Учебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом)





НазваниеУчебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом)
страница7/12
Дата публикации05.07.2015
Размер1.6 Mb.
ТипУчебно-методический комплекс
100-bal.ru > Физика > Учебно-методический комплекс
1   2   3   4   5   6   7   8   9   ...   12
§13 - 1 Закон Кирхгофа.

Обычно тепловым излучением считают электромагнитные волны, длина волны кото­рых лежит в интервале от одного до нескольких десятков микрон (1 мкм = 10 - 6 м). Эти волны, также как и свет, испускаются атомами в виде отдельных цугов, начальная фаза и поляриза­ция которых изменяются хаотически от одного элементарного акта испускания к другому. Поэтому тепловое излучение является некогерентным,и его закономерности ока-зываются спра­ведливыми для всего диапазона электромагнитных волн.

Опыт показывает, что тепловое излучение можно охарактеризовать некоторыми па-ра­метрами. Известно,например, что интенсивность излучения зависит от температуры. Дру-гим важным свойством излучения является его спектральный состав, т.е распределение ин-тенсивности по различным частотам. Наиболее общей величиной для характеристики теп-лового излучения может служить поток энергии.Количество энергии, приходящееся на еди- ничный интервал частот, которое испускает единица площади (1м2) нагретого тела назы­вается излучателыной способностью:

Е = d Физл / d  .

Одновременно вводится понятие поглощательной способности А , определяемой как отношение поглощенной энергии к падающей,т.е.А = dФпог / dФпад .Тело, погло-щательная способность которого равна единице.называется абсолютно черным телом.

Между испускательной Е и поглощательной А способностями существует



Рис.60.Излучение в зам-

кнутой полости.

опреде­ленная взаимосвязь. Для установления этой взаимосвязи рассмотрим некую замкнутую полость, вырезанную внутри изолированного от внешних воздейст­вий тела(см.рис.60). Каждый участок поверхности полости излуча­ет и поглощает лучистую энергию.Согласно законам термодина­мики через не-которое время внутри полости наступит равновесие – темпера-тура всех ее частей(и излучения тоже) станет одинаковой. Излучение, находящееся в тепловом равновесии с окружающи-

ми телами,называется равновесным. Опыт показывает, что в природе излучение всегда равновесно, т.е.его интенсивность и спектральный состав в точности соответствует темпе-ратуре излучившего его тела.

Существующий между различными участками поверхности тепловой баланс должен выпол­няться для всех каналов теплообмена, т.к. в противном случае можно бы было перекрыв лю­бой из них добиться нарушения равновесия,что противоречит законам термо-динамики.В частности.это значит.что равновесие выполняется для каждого частотного интервала. Выделим внутри полости некоторую площадку S, излучательная способность которой равна Е, а поглощательная - А , и пусть на эту площадку падает поток энергии dФпад.B интервале частот от  до + d площадка излучает поток энергии dФизл = Е Sd и поглощает dФпог = Апад.В равновесии dФизл = dФпад. Из этого следует: dФпад = dS .

Заменим теперь площадку S участком поверхности абсолютно черного тела с излучатель-ной способностью  .Равновесие от этого нарушится не должно, и поток падающей энер-гии должен сохранить свое значение: dФпад =  S d . Сравнивая это выражение с выраже-нием для падающего потока энергии на площадку S, получим:



т.е. отношение испускательной и поглощательной способностей остается постоянным для любого тела.. Другими словами, их отношение есть универсальная функция частоты и температуры.Это положение носит название закона Кирхгофа.
§ 13 - 2 Вывод выражения для излучательной способности.

Это выражение впервые было получено М.Планком, который, опираясь на известный ему экспериментальный материал, предположил, что энергия световой волны пропорцио­нальна не квадрату ее амплитуды, а частоте , т.e. Есв = h , где h - коэффициент пропорцио­нальности, известный теперь как постоянная Планка ( h = 6,62 10 -34 Дж сек.), причем про-цесс излучения происходит не непрерывно, а отдельными порциями - квантами. В связи с этим предположением энергия диполей также изменяется скачком от E1 до Е2. Однако мы при­ведем более простой вывод, принадлежащий А.Эйнштейну. Основная идея этого вывода сос­тоит в том, что кроме спонтанных актов излучения, происходящих с вероятностью А i k существуют вынуженные элементарные акты излучения и поглощения под действием внеш-ней пе­риодической силы, вероятности которых Вi k или Вk i , в зависимости от направления перехода.

Рассмотрим систему, состоящую из большого числа (No) диполей, находящуюся в сос-тоя­нии равновесия с тепловым излучением, спектральная плотность энергии которого( т.е. излучательная способность) равна  .

Обозначим энергию диполя до момента излучения через E1, a энергию диполей после излуче­ния – E2 ; число диполей в состояниях е1 и Е2 - через N1и N2 . Количество спонтанных пере­ходов из состояния с энергией е1 в состояние с энергией Е2 равно = A12 N1 .B то же время под действием теплового излучения, характеризующегося излучательной способ-нос­тью  происходят вынужденные переходы как из состояния 1 в состояние 2, так и обратно.Число этих переходов равно  = n1В12 ,  = N2 B21 .

В состоянии теплового равновесия число переходов из состояния I в состояние 2 дол­жно равняться числу переходов из состояния 2 в состояние l.Ha основании этого запишем  + = или А12N1 +n1В12 = N2 B21 .

Отсюда находим  :

=.

Для оценки отношения N2 / n1 используем представления классической статистики, позволяющей на основании распределения Больцмана вычислить число частиц с заданной энергией:

; , где N0 -общее число частиц в системе. Отсюда

.

Тогда с учетом того, что, как показывает эксперимент,В1221 , получим

= .

В последнем выражении использовано пред­ставление Планка, что E1 –E2 = h. Отношение A12 / B12 не может быть вычислено в нашем курсе. Строгий расчет показывает, что оно рав-но h32 , где с – скорость света. Поэтому выражение для излучательной способности при-обретает следующий вид:

= .



Рис.61 Зависимость излучатель-

ной спосбности от частоты и

температуры.

Графическая зависимость излучательной способности приведена на рис.61, где по оси частот отложена угло-вая частота  =2n.

§ 13-3 Законы Стефана- Больцмана и Вина.

Из рис.61 видно, что для каждой температуры излучательная способность имеет макси­мальное значение при определенной частоте излучения. Для определения этой частоты про­ведем исследова-ние на экстремум величины , предварительно проведя замену перемен-ной в целях сокращения записи. Введем новую переменную х:

х =;

тогда  = ; 3 = и d = dx .

Теперь выражение для излучательной способности приобретает такой вид:

= .

Вычисляя первую производную и сокращая полученный результат на постоянную величи-ну, имеем:

= 0.
Из этого выражения видно, что оно равно нулю, если числитель дроби равен нулю, откуда для определения экстремального значения х получаем трансцендентное уравнение:

.

Можно показать,что это уравнение имеет решение (приближенное значение х м =2,8214 ), для простоты обозначим его а',т.е. х М = а', или hМ / kT = а', откуда следует закон Вина:

М =аТ.

В этом выражении постоянная а является комбинацией других постоянных: а = a , k / h .

Определим интегральную излучательную способность Ет (она называется энергети-ческой светимостью) как еT = , или в обозначениях новой переменной:

ET = .

Интеграл в этом выражении является табличным,его величина равна л4 / 15.0бозначая через  комбинацию постоянных получаем следующее выражение для энергети-ческой светимости: ЕТ = Т4, которое известно как закон Стефана-Больцмана.

Сравним теоретические выводы с практикой.Экспериментальные данные показывают, .что при комнатной температуре максимум излучения лежит в далекой инфракрасной об-ласти, излучение в видимой области практически отсутствует. При температуре, приближающейся к 1000 К, максимум по-прежнему в инфракрасной области, однако и из-лучение в видимой части спектра становится заметным ( см.рис.61). В силу того, что интен-сивность от длинных, красных волн, к коротким, фио-летовым, падает, наибольшая интен-сивность излучения при­ходится на красную часть спектра - это температура «красного каления». По мере роста температуры различие в интенсивностях падает, излучение приоб-ретает желтый, а затем бе­лый цвет. При температуре между 5000 и 6000° К максимум про-ходит через область спектра, к которой человеческий глаз наиболее чувствителен. Тем-пературе 5900 К отвечает темпера­тура поверхности Солнца, лучеиспускательная способ-ность которого близка к лучеиспус­кательной способности абсолютно черного тела. Такое излучение воспринимается глазом как белый, дневной свет. При более высоких темпера-турах максимум смещается в ультра­фиолетовую область, а интенсивность в фиолетово - голубой области становится большей, чем в красной. Излучение приобретает голубой отте-нок.

Лекция 14 Строение вещества.

§14-1 Теория атома Бора.

Изучая прохождение а-частиц (ядер атомов гелия) через тонкую золотую фольгу, анг­лийский ученый Э.Резерфорд обнаружил, что большинство этих частиц свободно прохо-дит через многочис-ленные слои атомов, и вещество в этих экспериментах ведет себя как крупное сито.свободно пропускающее довольно тяжелые заряженные частицы. Для объяс-нения полу­ченных результатов Резерфорд разработал так называемую планетарную модель атома, где основная масса сосредоточена в ядре, размеры которого крайне малы,а электро-ны, входящие в состав атома, вращаются вокруг этого ядра. Планетарная модель хорошо объясняла пове­дение а- частиц, но противоречила выводам классической физики: двигаясь с ускорением лю­бая заряженная частица должна излучать электромагнитные волны. Энергия электрона в этом случае должна быстро уменьшаться,и он должен упасть на ядро.

Датский физик Н.Бор сумел разрешить это противоречие, сформулировав три постулата, которые легли в основу боровской теории строения атома. Эти постулаты гласили:

1.в атоме существуют стационарные орбиты, на которых электрон не излучает и не пог-лощает энергии,

2.радиус стационарных орбит дискретен; его значения должны удовле­творять условиям квантования момента импульса электрона:

m v r = n , где n - целое число,

3.при переходе с одной стационарной орбиты на другую электрон ис­пускает или поглощает квант энергии, причем величина кванта в точ­ности равна разности энергий этих уровней:

h = E1 – Е2.

Из этих постулатов видно,что фактически Бором были введены новые - квантовые предста­вления о свойствах электрона в атоме. Покажем,что в этих предположениях энергия элек-тро­на также становится дискретной (квантуется).

Пусть Ze - заряд ядра атома, вокруг которого вращается один электрон массы m. Ради­ус орбиты обозначим г, а скорость электрона на орбите - v. Тогда уравнение движения элект­рона можно записать в следующем виде:

,

где сила, стоящая в правой части этого уравнения, представляет собой кулоновскую силу вза­имодействия двух зарядов: е и Ze, a величина v2 /r характеризует центростремительное уско­рение электрона. Сокращая знаменатели обеих частей этого уравнения и используя выраже­ние второго постулата Бора, получаем систему из двух уравнений, где неизвестными являют­ся скорость v и радиус орбиты r :



.
Деля почленно одно уравнение на другое, получаем: v = .Подставим выражение

для скорости во второе уравнение нашей системы и найдем выражение для радиуса орбиты:

r =.

Общая энергия электрона на орбите складывается из его кинетической энергии и потен-ци­альной энергии его взаимодействия с зарядом ядра:

Wo = Т кин + Uпот ,

или .
Знак минус отражает тот факт,что заряд электрона - отрицательный. Подставляя в это вы­ражение полученные ранее значения скорости и радиуса, находим:

W0 =,

где называют постоянной Ридберга .

Таким образом общая энергия электрона в атоме оказывается отрицательной, и она увеличи­вается с ростом n.

Частота излучения, которое соответствует переходу с орбиты номера n на орбиту с номером m, равна:

 =.

Если атомы являются изолированными и не участвуют в других взаимодействиях, то допус­каемые частоты образуют набор отдельных спектральных линий, соответствующих различ­ным значениям чисел n и m. Обычно такое состояние атомов наблюдается в газах. Каждому химическому элементу соответствуют свои спектральные линии - на этом основан спектр­альный анализ, позволяющий по наблюдаемому набору линий установить химичес-кий сос­тав исследуемого объекта. При исследовании спектров испускания наблюдаются узкие све­тящиеся линии, а если свет проходит через холодный газ, то наблюдаются темные линии на тех местах, которые соответствуют положению линий излучения горячим газом. Эти темные линии называются спектрами поглощения.

При очень низких температурах электроны в атомах стремятся занять орбиты с наи­меньшими значениями энергии, но при конечных температурах за счет энергии теплового движения атомов электроны могут приобретать дополнительную энергию и переходить на более высоколежащие орбиты, степень заселенности которых определяется распределением Больцмана: чем выше значения энергии, тем меньшее количество электронов занимают дан­ный уровень. Поэтому в обычном состоянии атомы больше поглощают электромагнитные волны ( набор разрешенных частот может лежать в любом диапазоне), чем излучают. Для того, чтобы процесс излучения преобладал над процессом поглощения, атому необходимо сообщать энергию. Приобретая эту энергию, атомы переходят в возбужденное состояние, но оно является энергетически невыгодным, и обычно через очень короткий промежуток време­ни электроны возбужденного атома переходят на орбиты с меньшей энергией. Процесс пере­хода является случайным, поэтому значение начальной фазы и направления колебаний век­торов электрического и магнитного полей изменяются от одного атома к дру-гому хаотичес­ким образом. Получающееся электромагнитное излучение является некоге-рентным. Однако существует возможность своебразной синхронизации процессов излуче-ния. Использование такой возможности определяет принцип действия генераторов корот-коволнового излучения - мазеров и лазеров.

1   2   3   4   5   6   7   8   9   ...   12

Похожие:

Учебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом) iconУчебно-методический комплекс дисциплины ен. Ф 3 физика: оптика. Квантовая...
...
Учебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом) iconУчебно-методический комплекс дисциплины ен. Ф. 4 Физика (шифр дисциплины...
...
Учебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом) iconУчебно-методический комплекс дисциплины ен. Ф. 4 Физика (шифр дисциплины...
...
Учебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом) iconУчебно-методический комплекс дисциплины ен. Ф. 4 Физика (шифр дисциплины...
...
Учебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом) iconОсновная образовательная программа подготовки специалиста по специальности(специальностям)...
Шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом
Учебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом) iconУчебно-методический комплекс дисциплины дн(М). В 1 современный физический...
...
Учебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом) iconПрограмма по формированию навыков безопасного поведения на дорогах...
Ы программы традиционны: механика, молекулярная физика и термодинамика, электродинамика, квантовая физика (атомная физика и физика...
Учебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом) iconОсновная образовательная программа подготовки специалиста по специальности...
Шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом
Учебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом) iconУчебник по физике. Представлены разделы физики в теории, примерах...
Открытого колледжа" "Физика". Включает прекрасно иллюстрированный учебник "Открытая физика 5" (все разделы, от Механики до Физики...
Учебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом) iconПрограмма кандидатского экзамена по специальности 05. 27. 03 «Квантовая...
В основу настоящей программы положены следующие дисциплины: электродинамика; квантовая механика; физическая оптика; физика твердого...
Учебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом) iconУчебно-методический комплекс по дисциплине Оптика для специальности 010701 "Физика"
Требования государственного образовательного стандарта высшего профессионального образования (специальность 010701 "Физика") к обязательному...
Учебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом) iconСодержание программы. Введение. Актуальность компетентностного подхода...
Составление алгоритма решения задач по разделам: кинематика, динамика, молекулярная физика, газовые законы, электрический ток, магнетизм,...
Учебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом) iconПрограмма по формированию навыков безопасного поведения на дорогах...
Пияф, 2012 – 110 с. – Парал загл.: Физика атомного ядра и элементарных частиц. Теоретическая физика
Учебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом) iconУчебно-методический комплекс дисциплины «физика»
Маллабоев У. М. Физика. Учебно-методический комплекс. Рабочая программа для студентов направления 050100. 62 Педагогическое образование,...
Учебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом) iconТест по физике 11 класса (4 четверть) Световые кванты. Атомная физика....
Гос впо по специальности 030501. 65 Юриспруденция, утвержденный Министерством образования РФ «27» марта 2000 г., №260 гум/сп
Учебно-методический комплекс дисциплины ен. Ф. 7 Физика: оптика; квантовая физика; физика атомного ядра (шифр дисциплины и ее название в строгомсоответствии с государственным образовательнымстандартом и учебным планом) iconШаблон рабочей программы дисциплины Общий физический практикум Лекторы
Общий Физический Практикум является неотъемлемой частью курса "Общая Физика". Основные разделы: механика; молекулярная физика; электродинамика;...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск