосферы на расстояние до одного радиуса Солнца, можно наблюдать не только во время солнечных затмений, но и вне затмения с помощью коронографа — специального телескопа, в фокусе объектива которого ставится зачерненный диск («искусственная Луна»), Коронографы устанавливают в горах на высоте не ниже 2000 м над уровнем моря, где солнечное излучение значительно меньше рассеивается земной атмосферой.

Форма короны не остается постоянной. В годы, когда на поверхности Солнца много пятен, корона почти

круглая. Когда же пятен мало, корона сильно вытянута в плоскости экватора Солнца. Корона неоднородна: в ней наблюдаются лучи, дуги, отдельные сгущения вещества, полярные «щеточки» (короткие прямые лучи, наблюдаемые у полюсов) и т. д. Детали короны неразрывно связаны с пятнами и факелами, а также с явлениями, происходящими в хромосфере. Все детали короны вращаются с той же угловой скоростью, что и расположенные под ними участки фотосферы.

Как далеко простирается корона? По фотографиям, полученным во время затмений, корону удается проследить на расстоянии до нескольких солнечных радиусов от края Солнца. Отдельные выбросы солнечной плазмы, которые как бы входят в состав сверхкороны Солнца, достигают земной орбиты. Сверхкорона была открыта радиоастрономическими методами. Огромная протяженность короны объясняется большими скоростями входящих в нее частиц, а значит, и высокой температурой короны. Этот вывод подтверждает исследование спектра короны. Ряд линий в спектре короны оставался загадочным вплоть до 40-х гг. Оказалось, что эти линии принадлежат многократно ионизованным атомам хорошо известных на Земле элементов, например атомам железа, лишенным 13 электронов. Такая высокая ионизация в очень разреженном веществе короны возможна при температуре не менее 106 К. Следовательно, наблюдая корону, можно изучать в космической лаборатории высокотемпературную разреженную плазму в естественных условиях.

Поскольку средняя температура фотосферы около 6000 К, то она своим излучением не может нагреть солнечную корону до более высокой температуры. Согласно одной из гипотез, конвективные движения газа внутри Солнца создают сжатия и разрежения (волны), которые переносят энергию из внутренних слоев Солнца в его атмосферу. Энергия волнового движения нагревает вещество хромосферы и короны. Разреженный газ хромосферы и короны излучает мало и, получая большой приток энергии снизу, сильно нагревается.

4. Солнечная активность. Комплекс нестационарных образований в атмосфере Солнца (пятна, факелы, протуберанцы, вспышки и др.) называется солнечной активностью. Так, солнечные пятна всегда связаны с фотосферными факелами, вспышки и протуберанцы в большинстве случаев образуются над «возмущенной» фотосферой и т. д. Области на Солнце, где наблюдаются пятна, факелы, вспышки, протуберанцы и другие проявления солнечной активности, называются активными областями (или центрами активности). Как мы видели, центры активности, зарождаясь на некоторой глубине под фотосферой, простираются далеко в солнечную корону. Связующее звено между различными ярусами центров активности — магнитное поле.

Не только появление пятен, но и солнечная активность в целом имеет 11-летнюю цикличность. В годы максимума солнечной активности на Солнце много центров активности (возмущенное Солнце). В годы минимума центров активности мало (спокойное Солнце). Необычным был максимум предыдущего (22-го) цикла солнечной активности. Он отличался высокой активностью (в частности, большим числом пятен) и продолжительностью (растянутостью на несколько лет — примерно с 1989 по 1992 г.).
1   ...   4   5   6   7   8   9   10   11   12

Похожие:

«астрономия» iconРабочая программа по предмету «Астрономия»
«Астрономия 11 класс», Е. П. Левитан, 2000г. Календарно-тематический план ориентирован на использование базового учебника «Астрономия...
«астрономия» iconИнформационно-исследовательский проект «Волшебная астрономия»
Астрономия влечет молодежь глубиной и загадочностью космоса, возможностью собственными глазами наблюдать удивительный мир небесных...
«астрономия» iconКонкурс Учащихся 1 7-х классов «Первые шаги в науку» Секция астрономия Солнце
Астрономия влечет молодежь глубиной и загадочностью космоса, возможностью собственными глазами наблюдать удивительный мир небесных...
«астрономия» iconРабочая программа учебной дисциплины бз. В. 12 «Астрономия»
Программа предназначена для построения курса лекционных и лабораторных занятий для студентов направления «Педагогическое образование»...
«астрономия» iconПрограмма вступительных экзаменов в аспирантуру Укрупненная группа...
...
«астрономия» iconТема : Атмосферы планет земной группы
Оборудование: Энциклопедия «Аванта» Астрономия (три штуки), Журнал «Древо познания» ( три штуки), учебник астрономия 11 (три штуки),...
«астрономия» iconПрограмма элективного курса для учащихся 11-х классов по физике. Физика и астрономия
Образовательная программа предназначена для 11 класса муниципальной средней общеобразовательной школы. Основная задача программы...
«астрономия» iconПрограмма дисциплины опд. Р. 04 «Астрономия»
Программа предназначена для построения курса лекционных и практических занятий для студентов направления Физико-математическое образование...
«астрономия» iconАнглийский язык 2 астрономия 5 биология

«астрономия» iconКтп рабочей программы рассчитано на 1 час в неделю и ориентирована...
Ктп рабочей программы рассчитано на 1 час в неделю и ориентирована на использование учебника «Астрономия 11 класс», Е. П. Левитан,...
«астрономия» iconПрограмма курсов повышения квалификации «Астрономия в современной...

«астрономия» iconРефератов по дисциплине «Астрономия»
Свет, озаривший Вселенную. (Образование Вселенной, молодая Вселенная, реликтовое излучение)
«астрономия» iconПрограмма дисциплины дисциплина Астрономия и навигация
Федеральным государственным образовательным стандартом высшего профессионального образования по
«астрономия» iconУчебное пособие для обучающихся в спбгу по направлениям астрономия,...
Учебное пособие для обучающихся в спбгу по направлениям астрономия, информатика, математика, механика, прикладная математика, физика,...
«астрономия» iconРеферат Отчет 38 стр
Ключевые слова: космология, внегалактическая астрономия, звезды, межзвездная среда, активные ядра
«астрономия» iconРеферат Отчет 17 стр
Ключевые слова: космология, внегалактическая астрономия, звезды, межзвездная среда, активные ядра


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск