Митио Каку Физика невозможного





НазваниеМитио Каку Физика невозможного
страница19/25
Дата публикации20.08.2013
Размер4.16 Mb.
ТипДокументы
100-bal.ru > Астрономия > Документы
1   ...   15   16   17   18   19   20   21   22   ...   25

13. Параллельные вселенные



Но неужели вы имеете в виду, сэр, — спросил Питер, — что другие миры могут существовать... повсюду, буквально за углом... вот просто так?

Ничего не может быть вероятнее, — отозвался профессор... бормоча про себя: "Интересно, чему их там учат, в этих школах".

К.С. Льюис. Лев, колдунья и платяной шкаф
Послушайте: здесь, по соседству, есть чертовски хорошая вселенная: пойдемте туда.

Эдвард Каммингс
Действительно ли альтернативные вселенные имеют право на существование? В Голливуде они давно стали излюбленным инструментом кинематографистов; в качестве примера можно привести эпизод «Звездного пути» под названием «Зеркало, зеркало». Капитан Кирк случайно попадает в странную параллельную вселенную, где Федерация планет представляет собой зловещую империю, единство которой обеспечивается жестокими завоеваниями, алчностью и грабежом. В этой вселенной Спок носит страшную бороду, а сам капитан Кирк является лидером банды жадных пиратов, всегда готовых обратить своих соперников в рабство и поубивать собственных командиров.

Альтернативные вселенные позволяют нам вволю исследовать мир по имени «что, если бы...» и его чудесные, загадочные возможности. В комиксах серии про Супермена, к примеру, присутствовало несколько альтернативных вселенных; в одной из них родная планета Супермена, Криптон, не взрывалась; в другой Супермен в конце концов раскрывает свою тайну и признается, что он и скромный Кларк Кент — одно лицо; в третьей он женится на ЛоисЛейн и у них рождаются супердети. Но можно ли считать параллельные миры исключительно вотчиной сериала «Сумеречная зона», или для них есть в современной физике серьезные предпосылки?

На протяжении всей истории человечества, включая практически все древние общества, люди верили, что существуют иные сферы, где обитают боги и духи. Церковь верит в существование рая, ада и чистилища. У буддистов есть нирвана и разные плоскости сознания. У индуистов — тысячи миров.

Христианские теологи, не в силах объяснить, где же могут находиться небеса, нередко рассуждают о том, что Бог, возможно, живет где-то в других, высших измерениях. Как ни странно, если бы высшие измерения действительно существовали, многие качества, которые мы приписываем богам, могли бы стать реальностью. Существо в высшем измерении обретало бы способность появляться и исчезать в любом месте по собственному желанию, а также проходить сквозь стены — способности, которыми в представлении человека обычно обладают божества.

В последнее время концепция параллельных вселенных является одной из самых горячо обсуждаемых тем в теоретической физике. Вообще, можно говорить о нескольких типах параллельных вселенных, которые заставляют нас заново пересмотреть наши представления о «реальности». Причем ставкой в теоретическом споре о различных параллельных вселенных служит — ни много ни мало — природа самой реальности.

В научной литературе активно обсуждается по крайней мере три типа параллельных вселенных:

а) гиперпространство, или высшие измерения;

б) мультивселенная;

в) квантовые параллельные вселенные.

Гиперпространство


Самой долгой историей научных дискуссий из всех типов параллельных вселенных может похвастаться параллельная вселенная высших измерений. Здравый смысл и органы чувств говорят нам, что мы живем в трех измерениях (длина, ширина и высота). Как бы мы ни двигали объект в пространстве, его положение всегда можно описать этими тремя координатами. Вообще, этими тремя числами человек может определить точное положение любого объекта во Вселенной, от кончика своего носа до самых отдаленных галактик.

На первый взгляд четвертое пространственное измерение противоречит здравому смыслу. К примеру, когда дым заполняет всю комнату, мы не видим, чтобы он исчезал в другом измерении. Нигде в нашей Вселенной мы не видим объектов, которые внезапно исчезали бы или уплывали в иную вселенную. Это означает, что высшие измерения, если таковые существуют, по размеру должны быть меньше атома.

Три пространственных измерения образуют фундамент, основу греческой геометрии. К примеру, Аристотель в трактате «О небе» писал: «Величина, делимая в одном измерении, есть линия, в двух — плоскость, в трех — тело, и, кроме них, нет никакой другой величины, так как три [измерения] суть все [измерения]». В150 г, н, э. Птолемей Александрийский предложил первое «доказательство» того, что высшие измерения «невозможны». В трактате «О расстоянии» он рассуждает следующим образом. Проведем три взаимно перпендикулярные прямые линии (как линии, которые образуют угол комнаты). Очевидно, провести четвертую линию, перпендикулярную трем первым, невозможно, следовательно, четвертое измерение невозможно. (На самом деле ему удалось доказать таким образом только одно: наш мозг не способен наглядно представить себе четвертое измерение. С другой стороны, компьютеры постоянно занимаются расчетами в гиперпространстве.)

На протяжении двух тысячелетий любой математик, который отваживался заговорить о четвертом измерении, рисковал подвергнуться насмешкам. В 1685 г. математик Джон Уоллис в полемике о четвертом измерении назвал его «чудовищем в природе, возможным не более, нежели химера или кентавр». В XIX в. «король математиков» Карл Гаусс разработал математику четвертого измерения в значительной степени, но побоялся публиковать результаты, опасаясь негативной реакции. Сам он, однако, проводил эксперименты и пытался определить, действительно ли чисто трехмерная греческая геометрия правильно описывает Вселенную. В одном из экспериментов он поместил трех помощников на вершинах трех соседних холмов. У каждого помощника был фонарь; свет всех трех фонарей образовал в пространстве гигантский треугольник. Сам же Гаусс тщательно измерил все углы этого треугольника и, к собственному разочарованию, обнаружил, что сумма внутренних углов треугольника действительно составляет 180°. Из этого ученый заключил, что если отступления от стандартной греческой геометрии и существуют, то они настолько малы, что их невозможно обнаружить подобными способами.

В результате честь описать и опубликовать основы математики высших измерений выпала Георгу Бернхарду Риману, ученику Гаусса. (Через несколько десятилетий эта математика целиком вошла в общую теорию относительности Эйнштейна.) На своей знаменитой лекции в 1854 г. Риман одним махом опрокинул 2000 лет владычества греческой геометрии и установил основы математики высших, криволинейных измерений; мы и сегодня пользуемся этой математикой.

В конце XIX в. замечательное открытие Римана прогремело по всей Европе и вызвало широчайший интерес публики; четвертое измерение произвело настоящую сенсацию среди артистов, музыкантов, писателей, философов и художников. Скажем, историк искусства Линда Дальримпл Хендерсон считает, что кубизм Пикассо возник отчасти под впечатлением от четвертого измерения. (Портреты женщин кисти Пикассо, на которых глаза смотрят вперед, а нос находится сбоку, представляют собой попытку представить четырехмерную перспективу, ведь при взгляде из четвертого измерения можно одновременно видеть лицо, нос и затылок женщины,) Хендерсон пишет: «Подобно черной дыре, четвертое измерение обладало загадочными свойствами, которые не удавалось до конца понять даже самим ученым. И все же четвертое измерение было гораздо более понятным и представимым, чем черные дыры или любые другие научные гипотезы после 1919 г., за исключением теории относительности».

Другие художники тоже пытались рисовать из четвертого измерения. На картине Сальвадора Дали «Распятие» Христос распят перед странным плывущим в пространстве трехмерным крестом, который на самом деле представляет собой развертку четырехмерного куба. В своей знаменитой картине «Упорство памяти» он попытался представить время как четвертое измерение— отсюда и метаформа растекшихся часов. Картина «Обнаженная фигура, спускающаяся по лестнице» Марселя Дюшана — попытка представить время как четвертое измерение через изображение нескольких стадий движения. Четвертое измерение появляется даже у Оскара Уайльда в рассказе «Кентервильское привидение», ведь привидение там живет в четвертом измерении.

Четвертое измерение фигурирует также в нескольких произведениях Герберта Уэллса, включая «Человека-невидимку», «Историю Платтнера» и «Удивительный визит». (В последнем рассказе, который с тех пор успел стать основой десятков голливудских фильмов и научно-фантастических романов, наша Вселенная каким-то образом сталкивается с параллельной вселенной. Несчастный ангел из соседней вселенной попадает под случайный выстрел охотника и проваливается в нашу Вселенную. В конце концов он, потрясенный алчностью, мелочностью и эгоизмом, царящими в нашей Вселенной, кончает жизнь самоубийством.)

Роберт Хайнлайн в романе «Число зверя» исследует идею о параллельных вселенных с иронией. В этом романе четверо храбрых землян носятся по параллельным вселенным на спортивной машине сумасшедшего профессора, способной передвигаться между измерениями.

В телесериале «Скользящие» мальчик под влиянием одной книги решает построить машину, которая позволила бы ему «скользить» между параллельными вселенными. (Можно добавить, что герой сериала прочитал мою книгу «Гиперпространство».)

Но исторически сложилось так, что физики рассматривали четвертое измерение лишь как забавную диковинку. Никаких свидетельств существования высших измерений не было. Положение начало меняться в 1919 г., когда физик Теодор Калуца написал очень спорную статью, в которой намекнул на существование высших измерений. Начав с общей теории относительности Эйнштейна, он поместил ее в пятимерное пространство (четыре пространственных измерения и пятое — время; поскольку время уже утвердилось как четвертое измерение пространства-времени, физики теперь называют четвертое пространственное измерение пятым). Если делать размер Вселенной вдоль пятого измерения все меньше и меньше, уравнения волшебным образом распадаются на две части. Одна часть описывает стандартную теорию относительности Эйнштейна, зато другая превращается в теорию света Максвелла!

Это стало поразительным откровением. Возможно, тайна света скрыта в пятом измерении! Такое решение шокировало даже Эйнштейна; казалось, оно обеспечивает элегантное объединение света и гравитации. (Эйнштейн был так потрясен предположением Калуцы, что два года раздумывал, прежде чем дал согласие на публикацию его статьи.) Эйнштейн писал Калуце: «Идея получить [объединенную теорию] посредством пятимерного цилиндра никогда не пришла бы мне в голову... С первого взгляда мне ваша идея чрезвычайно понравилась... Формальное единство вашей теории поразительно».

Много лет физики задавались вопросом: если свет — это волна, то что, собственно, колеблется? Свет способен преодолевать миллиарды световых лет пустого пространства, но пустое пространство — это вакуум, в нем нет никакого вещества. Так что же колеблется в вакууме? Теория Калуцы позволяла выдвинуть по этому поводу конкретное предположение: свет—это настоящие волны в пятом измерении. Уравнения Максвелла, точно описывающие все свойства света, получаются в ней просто как уравнения волн, которые двигаются в пятом измерении.

Представьте себе рыб, плавающих в мелком пруду. Возможно, они даже не подозревают о существовании третьего измерения, ведь их глаза смотрят в стороны, а плыть они могут только вперед или назад, вправо или влево. Возможно, третье измерение даже кажется им невозможным. Но теперь вообразите себе дождь на поверхности пруда. Рыбы не могут видеть третье измерение, но они видят тени и рябь на поверхности пруда. Точно так же теория Калуцы объясняет свет как рябь, которая двигается по пятому измерению.

Калуца дал также ответ на вопрос, где находится пятое измерение. Поскольку мы не видим вокруг никаких признаков его существования, оно должно быть «свернутым» до столь малой величины, что заметить его невозможно. (Возьмите двумерный лист бумаги и плотно скатайте его в цилиндр. Издалека цилиндр будет казаться одномерной линией. Получается, что вы свернули двумерный объект и сделали его одномерным.)

Поначалу работа Калуцы произвела сенсацию. Но в последующие годы нашлись и серьезные возражения против его теории. Каковы размеры этого нового пятого измерения? Каким образом оно свернулось? Ответов не было.

На протяжении нескольких десятилетий Эйнштейн принимался время от времени работать над этой теорией. Но после его смерти в 1955 г. теорию быстро забыли, она превратилась в забавное примечание на страницах истории физики.

1   ...   15   16   17   18   19   20   21   22   ...   25

Похожие:

Митио Каку Физика невозможного iconМичио Каку Физика будущего
Провести конкурс рисунков и плакатов на тему: «Мы славим мужество и подвиг Ваш» (7 – 1 кл)
Митио Каку Физика невозможного iconПрограмма по формированию навыков безопасного поведения на дорогах...
Ы программы традиционны: механика, молекулярная физика и термодинамика, электродинамика, квантовая физика (атомная физика и физика...
Митио Каку Физика невозможного iconПояснительная записка рабочая программа дисциплины «Иностранный язык...
«Физика», магистерские программы «Техническая физика в нефтегазовых технологиях», «Физика наноструктур и наносистем»
Митио Каку Физика невозможного iconНет ничего невозможного. Все границы существуют в нашем сознании
Фундаментальное и прикладное значение нейропсихологии для медицины, психологии, педагогики и дефектологии. Нейропсихология индивидуальных...
Митио Каку Физика невозможного iconПрограмма по формированию навыков безопасного поведения на дорогах...
Е. С. Велтистов «Электроник мальчик из чемодана». «Победитель невозможного». «Рэсси неуловимый друг». «Глоток Солнца»
Митио Каку Физика невозможного iconПрограмма «Живая физика», Институт новых технологий cd «Репетитор»
«Открытая физика. Версия 2,5», «Физикон» сd «Физика. Библиотека наглядных пособий 7-11», «Физикон»
Митио Каку Физика невозможного iconПрограмма по формированию навыков безопасного поведения на дорогах...
«Физика 7-9 классы», авторами которой являются А. В. Перышкин и Е. М. Гутник; обучение рассчитано на работу по учебникам: «Физика...
Митио Каку Физика невозможного iconПрограмма по формированию навыков безопасного поведения на дорогах...
«Физика 7-9 классы», авторами которой являются А. В. Перышкин и Е. М. Гутник; обучение рассчитано на работу по учебникам: «Физика...
Митио Каку Физика невозможного iconФизика Магистерская программа 011200 07. 68 – "Физика наносистем и наноэлектроника"
Области профессиональной деятельности: являются все виды наблюдающихся в природе физических явлений, процессов и структур, в том...
Митио Каку Физика невозможного iconРабочая программа составлена в соответствии с требованиями фгос впо...
Физика. Магистерская программа «Техническая физика в нефтегазовых технологиях», «Физика наноструктур и наносистем»
Митио Каку Физика невозможного iconУчебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика;...
...
Митио Каку Физика невозможного iconПрограмма по формированию навыков безопасного поведения на дорогах...
Живая физика. Живая геометрия; Готовимся к егэ. Физика; Готовимся к егэ. Математика; Физика. 7 9 класс ч. 1
Митио Каку Физика невозможного iconОсновная образовательная программа магистратуры (далее магистерская...
Общая характеристика магистерской программы «Физика конденсированного состояния» по направлению подготовки 03. 04. 02 «Физика»
Митио Каку Физика невозможного iconКасьянов В. А м.: Дрофа, 2004 рабочая программа реализуется через...
Министерства образования Российской Федерации от 05. 03. 2004 №1089, Сборника нормативных документов. Физика / Сост. Программы для...
Митио Каку Физика невозможного iconСодержание программы. Введение. Актуальность компетентностного подхода...
Составление алгоритма решения задач по разделам: кинематика, динамика, молекулярная физика, газовые законы, электрический ток, магнетизм,...
Митио Каку Физика невозможного iconПрограмма вступительных экзаменов в аспирантуру Укрупненная группа...
...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск