Литература |





НазваниеЛитература |
страница11/63
Дата публикации03.12.2014
Размер5.98 Mb.
ТипЛитература
100-bal.ru > Информатика > Литература
1   ...   7   8   9   10   11   12   13   14   ...   63

Функционально-ориентированные и объектно-ориентированные методологии описания предметной области


Процесс бизнес-моделирования может быть реализован в рамках различных методик, отличающихся прежде всего своим подходом к тому, что представляет собой моделируемая организация. В соответствии с различными представлениями об организации методики принято делить на объектные и функциональные (структурные).

Объектные методики рассматривают моделируемую организацию как набор взаимодействующих объектов – производственных единиц. Объект определяется как осязаемая реальность – предмет или явление, имеющие четко определяемое поведение. Целью применения данной методики является выделение объектов, составляющих организацию, и распределение между ними ответственностей за выполняемые действия.

Функциональные методики, наиболее известной из которых является методика IDEF, рассматривают организацию как набор функций, преобразующий поступающий поток информации в выходной поток. Процесс преобразования информации потребляет определенные ресурсы. Основное отличие от объектной методики заключается в четком отделении функций (методов обработки данных) от самих данных.

С точки зрения бизнес-моделирования каждый из представленных подходов обладает своими преимуществами. Объектный подход позволяет построить более устойчивую к изменениям систему, лучше соответствует существующим структурам организации. Функциональное моделирование хорошо показывает себя в тех случаях, когда организационная структура находится в процессе изменения или вообще слабо оформлена. Подход от выполняемых функций интуитивно лучше понимается исполнителями при получении от них информации об их текущей работе.

Функциональная методика IDEF0


Методологию IDEF0 можно считать следующим этапом развития хорошо известного графического языка описания функциональных систем SADT (Structured Analysis and Design Technique). Исторически IDEF0 как стандарт был разработан в 1981 году в рамках обширной программы автоматизации промышленных предприятий, которая носила обозначение ICAM (Integrated Computer Aided Manufacturing). Семейство стандартов IDEF унаследовало свое обозначение от названия этой программы (IDEF=Icam DEFinition), и последняя его редакция была выпущена в декабре 1993 года Национальным Институтом по Стандартам и Технологиям США (NIST).

Целью методики является построение функциональной схемы исследуемой системы, описывающей все необходимые процессы с точностью, достаточной для однозначного моделирования деятельности системы.

В основе методологии лежат четыре основных понятия: функциональный блок, интерфейсная дуга, декомпозиция, глоссарий.

Функциональный блок (Activity Box) представляет собой некоторую конкретную функцию в рамках рассматриваемой системы. По требованиям стандарта название каждого функционального блока должно быть сформулировано в глагольном наклонении (например, "производить услуги"). На диаграмме функциональный блок изображается прямоугольником (рис. 6.1). Каждая из четырех сторон функционального блока имеет свое определенное значение (роль), при этом:

  • верхняя сторона имеет значение "Управление" (Control);

  • левая сторона имеет значение "Вход" (Input);

  • правая сторона имеет значение "Выход" (Output);

  • нижняя сторона имеет значение "Механизм" (Mechanism).

функциональный блок


Рис. 6.1.  Функциональный блок

Интерфейсная дуга (Arrow) отображает элемент системы, который обрабатывается функциональным блоком или оказывает иное влияние на функцию, представленную данным функциональным блоком. Интерфейсные дуги часто называют потоками или стрелками.

С помощью интерфейсных дуг отображают различные объекты, в той или иной степени определяющие процессы, происходящие в системе. Такими объектами могут быть элементы реального мира (детали, вагоны, сотрудники и т.д.) или потоки данных и информации (документы, данные, инструкции и т.д.).

В зависимости от того, к какой из сторон функционального блока подходит данная интерфейсная дуга, она носит название "входящей", "исходящей" или "управляющей".

Необходимо отметить, что любой функциональный блок по требованиям стандарта должен иметь, по крайней мере, одну управляющую интерфейсную дугу и одну исходящую. Это и понятно – каждый процесс должен происходить по каким-то правилам (отображаемым управляющей дугой) и должен выдавать некоторый результат (выходящая дуга), иначе его рассмотрение не имеет никакого смысла.

Обязательное наличие управляющих интерфейсных дуг является одним из главных отличий стандарта IDEF0 от других методологий классов DFD (Data Flow Diagram) и WFD (Work Flow Diagram).

Декомпозиция (Decomposition) является основным понятием стандарта IDEF0. Принцип декомпозиции применяется при разбиении сложного процесса на составляющие его функции. При этом уровень детализации процесса определяется непосредственно разработчиком модели.

Декомпозиция позволяет постепенно и структурировано представлять модель системы в виде иерархической структуры отдельных диаграмм, что делает ее менее перегруженной и легко усваиваемой.

Последним из понятий IDEF0 является глоссарий (Glossary). Для каждого из элементов IDEF0 — диаграмм, функциональных блоков, интерфейсных дуг — существующий стандарт подразумевает создание и поддержание набора соответствующих определений, ключевых слов, повествовательных изложений и т.д., которые характеризуют объект, отображенный данным элементом. Этот набор называется глоссарием и является описанием сущности данного элемента. Глоссарий гармонично дополняет наглядный графический язык, снабжая диаграммы необходимой дополнительной информацией.

Модель IDEF0 всегда начинается с представления системы как единого целого – одного функционального блока с интерфейсными дугами, простирающимися за пределы рассматриваемой области. Такая диаграмма с одним функциональным блоком называется контекстной диаграммой.

В пояснительном тексте к контекстной диаграмме должна быть указана цель (Purpose) построения диаграммы в виде краткого описания и зафиксирована точка зрения (Viewpoint).

Определение и формализация цели разработки IDEF0-модели является крайне важным моментом. Фактически цель определяет соответствующие области в исследуемой системе, на которых необходимо фокусироваться в первую очередь.

Точка зрения определяет основное направление развития модели и уровень необходимой детализации. Четкое фиксирование точки зрения позволяет разгрузить модель, отказавшись от детализации и исследования отдельных элементов, не являющихся необходимыми, исходя из выбранной точки зрения на систему. Правильный выбор точки зрения существенно сокращает временные затраты на построение конечной модели.

Выделение подпроцессов. В процессе декомпозиции функциональный блок, который в контекстной диаграмме отображает систему как единое целое, подвергается детализации на другой диаграмме. Получившаяся диаграмма второго уровня содержит функциональные блоки, отображающие главные подфункции функционального блока контекстной диаграммы, и называется дочерней (Child Diagram) по отношению к нему (каждый из функциональных блоков, принадлежащих дочерней диаграмме, соответственно называется дочерним блоком – Child Box). В свою очередь, функциональный блок — предок называется родительским блоком по отношению к дочерней диаграмме (Parent Box), а диаграмма, к которой он принадлежит – родительской диаграммой (Parent Diagram). Каждая из подфункций дочерней диаграммы может быть далее детализирована путем аналогичной декомпозиции соответствующего ей функционального блока. В каждом случае декомпозиции функционального блока все интерфейсные дуги, входящие в данный блок или исходящие из него, фиксируются на дочерней диаграмме. Этим достигается структурная целостность IDEF0–модели.

Иногда отдельные интерфейсные дуги высшего уровня не имеет смысла продолжать рассматривать на диаграммах нижнего уровня, или наоборот — отдельные дуги нижнего отражать на диаграммах более высоких уровней – это будет только перегружать диаграммы и делать их сложными для восприятия. Для решения подобных задач в стандарте IDEF0 предусмотрено понятие туннелирования. Обозначение "туннеля" (Arrow Tunnel) в виде двух круглых скобок вокруг начала интерфейсной дуги обозначает, что эта дуга не была унаследована от функционального родительского блока и появилась (из "туннеля") только на этой диаграмме. В свою очередь, такое же обозначение вокруг конца (стрелки) интерфейсной дуги в непосредственной близи от блока–приемника означает тот факт, что в дочерней по отношению к этому блоку диаграмме эта дуга отображаться и рассматриваться не будет. Чаще всего бывает, что отдельные объекты и соответствующие им интерфейсные дуги не рассматриваются на некоторых промежуточных уровнях иерархии, – в таком случае они сначала "погружаются в туннель", а затем при необходимости "возвращаются из туннеля".

Обычно IDEF0-модели несут в себе сложную и концентрированную информацию, и для того, чтобы ограничить их перегруженность и сделать удобочитаемыми, в стандарте приняты соответствующие ограничения сложности.

Рекомендуется представлять на диаграмме от трех до шести функциональных блоков, при этом количество подходящих к одному функциональному блоку (выходящих из одного функционального блока) интерфейсных дуг предполагается не более четырех.

Стандарт IDEF0 содержит набор процедур, позволяющих разрабатывать и согласовывать модель большой группой людей, принадлежащих к разным областям деятельности моделируемой системы. Обычно процесс разработки является итеративным и состоит из следующих условных этапов:

  • Создание модели группой специалистов, относящихся к различным сферам деятельности предприятия. Эта группа в терминах IDEF0 называется авторами (Authors). Построение первоначальной модели является динамическим процессом, в течение которого авторы опрашивают компетентных лиц о структуре различных процессов, создавая модели деятельности подразделений. При этом их интересуют ответы на следующие вопросы:

Что поступает в подразделение "на входе"?

    • Какие функции и в какой последовательности выполняются в рамках подразделения?

    • Кто является ответственным за выполнение каждой из функций?

    • Чем руководствуется исполнитель при выполнении каждой из функций?

    • Что является результатом работы подразделения (на выходе)?

На основе имеющихся положений, документов и результатов опросов создается черновик (Model Draft) модели.

  • Распространение черновика для рассмотрения, согласований и комментариев. На этой стадии происходит обсуждение черновика модели с широким кругом компетентных лиц (в терминах IDEF0 — читателей) на предприятии. При этом каждая из диаграмм черновой модели письменно критикуется и комментируется, а затем передается автору. Автор, в свою очередь, также письменно соглашается с критикой или отвергает ее с изложением логики принятия решения и вновь возвращает откорректированный черновик для дальнейшего рассмотрения. Этот цикл продолжается до тех пор, пока авторы и читатели не придут к единому мнению.

  • Официальное утверждение модели. Утверждение согласованной модели происходит руководителем рабочей группы в том случае, если у авторов модели и читателей отсутствуют разногласия по поводу ее адекватности. Окончательная модель представляет собой согласованное представление о предприятии (системе) с заданной точки зрения и для заданной цели.

Наглядность графического языка IDEF0 делает модель вполне читаемой и для лиц, которые не принимали участия в проекте ее создания, а также эффективной для проведения показов и презентаций. В дальнейшем на базе построенной модели могут быть организованы новые проекты, нацеленные на производство изменений в модели.

Функциональная методика потоков данных


Целью методики является построение модели рассматриваемой системы в виде диаграммы потоков данных (Data Flow DiagramDFD), обеспечивающей правильное описание выходов (отклика системы в виде данных) при заданном воздействии на вход системы (подаче сигналов через внешние интерфейсы). Диаграммы потоков данных являются основным средством моделирования функциональных требований к проектируемой системе.

При создании диаграммы потоков данных используются четыре основных понятия: потоки данных, процессы (работы) преобразования входных потоков данных в выходные, внешние сущности, накопители данных (хранилища).

Потоки данных являются абстракциями, использующимися для моделирования передачи информации (или физических компонент) из одной части системы в другую. Потоки на диаграммах изображаются именованными стрелками, ориентация которых указывает направление движения информации.

Назначение процесса (работы) состоит в продуцировании выходных потоков из входных в соответствии с действием, задаваемым именем процесса. Имя процесса должно содержать глагол в неопределенной форме с последующим дополнением (например, "получить документы по отгрузке продукции"). Каждый процесс имеет уникальный номер для ссылок на него внутри диаграммы, который может использоваться совместно с номером диаграммы для получения уникального индекса процесса во всей модели.

Хранилище (накопитель) данных позволяет на указанных участках определять данные, которые будут сохраняться в памяти между процессами. Фактически хранилище представляет "срезы" потоков данных во времени. Информация, которую оно содержит, может использоваться в любое время после ее получения, при этом данные могут выбираться в любом порядке. Имя хранилища должно определять его содержимое и быть существительным.

Внешняя сущность представляет собой материальный объект вне контекста системы, являющейся источником или приемником системных данных. Ее имя должно содержать существительное, например, "склад товаров". Предполагается, что объекты, представленные как внешние сущности, не должны участвовать ни в какой обработке.

Кроме основных элементов, в состав DFD входят словари данных и миниспецификации.

Словари данных являются каталогами всех элементов данных, присутствующих в DFD, включая групповые и индивидуальные потоки данных, хранилища и процессы, а также все их атрибуты.

Миниспецификации обработки — описывают DFD-процессы нижнего уровня. Фактически миниспецификации представляют собой алгоритмы описания задач, выполняемых процессами: множество всех миниспецификаций является полной спецификацией системы.

Процесс построения DFD начинается с создания так называемой основной диаграммы типа "звезда", на которой представлен моделируемый процесс и все внешние сущности, с которыми он взаимодействует. В случае сложного основного процесса он сразу представляется в виде декомпозиции на ряд взаимодействующих процессов. Критериями сложности в данном случае являются: наличие большого числа внешних сущностей, многофункциональность системы, ее распределенный характер. Внешние сущности выделяются по отношению к основному процессу. Для их определения необходимо выделить поставщиков и потребителей основного процесса, т.е. все объекты, которые взаимодействуют с основным процессом. На этом этапе описание взаимодействия заключается в выборе глагола, дающего представление о том, как внешняя сущность использует основной процесс или используется им. Например, основной процесс – "учет обращений граждан", внешняя сущность – "граждане", описание взаимодействия – "подает заявления и получает ответы". Этот этап является принципиально важным, поскольку именно он определяет границы моделируемой системы.

Для всех внешних сущностей строится таблица событий, описывающая их взаимодействие с основным потоком. Таблица событий включает в себя наименование внешней сущности, событие, его тип (типичный для системы или исключительный, реализующийся при определенных условиях) и реакцию системы.

На следующем шаге происходит декомпозиция основного процесса на набор взаимосвязанных процессов, обменивающихся потоками данных. Сами потоки не конкретизируются, определяется лишь характер взаимодействия. Декомпозиция завершается, когда процесс становится простым, т.е.:

  1. процесс имеет два-три входных и выходных потока;

  2. процесс может быть описан в виде преобразования входных данных в выходные;

  3. процесс может быть описан в виде последовательного алгоритма.

Для простых процессов строится миниспецификация – формальное описание алгоритма преобразования входных данных в выходные.

Миниспецификация удовлетворяет следующим требованиям: для каждого процесса строится одна спецификация; спецификация однозначно определяет входные и выходные потоки для данного процесса; спецификация не определяет способ преобразования входных потоков в выходные; спецификация ссылается на имеющиеся элементы, не вводя новые; спецификация по возможности использует стандартные подходы и операции.

После декомпозиции основного процесса для каждого подпроцесса строится аналогичная таблица внутренних событий.

Следующим шагом после определения полной таблицы событий выделяются потоки данных, которыми обмениваются процессы и внешние сущности. Простейший способ их выделения заключается в анализе таблиц событий. События преобразуются в потоки данных от инициатора события к запрашиваемому процессу, а реакции – в обратный поток событий. После построения входных и выходных потоков аналогичным образом строятся внутренние потоки. Для их выделения для каждого из внутренних процессов выделяются поставщики и потребители информации. Если поставщик или потребитель информации представляет процесс сохранения или запроса информации, то вводится хранилище данных, для которого данный процесс является интерфейсом.

После построения потоков данных диаграмма должна быть проверена на полноту и непротиворечивость. Полнота диаграммы обеспечивается, если в системе нет "повисших" процессов, не используемых в процессе преобразования входных потоков в выходные. Непротиворечивость системы обеспечивается выполнением наборов формальных правил о возможных типах процессов: на диаграмме не может быть потока, связывающего две внешние сущности – это взаимодействие удаляется из рассмотрения; ни одна сущность не может непосредственно получать или отдавать информацию в хранилище данных – хранилище данных является пассивным элементом, управляемым с помощью интерфейсного процесса; два хранилища данных не могут непосредственно обмениваться информацией – эти хранилища должны быть объединены.

К преимуществам методики DFD относятся:

  • возможность однозначно определить внешние сущности, анализируя потоки информации внутри и вне системы;

  • возможность проектирования сверху вниз, что облегчает построение модели "как должно быть";

  • наличие спецификаций процессов нижнего уровня, что позволяет преодолеть логическую незавершенность функциональной модели и построить полную функциональную спецификацию разрабатываемой системы.

К недостаткам модели отнесем: необходимость искусственного ввода управляющих процессов, поскольку управляющие воздействия (потоки) и управляющие процессы с точки зрения DFD ничем не отличаются от обычных; отсутствие понятия времени, т.е. отсутствие анализа временных промежутков при преобразовании данных (все ограничения по времени должны быть введены в спецификациях процессов).

-функций.

Концептуальной основой объектно-ориентированного подхода является объектная модель, которая строится с учетом следующих принципов:

  • абстрагирование;

  • инкапсуляция;

  • модульность;

  • иерархия;

  • типизация;

  • параллелизм;

  • устойчивость.

Основными понятиями объектно-ориентированного подхода являются объект и класс.

Объект — предмет или явление, имеющее четко определенное поведение и обладающие состоянием, поведением и индивидуальностью. Структура и поведение схожих объектов определяют общий для них класс. Класс – это множество объектов, связанных общностью структуры и поведения. Следующую группу важных понятий объектного подхода составляют наследование и полиморфизм. Понятие полиморфизм может быть интерпретировано как способность класса принадлежать более чем одному типу. Наследование означает построение новых классов на основе существующих с возможностью добавления или переопределения данных и методов.

Важным качеством объектного подхода является согласованность моделей деятельности организации и моделей проектируемой информационной системы от стадии формирования требований до стадии реализации. По объектным моделям может быть прослежено отображение реальных сущностей моделируемой предметной области (организации) в объекты и классы информационной системы.

Большинство существующих методов объектно-ориентированного подхода включают язык моделирования и описание процесса моделирования. Процесс – это описание шагов, которые необходимо выполнить при разработке проекта. В качестве языка моделирования объектного подхода используется унифицированный язык моделирования UML, который содержит стандартный набор диаграмм для моделирования.

Диаграмма (Diagram) — это графическое представление множества элементов. Чаще всего она изображается в виде связного графа с вершинами (сущностями) и ребрами (отношениями) и представляет собой некоторую проекцию системы.

Объектно-ориентированный подход обладает следующими преимуществами:

  • Объектная декомпозиция дает возможность создавать модели меньшего размера путем использования общих механизмов, обеспечивающих необходимую экономию выразительных средств. Использование объектного подхода существенно повышает уровень унификации разработки и пригодность для повторного использования, что ведет к созданию среды разработки и переходу к сборочному созданию моделей.

  • Объектная декомпозиция позволяет избежать создания сложных моделей, так как она предполагает эволюционный путь развития модели на базе относительно небольших подсистем.

  • Объектная модель естественна, поскольку ориентирована на человеческое восприятие мира.

К недостаткам объектно-ориентированного подхода относятся высокие начальные затраты. Этот подход не дает немедленной отдачи. Эффект от его применения сказывается после разработки двух–трех проектов и накопления повторно используемых компонентов. Диаграммы, отражающие специфику объектного подхода, менее наглядны.

Сравнение существующих методик


В функциональных моделях (DFD-диаграммах потоков данных, SADT-диаграммах) главными структурными компонентами являются функции ( операции, действия, работы), которые на диаграммах связываются между собой потоками объектов.

Несомненным достоинством функциональных моделей является реализация структурного подхода к проектированию ИС по принципу "сверху-вниз", когда каждый функциональный блок может быть декомпозирован на множество подфункций и т.д., выполняя, таким образом, модульное проектирование ИС. Для функциональных моделей характерны процедурная строгость декомпозиции ИС и наглядность представления.

При функциональном подходе объектные модели данных в виде ER-диаграмм "объект — свойство — связь" разрабатываются отдельно. Для проверки корректности моделирования предметной области между функциональными и объектными моделями устанавливаются взаимно однозначные связи.

Главный недостаток функциональных моделей заключается в том, что процессы и данные существуют отдельно друг от друга — помимо функциональной декомпозиции существует структура данных, находящаяся на втором плане. Кроме того, не ясны условия выполнения процессов обработки информации, которые динамически могут изменяться.

Перечисленные недостатки функциональных моделей снимаются в объектно-ориентированных моделях, в которых главным структурообразующим компонентом выступает класс объектов с набором функций, которые могут обращаться к атрибутам этого класса.

Для классов объектов характерна иерархия обобщения, позволяющая осуществлять наследование не только атрибутов (свойств) объектов от вышестоящего класса объектов к нижестоящему классу, но и функций (методов).

В случае наследования функций можно абстрагироваться от конкретной реализации процедур ( абстрактные типы данных ), которые отличаются для определенных подклассов ситуаций. Это дает возможность обращаться к подобным программным модулям по общим именам ( полиморфизм ) и осуществлять повторное использование программного кода при модификации программного обеспечения. Таким образом, адаптивность объектно-ориентированных систем к изменению предметной области по сравнению с функциональным подходом значительно выше.

При объектно-ориентированном подходе изменяется и принцип проектирования ИС. Сначала выделяются классы объектов, а далее в зависимости от возможных состояний объектов (жизненного цикла объектов) определяются методы обработки (функциональные процедуры), что обеспечивает наилучшую реализацию динамического поведения информационной системы.

Для объектно-ориентированного подхода разработаны графические методы моделирования предметной области, обобщенные в языке унифицированного моделирования UML. Однако по наглядности представления модели пользователю-заказчику объектно-ориентированные модели явно уступают функциональным моделям.

При выборе методики моделирования предметной области обычно в качестве критерия выступает степень ее динамичности. Для более регламентированных задач больше подходят функциональные модели, для более адаптивных бизнес-процессов (управления рабочими потоками, реализации динамических запросов к информационным хранилищам) — объектно-ориентированные модели. Однако в рамках одной и той же ИС для различных классов задач могут требоваться различные виды моделей, описывающих одну и ту же проблемную область. В таком случае должны использоваться комбинированные модели предметной области.

Синтетическая методика

Как можно видеть из представленного обзора, каждая из рассмотренных методик позволяет решить задачу построения формального описания рабочих процедур исследуемой системы. Все методики позволяют построить модель "как есть" и "как должно быть". С другой стороны, каждая из этих методик обладает существенными недостатками. Их можно суммировать следующим образом: недостатки применения отдельной методики лежат не в области описания реальных процессов, а в неполноте методического подхода.

Функциональные методики в целом лучше дают представление о существующих функциях в организации, о методах их реализации, причем чем выше степень детализации исследуемого процесса, тем лучше они позволяют описать систему. Под лучшим описанием в данном случае понимается наименьшая ошибка при попытке по полученной модели предсказать поведение реальной системы. На уровне отдельных рабочих процедур их описание практически однозначно совпадает с фактической реализацией в потоке работ.

На уровне общего описания системы функциональные методики допускают значительную степень произвола в выборе общих интерфейсов системы, ее механизмов и т.д., то есть в определении границ системы. Хорошо описать систему на этом уровне позволяет объектный подход, основанный на понятии сценария использования. Ключевым является понятие о сценарии использования как о сеансе взаимодействия действующего лица с системой, в результате которого действующее лицо получает нечто, имеющее для него ценность. Использование критерия ценности для пользователя дает возможность отбросить не имеющие значения детали потоков работ и сосредоточиться на тех функциях системы, которые оправдывают ее существование. Однако и в этом случае задача определения границ системы, выделения внешних пользователей является сложной.

Технология потоков данных, исторически возникшая первой, легко решает проблему границ системы, поскольку позволяет за счет анализа информационных потоков выделить внешние сущности и определить основной внутренний процесс. Однако отсутствие выделенных управляющих процессов, потоков и событийной ориентированности не позволяет предложить эту методику в качестве единственной.

Наилучшим способом преодоления недостатков рассмотренных методик является формирование синтетической методики, объединяющей различные этапы отдельных методик. При этом из каждой методики необходимо взять часть методологии, наиболее полно и формально изложенную, и обеспечить возможность обмена результатами на различных этапах применения синергетической методики. В бизнес-моделировании неявным образом идет формирование подобной синергетической методики.

Идея синтетической методики заключается в последовательном применении функционального и объектного подхода с учетом возможности реинжиниринга существующей ситуации.

Рассмотрим применение синтетической методики на примере разработки административного регламента.

При построении административных регламентов выделяются следующие стадии:

  1. Определение границ системы. На этой стадии при помощи анализа потоков данных выделяют внешние сущности и собственно моделируемую систему.

  2. Выделение сценариев использования системы. На этой стадии при помощи критерия полезности строят для каждой внешней сущности набор сценариев использования системы.

  3. Добавление системных сценариев использования. На этой стадии определяют сценарии, необходимые для реализации целей системы, отличных от целей пользователей.

  4. Построение диаграммы активностей по сценариям использования. На этой стадии строят набор действий системы, приводящих к реализации сценариев использования;

  5. Функциональная декомпозиция диаграмм активностей как контекстных диаграмм методики IDEF0.

  6. Формальное описание отдельных функциональных активностей в виде административного регламента (с применением различных нотаций ).

7. Лекция: Моделирование бизнес-процессов средствами BPwin

Моделирование деловых процессов, как правило, выполняется с помощью case-средств. К таким средствам относятся BPwin (PLATINUM technology), Silverrun (Silverrun technology), Oracle Designer (Oracle), Rational Rose (Rational Software) и др. Функциональные возможности инструментальных средств структурного моделирования деловых процессов будут рассмотрены на примере case-средства BPwin.

BPwin поддерживает три методологии моделирования: функциональное моделирование (IDEF0); описание бизнес-процессов (IDEF3); диаграммы потоков данных (DFD).
1   ...   7   8   9   10   11   12   13   14   ...   63

Похожие:

Литература | iconЛитература по психологии,классичес
Альдебаран-крупнейшая электронная библиотека on-line- художественная, учебная и техническая литература и книги различных жанров:...
Литература | iconЛитература чувашская литература
Чувашский государственного университет имени И. Н. Ульянова по специальности русский язык и литература
Литература | icon“ Литература + литература”
Идея проведения данного урока взята из газеты “Литература” (приложение к газете “Первое сентября”,№13 за 1998 год, страница 1)
Литература | iconПрограмма по формированию навыков безопасного поведения на дорогах...
Литература и история. Литература как искусство слова. Литература и другие виды искусства
Литература | iconПрограмма по формированию навыков безопасного поведения на дорогах...
Литература и история. Литература как искусство слова. Литература и другие виды искусства
Литература | iconЛитература 1 Русская литература. Мультимедийная энциклопедия. 8-11...
Математика. Учебное электронное издание. 5-11. Новые возможности для усвоения математики
Литература | iconЛИТЕРАТУРА К КУРСУ "ФИЛОСОФИЯ"
ОСНОВНАЯ ЛИТЕРАТУРА и ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА
Литература | icon"Литература народов России" (Кабардино-черкесская литература)
...
Литература | iconТема урока. Основное содержание
Введение. Судьба России в XX веке. Основные направления, темы и проблемы русской литературы XX века. Русская советская литература;...
Литература | iconПрограмма по формированию навыков безопасного поведения на дорогах...
Литература и жизнь. Литература как искусство слова. Вымысел. Литература как учебный предмет
Литература | iconЛитература Тема: Человек и история в поэме А. С. Пушкина «Медный всадник»
Учебно-методическое обеспечение: учебник 10 класс литература Коровина В. И. Литература. 10 класс, Москва Просвещение. 1часть. 2012...
Литература | iconРабочая программа по литературе составлена на основе программы "Литература....
Литература. 5-11 класс" под ред. Г. И. Беленького. Реализуется в учебнике "Литература. 11 класс: Учебник для общеобразовательных...
Литература | iconСписок бесплатных электронных библиотек
Альдебаран крупнейшая электронная библиотека on-line художественная, учебная и техническая литература и книги различных жанров: детективы,...
Литература | iconРодная литература
Рабочая программа по литературе для 5 класса к учебнику «Родная литература» (Ана литература) 5 класс. Авторы: (Суюнчев А., Азаматова...
Литература | iconРабочая программа учебного предмета: «Литература»
«Литература» под редакцией В. Я. Коровиной (Программы для общеобразовательных учреждений. Литература. 5-11 кл. Авторы: В. Я. Коровина,...
Литература | iconРабочая программа педагога по курсу «Литература»
Литература 5 – 11 классы/ под редакцией Г. И. Беленького. – 4-е изд., перереб. – М.: Мнемозина, 2009. – 110с и ориентирована на использование...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск