Химия в нашей жизни





НазваниеХимия в нашей жизни
страница4/29
Дата публикации20.05.2015
Размер4.31 Mb.
ТипКнига
100-bal.ru > Химия > Книга
1   2   3   4   5   6   7   8   9   ...   29

1.2. Синтетический каучук и резина
Полимеры и полимерные материалы, обладающие высокой эластичностью (способностью сильно растягиваться и сжиматься с восстановлением первоначальной формы после снятия нагрузки), называются эластомерами [29]. Типичные эластомеры – это различные каучуки и резины.

Природный (натуральный) каучук (НК) представляет собой стереорегулярный полимер изопрена, 1,4-цис-полиизопрен. Его получают коагуляцией латекса («млечного сока»), содержащегося в коре гевеи, произрастающей в Южной Америке и Юго-восточной Азии. Натуральный каучук – это каучук общего назначения. Он в огромных количествах применяется в производстве шин, резинотехнических изделий (транспортных лент, приводных ремней, прокладок, амортизаторов, рукавов, ковриков, шлангов и др.), электроизоляции, эбонитов, клеёв, также множества других резиновых изделий бытового, медицинского, спортивного и другого назначения. Мировое производство НК в настоящее время составляет около 5 миллионов тонн в год. Он производится в Малайзии, Бразилии, Индонезии, Таиланде, Индии, Китае и других странах. В России гевея не произрастает, и НК не производится. Он и изделия из него завозятся в Россию из-за рубежа.

Основную массу эластомеров составляют синтетические каучуки (СК), способные к переработке в резину методом вулканизации. По мономерам, используемым для их получения, синтетические каучуки подразделяются на изопреновые, бутадиеновые, бутадиен-стирольные, бутадиен-нитрильные, хлоропреновые и др. По характерной группе атомов в макромолекуле СК подразделяются на углеводородные, уретановые, полисульфидные, кремнийорганические и др. По областям применения СК разделяют на каучуки общего и специального назначения. Существует классификация СК и по другим признакам. Например, по консистенции и форме СК подразделяют на твердые, жидкие и порошкообразные. Имеются и водные дисперсии синтетических каучуков - синтетические латексы. По признаку рабочих (эксплуатационных) характеристик существует особая группа синтетических каучуков – термоэластопласты.

Основным методом получения СК является полимеризация или сополимеризация соответствующих мономеров. Полисульфидные, уретановые и некоторые другие СК получают методом поликонденсации. Наиболее распространенные мономеры и сомономеры для синтетических каучуков – бутадиен, изопрен, стирол, альфа-метилстирол, хлоропрен, изобутилен, этилен, пропилен, акрилонитрил. Крупное промышленное производство синтетического каучука – «натрийбутадиенового» (СКБ) – впервые осуществлено в Советском Союзе, в городе Ярославле в 1932 году по методу академика Сергея Васильевича Лебедева. В настоящее время в мире производится более 12 миллионов тонн в год различных видов СК. Производство СК существует в 30 странах мира. По производству СК СССР занимал первое место в мире [30].

Резина – это эластичный материал, получаемый путем вулканизации каучука. В процессе вулканизации происходит «сшивание» полимерных цепей каучука с помощью вулканизующего реагента в структуру, имеющую поперечные химические связи. Такая структура способна к растяжению при сохранении прочности. Вулканизации подвергают резиновые смеси (композиции), содержащие до 60 % по массе каучука и 40 % (и более) других компонентов: вулканизующих агентов и ускорителей вулканизации, наполнителей, пластификаторов, противостарителей, красителей, порообразователей, антипиренов, душистых веществ и т.д. Среди этих компонентов много и серосодержащих соединений. Резиновую смесь после приготовления направляют на изготовление полуфабрикатов, сборку изделий и вулканизацию. При этом используется высокая пластичность резиновых смесей, благодаря которой им придают форму будущего изделия и закрепляют ее в результате вулканизации. По своему практическому назначению резины бывают общего назначения, тепло- и морозостойкие, масло- и бензостойкие, устойчивые к действию химических агрессивных сред, огнестойкие, радиационностойкие, пищевого и медицинского назначения, пористые и губчатые, цветные и прозрачные и т.д.

Резина является одним из важнейших материалов современной техники. Ее используют в быту, медицине, спорте и т.д. Ассортимент резинотехнических изделий (РТИ) насчитывает десятки тысяч наименований. Среди них шины, транспортные ленты, приводные ремни, шланги, прокладки, амортизаторы, коврики, сальники, манжеты, обувь, плащи, покрытия. Мировое производство всевозможных РТИ – около 20 миллионов тонн ежегодно [31].

В Ярославском политехническом институте (ныне ЯГТУ) были разработаны новые для того времени резиновые смеси на основе бутадиен-нитрильного [32], бутадиен-стирольного [33], полиизопренового [34] и полибутадиенового[35] каучуков. Было изучено применение 3,3-дихлор-4,4-димеркаптодифенил-сульфо-на в качестве модификатора резин на основе полиизопренового каучука СКИ-3 и бутадиен-нитрильных каучуков [36], исследована топология механохимических реакций диеновых эластомеров с аренсульфохлоридами [37], предложен и изучен новый мономер для ароматических полисульфонсульфидов [38].

Германская фирма «Байер» путем взаимодействия ароматического минерального масла с серой, каучуком и другими ингредиентами получила резиновую смесь с температурой стеклования до минус 65 ºС, из которой получаются вулканизаты с высокой прочностью и эластичностью [39]. Изобретение японской фирмы «Шин-Етсу Кемикал Ко.» касается получения силиконовой резины для изготовления пресс-форм [40]. Вулканизацию силиконовой резиновой смеси ведут при комнатной температуре с помощью сульфидов, тиолов, сложных эфиров тиофенкарбоновой кислоты и других серосодержащих вулканизующих агентов. Из такой резиновой смеси изготавливают пресс-формы для вулканизации изделий, которые после вулканизации легко извлекаются из пресс-формы.

Сохраняют свое значение и давно известные полисульфидные каучуки (тиоколы). Это полимеры общей формулы HS[—R—Sm—]nSH, где R - алифатический радикал, m=2 или 4, n=10-5000. При невысокой степени полимеризации (n=10-200) образуются жидкие полисульфидные каучуки (полисульфидные ологомеры). При более высокой степени полимеризации (n=2000-5000) получаются твёрдые полисульфидные каучуки. Тиоколы производят в промышленности поликонденсацией алифатических дигалогенопроизводных (1,2-дихлорэтан, 1,2-дихлорпропан, β, β΄ -дихлордиэтиловый эфир и др.) с полисульфидами щелочных металлов, обычно с Na2Sm, где m=2-5. Поликонденсацию ведут в водной среде в присутствии диспергаторов и эмульгаторов, применяя избыток полисульфида щелочного металла для получения каучука высокой молекулярной массы. Концевые группы SNa превращают в SH путем гидролиза:
Полученный твердый полимер вулканизируют с помощью ZnO, CaO или другого агента, с добавлением 40-80 % наполнителей (сажа, двуокись титана и др.). Тиоколовые резины обладают комплексом ценных свойств. Они являются масло-, бензо-, кислородо-, озоностойкими, имеют хорошую газонепроницаемость, устойчивы к кислотам и щелочам, могут использоваться в широком интервале температурном диапазоне (от минус 50 до плюс 150 ºС). Тиоколы применяют для изготовления шлангов и прокладок, для футеровки сосудов, работающих в агрессивных средах, а также в производстве многих РТИ. Жидкие олигомерные тиоколы применяются в производстве синтетических клеев и герметиков [41].

На примере полисульфидных каучуков хорошо видна связь между химическим строением материала и его потребительскими свойствами, становится понятной логика создания материала с заданными свойствами. В отличие от карбоцепных гомополимеров этилена или пропилена, являющихся пластмассами, полисульфидные каучуки содержат в макромолекулах гетероатомы серы. Это привносит в полимерную цепь некоторую нерегулярность и обеспечивает ей достаточную подвижность и эластичность. В то же время макромолекулы полисульфидных каучуков не содержат двойных связей и, следовательно, более устойчивы к окислению по сравнению с ненасыщенными диеновыми каучуками. Далее, наличие гетероатомов в полимерной цепи придаёт макромолекуле некоторую полярность, она становится менее подобной углеводородным молекулам и поэтому более устойчивой к воздействию углеводородных растворителей – бензина, керосина, минеральных масел и др. Отсюда и более высокая масло- и бензостойкость тиоколов по сравнению с обычными диеновыми каучуками. Выбор серы в качестве гетероатома обусловлен доступностью и приемлемой стоимостью мономеров, их высокой реакционной способностью в процессе поликонденсации, возможностью экономичного выделения целевого продукта, отсутствием токсичных отходов и т.д.

Сохраняется интерес и к другому известному серосодержащему полимеру – хлорсульфированному полиэтилену (хайпалону, ХСПЭ). Это полиэтилен, в макромолекулы которого введены атомы хлора и хлорированные группы. Введение их в полимерную цепь нарушает регулярность её строения и, тем самым, снижает её способность к кристаллизации. Поэтому при достаточно высоком (около 30 %) содержании хлора полимер становится аморфным эластомером, а наличие 0,8-1,9 % групп SO2Cl придает ему способность к вулканизации. Вулканизующими агентами являются оксиды металлов в сочетании с серой и ускорителями вулканизации. Молекулярная масса ХСПЭ составляет от 20 до 50 тысяч. Он хорошо совмещается с другими каучуками и добавками при переработке в резину. Способен перерабатываться на типовом оборудовании (резиносмесителях, вальцах, каландрах, экструдерах). Хайпалон получают обработкой полиэтилена смесью Cl2 и SO2 в среде CCl4 при температурах в интервале 70-120 ºС.

Идея химической модификации полиэтилена оказалась довольно плодотворной. Вследствие насыщенности (как и у полиэтилена) и высокого содержания хлора вулканизаты хайпалона значительно превосходят резины из обычных непредельных каучуков по стойкости к окислению атмосферным кислородом и озоном, а также по водо-, свето-, тепло- и износостойкости, по газонепроницаемости, огнестойкости, масло-, бензостойкости. Резины из хайпалона могут работать при температурах от минус 60 до плюс 180 ºС. Однако они уступают резинам из диеновых каучуков по прочности, эластичности и морозостойкости. Хайпалон применяется в производстве многих РТИ, гуммированных и кровельных материалов, для изоляции электрокабелей и проводов, для изготовления лакокрасочных материалов и т.д. Интересные сведения о ХСПЭ можно почерпнуть из ценной, хотя и несколько устаревшей монографии [42]. Исследования и разработки по химической модификации полиэтилена продолжаются и до сих пор. В частности, представляет интерес модификация поверхности полиэтилена фотохимическим введением сульфокислотных групп [43]. Авторы этой работы исследовали влияние обработки полиэтилена УФ-излучением в атмосфере воздуха, содержащего SO2. Установлено, что при такой обработке в поверхность полиэтилена внедряются группы -SO3H. При этом поверхность приобретает гидрофильные свойства. Показана возможность использования такого модифицированного полиэтилена в литографии.
1.3. Искусственные и синтетические волокна
Волокна подразделяют на два больших класса – природные и химические. Природные волокна – это натуральные текстильные волокна, пригодные для изготовления пряжи. К природным волокнам относятся растительные волокна (хлопок, лен, пенька), животные волокна (шерсть, шелк), минеральные волокна (асбесты). В мире производится более 15 миллионов тонн в год природных волокон. Химические волокна получают методом формования из органических полимерных материалов. Химические волокна, в свою очередь, разделяются на две группы: искусственные и синтетические.

Искусственные волокна получают путем химической переработки природных полимеров, главным образом целлюлозы и ее эфиров (вискозные и ацетатные волокна). Синтетические волокна формуют из синтетических полимеров. Это полипропиленовые, поливинилхлоридные, полиакрилонитрильные, полиамидные, полиэфирные и другие волокна. Важным преимуществом синтетических волокон является возможность создания волокон с заданным комплексом ценных свойств. К их числу относятся термостойкие волокна на основе ароматических полиамидов, полиимидов и др., углеродные волокна с термостойкостью до 2000 ºС при отсутствии кислорода и до 400 ºС в кислородной среде, фторволокна на основе тетрафторэтилена и др.

Волокна применяются в текстильной промышленности для производства тканей, трикотажных изделий, ковров, искусственного меха, чулочно-носочных изделий, рыболовных снастей, технических нитей (например, корда) для производства шин и РТИ, тепло- и электроизоляции, фильтров, изделий медицинского назначения т.д. Эта обширная тема хорошо освещена в монографии [44]. В рамках данной книги мы остановимся на некоторых искусственных и синтетических волокнах, производство которых связано с применением органических соединений серы. Это прежде всего вискозные волокна.

Сырьем для производства вискозных волокон является древесина, а точнее – целлюлоза, которая содержится в древесине в количестве 40-45 % (по массе). В хлопке содержание целлюлозы доходит до 98 %. Целлюлоза по химическому строению представляет собой углерод (полисахарид) общей формулы [С6 H7 O2 (OH)3 ]n, где n колеблется от нескольких сотен до 10 тысяч и более, в зависимости от вида растения. Это – белое волокнистое вещество [45]. Из растительного сырья целлюлозу выделяют путем варки с различными химическими реагентами [46].

На основе целлюлозы получают вискозу - концентрированный раствор натриевой соли ксантогената целлюлозы в натриевой щелочи. Ксантогенат образуется в результате взаимодействия целлюлозы с сероуглеродом, а поскольку процесс ведут в щелочной среде, то образуется натриевая соль:

Получаемый ксантогенат целлюлозы, представляющий собой оранжевую комковатую массу, растворяют в избытке щелочи и получают вискозу. Из нее формуют вискозное волокно путем продавливания через фильеры с диаметром отверстий до 100 мкм в ванну, содержащую водный раствор H2SO4, ZnSO4 и Na2SO4. Каждый из этих трех компонентов играет свою роль. Серная кислота необходима для нейтрализации щелочи. Сульфат цинка вступает в реакцию обмена с натриевой солью ксантогената целлюлозы с образованием менее растворимой цинковой соли ксантогената целлюлозы. Сульфат натрия способствует высаливанию цинковой соли из раствора. Свежесформованное вискозное волокно представляет собой гель, содержащий до 80 % воды. Из него изготавливают готовое волокно на крупнотоннажных агрегатах непрерывного действия. При этом ксантогенат разлагается (из него выделяется CS2). Далее волокно превращается в текстильные нити на прядильных машинах [47].

Производство вискозных волокон постепенно сокращается. Это связано с применением в этой технологии больших количеств CS2 и ZnSO4, загрязнением окружающей среды. Обезвреживание вискозного производства остается актуальной задачей, поскольку в мире производится около 3 миллионов тонн вискозных волокон ежегодно.

В производстве традиционных полиамидных волокон также используются органические соединения серы. Например, в США запатентовано формование полиамидного волокна экструзией расплава с использованием сульфонированных реагентов [48]. Согласно этому способу, волокно, стойкое к появлению ржавчины, получают экструзией расплава полиамида, например найлона, с добавлением сульфоновых кислот, таких как 5-сульфофталевая кислота, 5-додецилсульфокислота, 3-сульфобензойная кислота и др., с удалением летучих компонентов. Волокно формуют, вытягивают, сушат и прядут. В расплав предварительно вводят антиоксиданты, стабилизаторы, красители, антимикробные средства, антистатики, регуляторы вязкости и огнезащитные средства.

Заметную роль в технике играют синтетические волокна на основе серосодержащих мономеров. Один из первых таких мономеров, 4-амино-4΄-карбоксидифенилсульфон


предназначенный для получения термостойких полиамидных волокон, был синтезирован в Ярославле тридцать лет назад [49]. С тех пор ассортимент таких мономеров, конечно, расширился. В частности, большой интерес для практики представляют полибензотиазолы. Это полимеры, макромолекулы которых содержат повторяющиеся бензотиазольные фрагменты. Основным способом их получения является поликонденсация бис(орто-аминотиофенолов) с дихлорангидридами ароматических дикарбоновых кислот, с последующей полициклизацией при более высокой температуре:

П
олибензотиазолы применяются в производстве высокопрочных синтетических волокон, а также монолитных и армированных пластмасс [14].

Наконец, следует упомянуть о роли органических соединений серы в качестве полезных агентов на различных стадиях переработки волокон. В этом аспекте интересна, например, диссертационная работа [50]. В ней впервые показана возможность использования алкилсульфатов и алкилсульфонатов для интенсификации процесса крашения высокопрочных и термостойких волокнистых материалов на основе полигетероариленов.
1   2   3   4   5   6   7   8   9   ...   29

Похожие:

Химия в нашей жизни iconАналитическая химия учебно-методический комплекс
«Химия», профили подготовки: «Неорганическая химия и химия координационных соединений», «Физическая химия», «Химия окружающей среды,...
Химия в нашей жизни iconУстный журнал «Химия в нашей жизни» Ведущий 1
Рабочая программа составлена на основании рабочего учебного плана по фгос, переутвержденного ученым советом юргту (нпи) протоколом...
Химия в нашей жизни iconПасха красная
«Молитесь за монахов — они корень нашей жизни. И как бы ни рубили древо нашей жизни, оно даст еще зеленую поросль, пока жив его животворящий...
Химия в нашей жизни iconВысокомолекулярные соединения учебно-методический комплекс
«Химия», профили подготовки: «Неорганическая химия и химия координационных соединений», «Физическая химия», «Химия окружающей среды,...
Химия в нашей жизни iconХимические основы биологических процессов учебно-методический комплекс
«Химия», профили подготовки: «Неорганическая химия и химия координационных соединений», «Физическая химия», «Химия окружающей среды,...
Химия в нашей жизни iconИнформатика в нашей жизни
Тематический вечер «Информатика в нашей жизни» — это внеклассное занятие для учащихся viii—xi классов средней школы. Вечер – заключительное...
Химия в нашей жизни iconУрок закрепления-повторения Защита проектов По теме «Средства массовой информации в нашей жизни»
Социокультурный аспект – знакомство с мнениями одноклассников о том, какое место занимают сми в нашей жизни, характеристикой различных...
Химия в нашей жизни iconРабочая программа элективного курса по химии «Химия в нашей жизни»
Программа включает как теоретический материал, так и практический. Кроме того, данный курс направлен на удовлетворение познавательных...
Химия в нашей жизни iconУрок в шестом классе по теме «Животные в нашей жизни»
Задачи урока: активизация навыков монологической речи по теме «Животные в нашей жизни»;актуализация навыков письма, чтения и аудирования;...
Химия в нашей жизни iconПрограмма вступительных экзаменов по специальным дисциплинам, соответствующих...
...
Химия в нашей жизни iconПрограмма вступительных экзаменов по специальным дисциплинам, соответствующих...
«Неорганическая химия»; «Аналитическая химия»; «Органическая химия»; «Физическая химия»
Химия в нашей жизни iconПрограмма по формированию навыков безопасного поведения на дорогах...
«Образование». Никто и не мечтал о чуде. Но оно свершилось… «Научно – технический прогресс проник во все области нашей жизни». Так...
Химия в нашей жизни iconРабочая программа по дисциплине б пищевая химия
Ооп впо направления 260100. 62 Продукты питания из растительного сырья. Дисциплина преподается в 5 семестре и методически взаимосвязана...
Химия в нашей жизни iconПрограмма по формированию навыков безопасного поведения на дорогах...
Один из важных моментов здоровых отношений это умонастроение оптимизма. Но когда это доходит до нашей духовной практики его важность...
Химия в нашей жизни iconУрок обобщения по теме: «Право в нашей жизни»
Урок – обобщения по теме: «Право в нашей жизни». Для учащихся 11 «А» профильного класса
Химия в нашей жизни iconРазработка урока одноатомные спирты и их роль в жизни человека По дисциплине «химия»
Методическая разработка предназначена для проведения теоретического занятия по дисциплине «Химия» по теме «Одноатомные спирты и их...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск