Института Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич





НазваниеИнститута Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич
страница6/7
Дата публикации26.11.2014
Размер0.61 Mb.
ТипДокументы
100-bal.ru > Биология > Документы
1   2   3   4   5   6   7

Успехи в остальных направлениях ИИ


Даже если мы сфокусируемся на исследованиях, непосредственно связанных с нейробиологией или моделированием нервной ткани, проводимом на основе современных данных, несомненно, мы останемся связанными с остальными направлениями ИИ, а также с широким спектром технологий, применяемых для исследований, которыми мы потенциально можем воспользоваться, поэтому всегда важно представлять себе, какие важнейшие события в этой сфере происходят прямо сейчас и быть готовым своевременно включать их в свою картину мира.

Новейшие вычислительные системы стремительно приближаются по своим вычислительным возможностям к мозгу, хотя ещё и далеки от совершенства. Искусственные нейронные сети контролируют сложнейшие системы управления и слежения, проявляют способности в области распознавания изображения вплоть до возможности создания интеллектуальных автопилотов. Активно занимается системами искусственного интеллекта область, издавна считавшаяся прерогативой человека - компьютеры стали довольно неплохо играть в игры. К примеру, по сообщениям в печати, компьютер фирмы IBM, победивший Каспарова, имел 256 процессоров, каждый из которых имел 4 Гб дисковой памяти и 128 Мб оперативной. Весь этот комплекс мог просчитывать более 100'000'000 ходов в секунду. До недавнего времени редкостью был компьютер, способный делать такое количество целочисленных операций в секунду, а здесь мы говорим о ходах, которые должны быть сгенерированы и для которых просчитаны оценочные функции. Хотя с другой стороны, этот пример говорит о могуществе и универсальности переборных алгоритмов. Есть и более доступные по требованиям к машинным ресурсам разработки – например, системы распознавания и автоматизированного ввода текста доступны на обычных персоналках.

Уже в 60-х годах появились первые «очувствленные» роботы, которые управлялись универсальными компьютерами. К примеру, в 1969 г. в Электротехнической лаборатории (Япония) началась разработка проекта "промышленный интеллектуальный робот". Цель этой разработки - создание очувствленного манипуляционного робота с элементами искусственного интеллекта для выполнения сборочно-монтажных работ с визуальным контролем. Манипулятор робота имеет шесть степеней свободы и управляется мини-ЭВМ NEAC-3100 (объем оперативной памяти 32000 слов, объем внешней памяти на магнитных дисках 273000 слов), формирующей требуемое программное движение, которое отрабатывается следящей электрогидравлической системой. Схват манипулятора оснащен тактильными датчиками. В качестве системы зрительного восприятия используются две телевизионные камеры, снабженные красно-зелено-синими фильтрами для распознавания цвета предметов. Поле зрения телевизионной камеры разбито на 64*64 ячеек. В результате обработки полученной информации грубо определяется область, занимаемая интересующим робота предметом. Далее, с целью детального изучения этого предмета выявленная область вновь делится на 4096 ячеек. В том случае, когда предмет не помещается в выбранное "окошко", оно автоматически перемещается, подобно тому, как человек скользит взглядом по предмету. Робот Электротехнической лаборатории был способен распознавать простые предметы, ограниченные плоскостями и цилиндрическими поверхностями при специальном освещении. Стоимость данного экспериментального образца составляла примерно 400000 долларов. Постепенно характеристики роботов монотонно улучшались, но до сих пор они еще далеки по понятливости от человека. На сегодняшний день роботы применяются даже в развлекательной индустрии и стали значительно доступнее по цене. Яркий пример – робот-собака AIBO ERS-7/W от SONY (цена 2300 $). Ниже приведено описание данной модели:

Модель ERS-7 достаточно серьезно переработана, по сравнению с предыдущими реализациями лучших друзей человека. Новая версия стала существенно “умнее“ и обрела множество дополнительных навыков. ERS-7, согласно мнению компании, является отличным компаньоном для человека, обладает персональными чертами, которые изменяются со временем, в зависимости от внешних условий. На “лицевой части“ робота появился специальный дисплей (“Illume-Face“), который позволяет псу выражать разнообразные эмоции. Компания Sony разработала новое программное обеспечение, которое носит гордое имя “AIBO Mind“ и помещается на 32 Мб Memory Stick, позволяя роботу действовать совершенно автономно. В этом режиме AIBO может распознавать лицо и голос человека, с успехом находить свою зарядную станцию, лучше и быстрее ориентироваться в пространстве и т.д. Ключевой особенностью новой модели является наличие беспроводного сетевого интерфейса, который позволяет использовать робота в качестве охранника и наблюдателя. Бортовая память робота была увеличена, используется более быстрый 64-bit RISC процессор, сенсоры на корпусе робота стали электростатическими, соответственно не нужно прямое механическое воздействие для их срабатывания. Зрение ERS-7 в три раза лучше по сравнению с предыдущей моделью. В коробке вы найдете набор карточек, каждая из которых соответствует определенной команде. Достаточно показать песику карточку, и он станцует или заведет свой внутренний будильник, чтобы разбудить вас в назначенное время.

Для обычного обывателя это уже очень похоже на «настоящий искусственный интеллект», хотя, разумеется, и не является таковым. Можно привести еще немало примеров впечатляющих достижений в области программирования, робототехники и т.д., однако до реализации ИИ и по сей день еще очень далеко. В таких условиях приобретает особую значимость рассмотрение основных философских вопросов, связанных с искусственным интеллектом и искусственной жизнью. При этом, очевидно, возможно взаимовлияние искусственного интеллекта и искусственной жизни на философские проблемы мышления и на жизнь вообще. Несмотря на то, что, по мнению некоторых ученых, искусственный интеллект принципиально невозможен, разработки в области создания систем искусственного интеллекта в настоящее время по прежнему являются одним из приоритетных направлений в науке.

Гораздо более симпатичной и реалистичной точкой зрения (вместо возможности /невозможности ИИ), причем применительно как к живым системам, так и к искусственным, мне кажется мысль, высказанная П. Армером, о "континууме интеллекта" (П.Армер. О возможностях кибернетических систем. В кн.: М.Таубе. Вычислительные машины и здравый смысл. Миф о думающих машинах. М., "Прогресс", 1964): различные системы могут сопоставляться не только как имеющие и не имеющие интеллекта, но и по степени его развития. При этом, считает он, желательно разработать шкалу уровня интеллекта, учитывающую степень развития каждого из его необходимых признаков. Известно, что в свое время А.Тьюринг предложил в качестве критерия, определяющего, может ли машина мыслить, "игру в имитацию". Согласно этому критерию, машина может быть признана мыслящей, если человек, ведя с ней диалог по достаточно широкому кругу вопросов, не сможет отличить ее ответов от ответов человека. Критерий Тьюринга в литературе был подвергнут критике с различных точек зрения. Действительно серьезный аргумент против этого критерия заключается в том, что в подходе Тьюринга ставится знак тождества между способностью мыслить и способностью к решению задач переработки информации определенного типа. Успешная "игра в имитацию" не может без тщательного предварительного анализа мышления как целостности быть признана критерием способности машины к мышлению. Если учесть возможность разработки программ, специально рассчитанных на введение в заблуждение человека, то, возможно, следует говорить не просто о человеке, а о специально подготовленном эксперте. Этот критерий, на взгляд многих ученых, не противоречит перечисленным выше особенностям системы искусственного интеллекта.

Исходным пунктом рассуждений об искусственном интеллекте было определение такой системы как решающей мыслительные задачи. Но перед нею ставятся и задачи, которые люди обычно не считают интеллектуальными, поскольку при их решении человек сознательно не прибегает к перестройке проблемных ситуаций. К их числу относится, например, задача распознания зрительных образов. Человек узнает человека, которого видел один-два раза, непосредственно в процессе чувственного восприятия. Исходя из этого, кажется, что эта задача не является интеллектуальной. Но в процессе узнавания человек не решает мыслительных задач лишь постольку, поскольку программа распознания не находится в сфере осознанного. Но так как в решении таких задач на неосознанном уровне участвует модель среды, хранящаяся в памяти, то эти задачи, в сущности, являются интеллектуальными. Соответственно и система, которая ее решает, может считаться интеллектуальной. Тем более это относится к "пониманию" машиной фраз на естественном языке, хотя человек в этом не усматривает обычно проблемной ситуации.

Теория искусственного интеллекта при решении многих задач сталкивается с гносеологическими проблемами. Одна из таких проблем состоит в выяснении вопроса, доказуема ли теоретически возможность или невозможность искусственного интеллекта. На этот счет существуют две точки зрения. Одни считают математически доказанным, что ЭВМ в принципе может выполнить любую функцию, осуществляемую естественным интеллектом. Другие полагают в такой же мере доказанным математически, что есть проблемы, решаемые человеческим интеллектом, которые принципиально недоступны ЭВМ. Эти взгляды высказываются как кибернетиками, так и философами. Знание – основа интеллектуальной системы. Многие виды умственной деятельности человека, такие, как написание программ для вычислительной машины, занятие математикой, ведение рассуждений на уровне здравого смысла и даже вождение автомобиля – требуют "интеллекта". На протяжении последних десятилетий было построено несколько типов компьютерных систем, способных выполнять подобные задачи. Имеются системы, способные диагностировать заболевания, планировать синтез сложных синтетических соединений, решать дифференциальные уравнения в символьном виде, анализировать электронные схемы, понимать ограниченный объем человеческой речи и естественного языкового текста. Можно сказать, что такие системы обладают в, некоторой степени, искусственным интеллектом. При реализации интеллектуальных функций непременно присутствует информация, называемая знаниями. Другими словами, интеллектуальные системы являются в то же время системами обработки знаний.

В последние годы термин "знание" все чаще употребляется в информатике. Специалисты подчеркивают, что совершенствование так называемых интеллектуальных систем (информационно-поисковых систем высокого уровня, диалоговых систем, базирующихся на естественных языках, интерактивных человеко-машинных систем, используемых в управлении, проектировании, научных исследованиях) во многом определяется тем, насколько успешно будут решаться задачи (проблемы) представления знаний.

Неудивительно, что перед теми, кто занимается проблемой представления знаний, встает вопрос о том, что такое знание, какова его природа и основные характеристики. В связи с этим предпринимаются, например, попытки дать такое определение знания, из которого можно было бы исходить в решении задач представления знаний в компьютерных системах. Представлению данных присущ пассивный аспект: книга, таблица, заполненная информацией память. В теории искусственного интеллекта особо подчеркивается активный аспект представления знаний: приобретение знания должно стать активной операцией, позволяющей не только запоминать, но и применять воспринятые (приобретенные, усвоенные) знания для рассуждений на их основе. Использование символического языка, такого, как язык математической логики, позволяет формулировать описания в форме, одновременно близкой и к обычному языку, и к языку программирования. Впрочем, математическая логика позволяет рассуждать, базируясь на приобретенных знаниях: логические выводы действительно являются активными операциями получения новых знаний из уже усвоенных. Принципиальная мировоззренческая установка состоит в рассмотрении ЭВМ как предмета-посредника в познавательной человеческой деятельности. Компьютерная система, подобно другим предметам-посредникам (орудиям труда и предметам быта, инструментам, приборам, знаково-символическим системам, научным текстам и т. д.), играя инструментальную роль в познании, является средством объективизации накопленного знания, воплощением определенного социально-исторического опыта практической и познавательной деятельности.

Проблема представления знаний возникла как одна из проблем искусственного интеллекта. Она связана с переходом исследований в этой области в некоторую новую фазу. Речь идет о создании практически полезных систем (прежде всего так называемых экспертных систем), применяемых в медицине, геологии, химии. Создание такого рода систем требует интенсивных усилий по формализации знания, накопленного в соответствующей науке. С термином "представление знаний" связывается определенный этап в развитии математического обеспечения ЭВМ. Если на первом этапе доминировали программы, а данные играли вспомогательную роль, то на последующих этапах роль данных неуклонно возрастала. Их структура усложнялась: от машинного слова, размещенного в одной ячейке памяти ЭВМ, происходил переход к векторам, массивам, файлам, спискам. На сегодняшний день существуют абстрактные типы данных, обеспечивающие возможность создания такой структуры данных, которая наиболее удобна при решении задачи. Последовательное развитие структур данных привело к их качественному изменению и к переходу от представления данных к представлению знаний. Уровень представления знаний отличается от уровня представления данных не только более сложной структурой, но и существенными особенностями: интерпретируемость, наличие классифицируемых связей (например, связь между знаниями, относящихся к элементу множества, и знаниями об этом множестве), которые позволяют хранить информацию, одинаковую для всех элементов множества, записанную одноактно при описании самого множества, наличие ситуативных отношений (одновременности, нахождения в одной точке пространства и т. п., эти отношения определяют ситуативную совместимость тех или иных знаний, хранимых в памяти). Кроме того, для уровня знаний характерны такие признаки, как наличие специальных процедур обобщения, пополнения имеющихся в системе знаний и ряда других процедур.

Моделирование на ЭВМ понималось как техническая реализация определенной формы знакового моделирования. Однако, рассматривая ЭВМ в гносеологическом плане в качестве посредника в познании, имеет смысл не фиксировать внимание, прежде всего на "железной части" (hardware) компьютера, а рассматривать всю компьютерную систему как сложную систему взаимосвязанных и до некоторых пределов самостоятельных моделей - как материальных, так и знаковых, т. е. идеальных. Такой подход не только соответствует рассмотрению компьютерных систем в современной информатике, но является и гносеологически оправданным. Многие важные философские аспекты проблем, возникающих в связи с компьютеризацией различных сфер человеческой деятельности, требуют для своего исследования обращения, прежде всего, к знаковым составляющим компьютерных систем. Это верно и в отношении философских аспектов проблем представления знаний.

В последние годы все чаще стал употребляться термин "компьютерное моделирование". Очевидно, имеет смысл обозначать им построение любого из составляющих компьютерной системы - будь то знаковая модель или материальная.
Что изменяется в компьютерном моделировании с переходом от уровня представления данных к уровню представлению знаний? Каков гносеологический смысл этих изменений? С введением термина "знание" появляется свойство "осознавать", т. е. "понимать" свои интеллектуальные возможности. В свою очередь, это означает не что иное, как рефлексию.

Исследования в области искусственного интеллекта возникли под влиянием идей кибернетики - прежде всего идеи общности процессов управления и передачи информации в живых организмах, обществе и технике, в частности, в компьютерах.
Философская приемлемость проблематики искусственного интеллекта в ее традиционном виде была обусловлена лежащим в ее основе представлением о том, что "порядок и связь идей те же, что порядок и связь вещей". Тем самым создать в компьютере структуру, воспроизводящую "мир идей", означало попросту создать структуру, изоморфную структуре вещественного мира, т. е. построить "электронную модель мира". Эта модель интерпретировалась как компьютерная модель человеческих знаний о мире. Процесс человеческого мышления интерпретировался в компьютере как машинный поиск таких трансформаций модели, которые должны были перевести компьютерную модель в некое финальное состояние (например, матовую позицию в шахматах).
Для этого система искусственного интеллекта нуждалась в знаниях о том, как осуществлять трансформации состояний модели, приводящие к заранее заданной цели - состоянию с определенными свойствами. В первое время было распространено убеждение в принципиальной способности компьютера к самостоятельному исследованию хранящейся в нем модели, т. е. к самообучению стратегии достижения поставленной цели.
Данная гипотетическая способность интерпретировалась как возможность машинного творчества, как основа создания будущих "мыслящих машин". И, хотя в реально разрабатывавшихся системах достижение цели осуществлялось на основе человеческого опыта с помощью алгоритмов, основанных на теоретическом анализе создаваемых моделей и результатов проводимых на них экспериментов, идеи построения самообучаемых систем многим казались наиболее перспективными. Лишь к 80-му году была осознана значимость проблемы использования в интеллектуальных системах человеческих знаний о действительности, повлекшая серьезную разработку баз знаний и методов извлечения личных знаний экспертов.

С развитием данного направления возникла идея рефлексивного управления. До этого момента в кибернетике управление рассматривалось как передача объекту сигналов, непосредственно воздействующих на его поведение, а эффективность управления достигалась с помощью обратной связи - получения информации о реакциях управляемого объекта. Рефлексивное же управление - есть передача информации, воздействующей на имеющийся у объекта образ мира. Тем самым обратная связь оказывается излишней - состояние субъекта известно передающему информацию, то есть объекту. Традиционные системы искусственного интеллекта основаны на идеологии целеориентированного поведения типа шахматной игры, где цель обоих партнеров состоит в том, чтобы поставить мат ценой любых жертв. Не случайно именно шахматные программы оказались столь важными для отработки методов искусственного интеллекта.

Стоит ли считать рефлексию неотъемлемой частью систем искусственного интеллекта? Ответом с технической точки зрения может служить следующее. Как и любая компьютерная программа, наделенная средствами самодиагностики и самоисправления, т. е. средствами повышения надежности, системы искусственного интеллекта должны контролировать происходящие процессы - как внешние, так и внутренние. Однако может показаться, что в этом смысле будет достаточным просто развитая структура обратных связей. Сразу надо оговориться, что под обратной связью следует понимать только ответную реакцию (или получение информации о ней) после какого-то конкретного действия системы. Обратная связь лишь предоставляет данные, информацию, но ни в коей мере не интерпретирует их. Норбертом Винером в книге "Кибернетика, или управление и связь в животном и машине" были приведены примеры нарушений нервной системы людей и их последствия. Так люди с нарушением системы ориентации собственных конечностей в пространстве (не чувствующие своих рук и ног, случай, когда конечности "немеют") должны были визуально контролировать свои действия. Это было типичное нарушение обратной связи. Рефлексия же подразумевает анализ полученной картины.
Анализ функционирования собственной модели или модели "всей окружающей действительности" (в рамках поставленной задачи), контроль над ее состоянием, прогнозирование состояния - есть ни что иное, как реализация рефлексии. Рефлексия - есть некий метауровень. С применением языков программирования высокого уровня, таких как Пролог, позволяющий формулировать цели и строить логические выводы достижимости этих целей, задача реализации рефлексии уже может быть частично решена. С их помощью можно построить некую надстройку, метауровень, позволяющий оценивать поведение предыдущего. Однако, при рассмотрении термина "глубокая рефлексия" или "многоуровневая рефлексия" встает проблема построения моделей самой системой. Здесь на помощь приходят абстрактные типы данных. Они позволяют оперировать структурами данных любой конечной сложности. Таким образом, можно считать, что системы искусственного интеллекта могут содержать модель рефлексии.
Таким образом, считать интеллектуальную систему полноценной без умения оценивать, "понимать" свои действия, то есть рефлексировать, нельзя. Более того, рефлексию следует считать одним из главных инструментов построения поведения систем. Говоря языком математики, рефлексия является необходимым условием существования интеллектуальной системы.
1   2   3   4   5   6   7

Похожие:

Института Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич iconТехнологическая карта урока информатики «Человек и информация», 3 класс Класс
Бурова О. В., учитель информатики моу «Средняя общеобразовательная школа №3 г. Ершова Саратовской области»
Института Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич iconКалиниченко Леонид Андреевич Профессор кафедры асвк ф-та вмиК, Зав...
Формулировка заданий содержит укрупненный план реферата (список его разделов). При необходимости план может быть изменен по согласованию...
Института Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич iconКалиниченко Леонид Андреевич Профессор кафедры асвк ф-та вмиК, Зав...
Формулировка заданий содержит укрупненный план реферата (список его разделов). При необходимости план может быть изменен по согласованию...
Института Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич iconКалиниченко Леонид Андреевич Профессор кафедры асвк ф-та вмиК, Зав...
Формулировка заданий содержит укрупненный план реферата (список его разделов). При необходимости план может быть изменен по согласованию...
Института Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич iconФормулировки положений, которые предлагается включить в качестве...
Федеральное государственное автономное образовательное учреждение высшего профессионального образования
Института Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич iconРазработка и исследование моделей устойчивых систем инерциальной навигации
Работа выполнена в лаборатории прецизионных оптических методов Института автоматики и процессов управления дво ран
Института Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич iconНаучная работа лабораторий 9 в 2012г. Ивц оф им выполнял работы в...
Омским филиалом Федерального государственного бюджетного учреждения науки Института математики им. С. Л. Соболева со ран. Дана краткая...
Института Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич iconДальневосточного отделения ран
Утверждено на заседании Ученого совета Тихоокеанского института биоорганической химии им. Г. Б. Елякова дво ран
Института Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич iconВремя Мероприятие Программа мероприятия Холл, 2 этаж
Гусейнов Абдусалам Абдулкеримович, академик ран, директор Института философии ран
Института Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич iconЛисицын Андрей Юрьевич
Кандидат наук: Высшая школа экономики, кафедра Финансового прав (год защиты: 2010, специальность 12. 00. 14 «Административное право....
Института Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич iconРоссийской академии наук институт европы ран промышленная политика европейских стран
Н. В. Говоровой.]. – М. Ин-т Европы ран : Рус сувенир, 2010. – 214 с. – (Доклады Института Европы = Reports of the Institute of Europe...
Института Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич iconПрограмма по формированию навыков безопасного поведения на дорогах...
Гринберг Руслан Семенович (Россия), член-корреспондент ран, директор Института экономики ран
Института Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич iconРазработка урока по теме «язык в жизни человека. Функции языка. Язык как система»
Кирилин Андрей Юрьевич, учитель первой квалификационной категории, выпускник Московского государственного открытого педагогического...
Института Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич iconЦентр общественных связей
Академгородка прошла первая встреча из цикла «Урок академика», на которой выступил директор Института геологии и минералогии им....
Института Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич iconСтатья подготовлена при поддержке Центра фцп «Интеграция»
Лапин николай Иванович профессор, член-корреспондент ран, руководитель Центра социокулътурньгх изменений Института философии ран
Института Систем Информатики со ран им. А. П. Ершова Пальянов Андрей Юрьевич iconКонспект урока понятие модели. Назначение и свойства моделей. Графические...
Базовый учебник Информатика и икт 9 класс. И. Г. Семакин, Л. А. Залогова, С. В. Русаков, Л. В. Шестакова бином. Лаборатория знаний,...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск