Учебно-методический комплекс дисциплины «Концепции современного естествознания»





НазваниеУчебно-методический комплекс дисциплины «Концепции современного естествознания»
страница19/23
Дата публикации24.05.2015
Размер3.23 Mb.
ТипУчебно-методический комплекс
100-bal.ru > Право > Учебно-методический комплекс
1   ...   15   16   17   18   19   20   21   22   23

Вопросы для самопроверки:

  1. Что вы знаете о биоэтике?

  2. Расскажите о врожденных запретах.

  3. Назовите потребности человека.

  4. Расскажите о принципах мотивации.

  5. Что вы знаете о самоактуализации?

  6. Расскажите о влиянии загрязнений окружающей среды на здоровье человека.

Лекция 22. Человек, биосфера и космические циклы

Вопросы для рассмотрения: Понятие биосферы. Концепция Вернадского. Строение биосферы. Космические циклы.

В системе современного научного мировоззрения понятие биосферы занимает ключевое место во многих науках. Разработка учения о биосфере неразрывно связана с именем В. И. Вернадского, хотя и имеет довольно длинную предысторию, начавшуюся с книги Ж.-Б. Ламарка "Гидрогеология" (1802), в которой содержится одно из первых обоснований идеи о влиянии живых организмов на геологические процессы. Затем был грандиозный многотомный труд А. Гумбольдта "Космос" (первая книга вышла в 1845 году), в котором было собрано множество фактов, подтверждающих тезис о взаимодействии живых организмов с теми земными оболочками, в которые они проникают. Сам термин "биосфера" был впервые введен в науку немецким геологом и палеонтологом Эдуардом Зюссом, подразумевавшим под ней самостоятельную, пересекающуюся с другими сферу, в которой на Земле существует жизнь. Он дал определение биосферы как совокупности организмов, ограниченной в пространстве и времени и обитающей на поверхности Земли. Но о геологической роли биосферы, о ее зависимости от планетарных факторов Земли не было сказано ничего. Впервые идею о геологических функциях живого вещества, представление о совокупности всего органического мира в виде единого нераздельного целого высказал Вернадский. Его концепция складывалась постепенно, от первой студенческой работы "Об изменении почвы степей грызунами" (1884) к "Живому веществу" (рукопись рубежа 1920-х годов), "Биосфере" (1926), "Биогеохимическим очеркам" (1940), "Химическому строению биосферы Земли" и "Философским мыслям натуралиста", над которыми он работал в последние десятилетия своей жизни.

Введя понятие живого вещества как совокупности всех живых организмов планеты, в том числе и человека, Вернадский тем самым вышел на качественно новый уровень анализа жизни и живого – биосферный. Это дало возможность понимать жизнь как могучую геологическую силу нашей планеты, действенно формирующую сам облик Земли. В функциональном плане живое вещество становилось тем звеном, которое соединяло историю химических элементов с эволюцией биосферы. Введение этого понятия также позволяло поставить и решить вопрос о механизмах геологической активности живого вещества, источниках энергии для этого. Геологическая роль живого вещества основана на его геохимических функциях: энергетической, концентрационной, деструктивной, средообразующей, транспортной. Они основаны на том, что живые организмы своим дыханием, своим питанием, своим метаболизмом, непрерывной сменой поколений порождают грандиознейшее планетное явление – миграцию химических элементов в биосфере. Это предопределило решающую роль живого вещества и биосферы в становлении современного облика Земли – ее атмосферы, гидросферы, литосферы.

Такие грандиозные преобразования геосферы требуют гигантских затрат энергии. Источником ее является биогеохимическая энергия живого вещества биосферы, открытая Вернадским. Биосфера – это живое вещество планеты и преобразованное им косное вещество (образованное без участия жизни). Таким образом, это не биологическое, геологическое или географическое понятие, а один из основных структурных компонентов организованности нашей планеты и околоземного космического пространства, сфера, в которой осуществляются биоэнергетические процессы и обмен веществ вследствие деятельности жизни.

Пленка биосферы, окутывающая Землю, очень тонкая. Сегодня принято считать, что в атмосфере микробная жизнь имеет место примерно до высоты 20-22 км над земной поверхностью, а наличие жизни в глубоких океанических впадинах опускает эту границу до 8-11 км ниже уровня моря. Углубление жизни в земную кору много меньше, и микроорганизмы обнаружены при глубинном бурении и в пластовых водах не глубже 2-3 км. Но эта тончайшая пленка покрывает абсолютно всю Землю, не оставляя ни одного места на нашей планете (включая пустыни и ледяные пространства Арктики и Антарктики), где бы не было жизни. Разумеется, количество живого вещества в разных областях биосферы различно. Самое большое его количество расположено в верхних слоях литосферы (почва), гидросферы и нижних слоях атмосферы. По мере углубления в земную кору, океан, выше в атмосферу количество живого вещества уменьшается, но нет резкой границы между биосферой и окружающими ее земными оболочками. И прежде всего нет такой границы в атмосфере, которая делала бы биосферу закрытой для всех космических излучений, а также энергии Солнца. Таким образом, биосфера открыта космосу, купается в потоках космической энергии. Перерабатывая эту энергию, живое вещество преобразует нашу планету. Само образование биосферы, в том числе и происхождение жизни на Земле, является результатом действия этих космических сил, важнейшего фактора функционирования биосферы.

На протяжении многих сотен человеческих поколений взаимодействие человека с окружающей средой заметных изменений в биосфере не вызывало, но все это время шло накопление знаний и сил. Постепенно, используя свое интеллектуальное превосходство над остальными представителями животного мира, человек охватил своей деятельностью всю верхнюю оболочку планеты – всю биосферу. Эта деятельность привела к приручению животных, к выведению культурных растений. Человек стал менять окружающий его мир и создавать для себя новую, не существовавшую никогда на планете живую природу. Под влиянием человеческого труда с момента появления человечества начался и в нарастающем темпе продолжает происходить процесс видоизменения биосферы и ее переход в новое качественное состояние. Естествознанию известны более ранние переходы биосферы в качественно новые состояния, сопровождавшиеся почти полной ее перестройкой. Данный переход представляет собой нечто особенное, ни с чем не сравнимое явление.

Космические излучения и прежде всего энергия Солнца оказывают постоянное действие на все явления на Земле. Связь между циклами солнечной активности и процессами в биосфере была замечена еще в XVIII веке. Тогда английский астроном В. Гершель обратил внимание на связь между урожаями пшеницы и числом солнечных пятен. В конце XIX века профессор Одесского университета Ф. Н. Шведов, изучая срез ствола столетней акации, обнаружил, что толщина годичных колец изменяется каждые 11 лет, как бы повторяя цикличность солнечной активности. Обобщив опыт предшественников, А. Л. Чижевский подвел под эти эмпирические данные твердую научную базу. Он считал, что Солнце диктует ритм большинства биологических процессов на Земле. Когда на нем образуется много пятен, появляются хромосферные вспышки и усиливается яркость короны, на нашей планете разражаются эпидемии, усиливается рост деревьев, особенно сильно размножаются вредители сельского хозяйства и микроорганизмы – возбудители различных болезней. Чижевский отмечал, что самые разнообразные и разнохарактерные явления на Земле – и химические превращения земной коры, и динамика самой планеты и составляющих ее частей, атмо-, гидро- и литосферы, – протекают под непосредственным воздействием Солнца. Солнце является основным (наряду с космическим излучением и энергией радиоактивного распада в недрах Земли) источником энергии, причиной всего на Земле – от легкого ветерка и произрастания растений до ураганов и умственной деятельности человека. Особый интерес представляет утверждение Чижевского, что Солнце существенно влияет не только на биологические, но и на социальные процессы на Земле. Социальные конфликты (войны, бунты, революции), по убеждению Чижевского, во многом предопределяются поведением и активностью нашего светила. По его подсчетам, во время минимальной солнечной активности происходит минимум массовых активных социальных проявлений в обществе (примерно 5%). Во время же пика активности Солнца их число достигает 60%. Эти выводы Чижевского лишь подтверждают неразрывное единство человека и космоса.

Биосфера реагирует на космические факторы весьма избирательным образом. Очевидно, что они составляют необходимую основу ее существования (без солнечной энергии биосфера не могла бы существовать). Но, с другой стороны, если действие космических факторов приобретает запороговое значение, оно очень часто оказывается для живого губительным и крайне редко благоприятно ему. В этом смысле весьма показательно воздействие магнитных бурь как на человека, так и на другие живые организмы. Под влиянием космических факторов ритмика биосферы может быть резко нарушена, что приводит к нежелательным последствиям, в том числе к эпидемиям, пандемиям, и даже полному вымиранию некоторых видов животных и растений.

Решающую роль в функционировании биосферы играют циклы в 24 и 28 часов, 1 год и 11,1 года: 24 часа – время оборота Земли вокруг своей оси; 28 часов – время оборота Солнца вокруг своей оси (период вращения Луны вокруг Земли 27 часов); 1 год – время оборота Земли вокруг Солнца; 11,1 года – средний период солнечной активности. Кроме 11-летнего цикла солнечной активности имеются 22-, 90-, 169-, 600-, 900-летние циклы, а также циклы в 2,65 и 5,5 года (четверть и половина 11-летнего цикла). Вымирание родов морских животных характеризовалось циклом в 26 млн. лет. Видимо, речь опять же идет о цикле солнечной активности.

Множество ритмов жизнедеятельности человека и других животных группируется вокруг 24 и 28 часов. Это так называемые циркадианные ритмы. Для организма человека характерно более сотни циркадианных ритмов. Интересно, что основные ритмы физиологической, эмоциональной и интеллектуальной жизнедеятельности человека различны и составляют соответственно 23, 28 и 33 дня.

Биосфера живет по часам Земли, Луны и Солнца. Но она функционирует также и по своим внутренним биологическим часам, которые выражают специфику не абиотических факторов, а самого живого вещества. Биологическое возникает на базе абиотического. Это означает, что возможно как согласование биологических и абиотических ритмов, так и их рассогласование. Последнее явно нежелательно. Бесспорно, что биосфера и космос едины, что биосфера живет под аккомпанемент абиотического космоса. Но отсюда никак не следует, что специфика биологического должна быть редуцирована к абиотическим космическим факторам. В оценке специфики биосферы космоцентризм неуместен. Законы космоса не могут выразить всю полноту специфики биосферы.

Обсуждение единства биосферы и космоса позволяет оценить вехи изменения представлений человека о своем месте в космическом мироздании. В докоперниковскую эпоху господствовал геоцентризм. Центром космоса признавалась Земля, место обитания человека. Пришедший на смену геоцентризму гелиоцентризм видит в центре мироздания не Землю, а Солнце. С этим фактом приходится считаться при осмыслении природы человечества. Новые успехи наук вынуждают отказаться и от гелиоцентризма, ведь Солнце – рядовая звезда. От гелиоцентризма начинают переходить к космоцентризму. Наука оказывается перед сложнейшей проблемой: как осмыслить космическую судьбу человека.

Резюме

· Биосфера и космос – мегауровни универсума, взаимосвязанные друг с другом.

· Единство биогеосферы и космоса ярко проявляется в единстве их ритмики.

· Для биосферы характерны многочисленные ритмы, то же самое относится и к организму человека.

· Если действие космических факторов на биосферу приобретает запороговое значение, то оно часто оказывается для живого губительным.

· Возможно как согласование, так и рассогласование (что крайне нежелательно) биологических и абиологических ритмов.

· Специфика живого несводима к природе абиотических космических факторов.

· Биосфера – не только геологическая, но и космическая сила.

Вопросы для самопроверки:

  1. Что такое биосфера?

  2. Что вы знаете о концепции Вернадского?

  3. Расскажите о строении биосферы.

  4. Что вы знаете о космических циклах?

Лекция 23. Ноосфера; необратимость времени

Вопросы для рассмотрения: Переход от биосферы к ноосфере. Исследования ученых в области ноосферы. Понятие времени в классической термодинамике. Постулаты Р. Клаузиуса.

Реализация в экономическом исследовании углубления различения причинно-следственной взаимосвязи элементов, характеризующих экономические отношения и процессы, возможна лишь при условии рассмотрения сферы господства разума как неотъемлемой части рационализации экономики. В связи с этим в изучение концепций современного естествознания включено рассмотрение ноосферы как понятия, раскрывающего сущность коллективного сознания.

Переход от биосферы к ноосфере

Превращение разума и труда человечества в геологическую силу планетного масштаба происходило в рамках биосферы, составной частью которой оно является. В.И. Вернадский в своих исследованиях неизменно подчеркивал, какое огромное воздействие человечество оказывает на расширение жизни путем создания новых культурных видов растений и животных. Опираясь на его идеи о биогеохимической основе биосферы, французский математик и философ Эдуар Леруа (1870—1954) ввел в 1927 г. понятие ноосферы, или сферы разума, для характеристики современной геологической стадии развития биосферы. Его позицию разделял также крупнейший французский геолог и палеонтолог Пьер Тейяр де Шарден (1881—1955), впоследствии в своем труде «Феномен человека» определивший ноосферу как одну из стадий эволюции мира. Признавая, что эта стадия, как и сам человек, является результатом тысячелетней истории развития органического мира, он считал движущей силой эволюции целеустремленное сознание («ортогенез»).

В отличие от него В.И. Вернадский рассматривает возникновение сознания как закономерный результат эволюции биосферы, но, однажды возникнув, оно затем начинает оказывать все возрастающее влияние на биосферу благодаря трудовой деятельности человека.

Ноосфера есть новое геологическое явление на нашей планете. В ней впервые человек становится крупнейшей геологической силой. Он может и должен перестраивать своим трудом и мыслью область своей жизни, перестраивать коренным образом по сравнению с тем, что было раньше.1

Первоначальные представления о направленности эволюционного процесса в сторону возникновения мыслящих существ и признании геологической роли человечества высказывались многими учеными и до В.И. Вернадского. Так, уже в XVIII в. известный французский естествоиспытатель Ж.Бюффон высказал идею о царстве человека, которая в XIX в. была развита основателем современной геологии Жаном Луи Агассисом (1807—1873). Хотя эти идеи и опирались на признание все возрастающей роли человечества в изменении лика Земли, но они не были связаны с принципом направленности эволюции живого вещества биосферы.

Этот принцип в качестве эмпирического обобщения выдвинул американский ученый Джеймс Дана (1813—1895), который еще до появления труда Ч.Дарвина впервые четко заявил, что эволюция живого вещества идет в определенном направлении. Основываясь на своих исследованиях ракообразных и моллюсков, Д.Дана пришел к выводу, что на протяжении по крайней мере двух миллиардов лет происходили усовершенствование и рост центральной нервной системы животных, начиная от ракообразных и кончая человеком. Этот процесс он назвал цефализацией, при которой достигнутый уровень организации нервной системы никогда не снижается. Хотя при этом возможны и остановки, и скачки, но направление эволюции не идет вспять. Его последователь Ле Конт, основываясь на принципе направленности эволюции, назвал эру, связанную с появлением на Земле человека, психозойской. Ближе к нашему времени известный русский геолог Алексей Петрович Павлов (1854—1929), оценивая чрезвычайно возросшую роль человечества как мощного геологического фактора, в последние годы жизни настойчиво говорил об антропогенной эре в эволюции биосферы. Подобных высказываний можно было бы привести много, но за немногими исключениями они ограничиваются лишь констатацией разрозненных фактов, не рассматривают их в системе и не дают им теоретического объяснения.

Концепция Вернадского впервые привела все известные эмпирические факты, данные и результаты в единую целостную систему знания, которая убедительно объясняет, какие факторы способствовали переходу от биосферы к ноосфере. Она основывается на признании решающей роли человеческой деятельности, труда и мысли в эволюции биосферы, а через последнюю и в изменении происходящих на Земле геологических процессов и лика Земли в целом. Важно подчеркнуть, что В.И. Вернадский не ограничивается исследованием влияния трудовой, производственной деятельности на процессы, происходящие в биосфере и на земной поверхности. Хорошо сознавая, что труд представляет собой целесообразную деятельность, основанную на мысли и воле, он указывает, что ноосфера, или сфера разума, будет все больше и больше определять не только прогресс общества, но и эволюцию биосферы в целом, а через нее и процессы, совершающиеся на Земле. Недаром он рассматривает мысль как планетарное явление.

Эволюционный процесс получает особое геологическое значение благодаря тому, что он создал новую геологическую силу — научную мысль социального человечества. Под влиянием научной мысли и человеческого труда биосфера переходит в новое состояние — в ноосферу.

Каким же образом человеческая деятельность влияет на процессы в биосфере, как она способствует ее эволюции? Почему именно эта деятельность придает эволюции биосферы направленный характер?

Прежде всего отметим, что биологическая эволюция присуща лишь живому веществу биосферы, т.е. различным видам растений и животных и, разумеется, человеку в той мере, в какой он развивался до возникновения цивилизации и превращения в Homo sapiens (человека разумного). В дальнейшем биологическая эволюция человека переходит в эволюцию социальную.

Эволюция живого вещества биосферы приводит к возникновению новых видов растений и животных, которые, как и остальные виды, неразрывно и непрерывно связаны с окружающей их средой прежде всего питанием и дыханием как наиболее характерными процессами обмена веществ. Такой обмен приводит к миграции, движению атомов от живого вещества к неживому, в особенности к биогенному, в котором живые элементы объединены с неживыми. Нельзя также забывать, что во время эволюции молекулы и атомы живого вещества не остаются неизменными. А все это во многом меняет характер взаимодействия живого вещества биосферы не только с ее неживой частью, но и с остальными сферами оболочки Земли.

В период перехода от биосферы к ноосфере на сцену выступает такой мощный геохимический фактор, как постоянно увеличивающееся количество зеленого живого вещества в биосфере, получаемого посредством расширения посевных площадей и интенсификации земледелия. В результате искусственного отбора новых сортов растений и пород животных значительно ускоряются процессы эволюции, быстрее возникают новые виды. А это, в свою очередь, в еще большей мере способствует ускорению процессов обмена между живым и косным веществом в биосфере.

По-видимому, постепенный переход к ноосфере начался еще сотни тысяч лет назад, когда человек овладел огнем и стал изготовлять первые, весьма несовершенные еще орудия производства и охоты. Благодаря этому он получил огромное преимущество перед животными, но с геологической точки зрения гораздо более важным был длительный процесс приручения диких стадных животных и создания новых сортов культурных растений. Как известно, именно этот процесс положил начало скотоводству и земледелию, которые исторически привели к первому наиболее значительному разделению общественного труда и систематическому обмену его продуктами между разными племенами. В.И. Вернадский указывает:

«Человек этим путем стал менять окружающий его мир и создавать для себя новую, не бывшую никогда на планете живую природу. Огромное значение этого проявилось еще и в другом — в том, что он избавился от голода новым путем, лишь в слабой степени известным животным, — сознательным, творческим обеспечением от голода и, следовательно, нашел возможность неограниченного проявления своего размножения».1

Что же касается борьбы с животными, то человек одержал в ней победу, по существу, с изобретением огнестрельного оружия, и поэтому теперь он должен предпринимать особые меры, чтобы не допустить истребления всех диких животных. Еще большие усилия необходимы для сохранения самой биосферы в связи с многократно возросшими техногенными нагрузками на нее. В связи с этим возникает общая для всего человечества глобальная проблема сохранения окружающей среды, и прежде всего живой природы.2

Различение законов логики, проявляющихся в различных сферах жизнедеятельности человека, приводит к пониманию того, что алгоритм развития накладывает некоторые ограничения на роль времени в динамике различных процессов. Иными словами, планирование экономической деятельности должно быть ориентировано на тот факт, что влияние временного фактора на развитие экономических процессов является необратимым.

НЕОБРАТИМОСТЬ ВРЕМЕНИ
Понятие времени в классической термодинамике

До возникновения термодинамики понятие времени, по существу, отсутствовало в классической физике в том виде, в каком оно рассматривается в реальной жизни и в науках, изучающих процессы, протекающие во времени и имеющие свою историю. Хотя в качестве переменной время входит во все уравнения классической и квантовой механики, тем не менее оно не отражает внутренних изменений, которые происходят в системе. Именно поэтому в уравнениях физики его знак можно менять на обратный, т.е. относить его как к будущему, так и к прошлому.

Положение существенно изменилось после того, как физика вплотную занялась изучением тепловых процессов, законы которых были сформулированы в классической термодинамике. Если прежняя динамика описывала законы движения тел под воздействием внешних сил, сознательно отвлекаясь от внутренних изменений, происходящих в механических системах, то термодинамика вынуждена была исследовать физические процессы при различных преобразованиях тепловой энергии. Однако она не анализирует внутреннего строения термодинамических систем, как это делает статическая физика, рассматривающая теплоту как беспорядочное движение огромного числа молекул.

Термодинамика возникла из обобщения многочисленных фактов, описывающих явления передачи, распространения и превращения тепла. Самым очевидным является тот факт, что распространение тепла представляет собой необратимый процесс. Хорошо известно, например, что теплоту, возникшую в результате трения или выполнения другой механической работы, нельзя снова превратить в энергию и потом использовать для производства работы. Не менее известно, что тепло передается от горячего тела к холодному, а не наоборот.

С другой стороны, путем точных экспериментов было доказано, что тепловая энергия превращается в механическую энергию в строго определенных количествах. Существование такого механического эквивалента для теплоты свидетельствовало о ее сохранении. Все эти многочисленные факты и нашли свое обобщение и теоретическое объяснение в законах - классической термодинамики.

Если к системе подводится теплота Q и над ней производится работа А, то энергия системы возрастает до величины U: U = Q + А.

Эту энергию называют внутренней энергией системы, и она показывает, что теплота, полученная системой, не исчезает, а затрачивается на увеличение внутренней энергии и производство работы, т.е. Q = U—А.

Процесс, единственным результатом которого было бы изъятие теплоты из резервуара, невозможен.

Приведенные формулировки отражают связи, которые существуют между тепловой энергией и полученной за ее счет работой. В первом законе речь идет о сохранении энергии, во втором — о невозможности производства работы исключительно за счет изъятия теплоты из одного резервуара при постоянной температуре. Например, нельзя произвести работу за счет охлаждения озера, моря или иного резервуара при установившейся температуре. Таким образом, второй закон, или начало термодинамики, можно сформулировать проще, как впервые это сделал французский ученый Сади Карно (1796—1832).

Невозможно осуществить процесс, единственным результатом которого было бы превращение теплоты в работу при постоянной температуре.

Иногда этот закон выражают в еще более простой форме.

Теплота не может перетечь самопроизвольно от холодного тела к горячему.

В дальнейшем немецкий физик Рудольф Клаузиус (1822—1888) использовал для формулировки второго закона термодинамики понятие энтропии, которое впоследствии австрийский физик Людвиг Больцман (1844—1906) интерпретировал в терминах изменения порядка в системе. Когда энтропия системы возрастает, то соответственно усиливается беспорядок в системе. В таком случае второй закон термодинамики постулирует:

Энтропия замкнутой системы, т.е. системы, которая не обменивается с окружением ни энергией, ни веществом, постоянно возрастает.

А это означает, что такие системы эволюционируют в сторону увеличения в них беспорядка, хаоса и дезорганизации, пока не достигнут точки термодинамического равновесия, в которой всякое производство работы становится невозможным.

Поскольку об изменении систем в классической термодинамике мы можем судить по увеличению их энтропии, то последняя и выступает в качестве своеобразной стрелы времени. В механических системах ни о каком реальном времени говорить не приходится. Задав в них начальное состояние (координаты и импульсы), можно согласно уравнениям движения как характеристику однозначно определить любое другое их состояние в будущем или прошлом. Поэтому время в них выступает просто как параметр, знак которого можно менять на обратный, и, таким образом, вернуться к первоначальному состоянию системы. Ничего подобного не встречается в термодинамических процессах, которые являются необратимыми по своей природе.

Термодинамика впервые ввела в физику понятие времени в весьма своеобразной форме, а именно необратимого процесса возрастания энтропии в системе. Чем выше энтропия системы, тем больший временной промежуток прошла система в своей эволюции.

Очевидно, что такое понятие о времени, и особенно об эволюции системы, коренным образом отличается от понятия эволюции, которое лежало в основе теории Дарвина. В то время, как в дарвиновской теории происхождения новых видов растений и животных путем естественного отбора эволюция направлена на выживание более совершенных организмов и усложнение их организации, в термодинамике эволюция связывалась с дезорганизацией систем. Это противоречие оставалось неразрешенным вплоть до 60-х гг. нашего века, пока не появилась новая, неравновесная термодинамика, которая опирается на концепцию термодинамики необратимых процессов.

Классическая термодинамика оказалась неспособной решить и космологические проблемы характера процессов, происходящих во Вселенной. Первую попытку распространить законы термодинамики на Вселенную предпринял один из основателей этой теории — Р.Клаузиус, выдвинувший два постулата:

- энергия Вселенной всегда постоянна;

- энтропия Вселенной всегда возрастает.

Если принять второй постулат, то необходимо признать, что все процессы во Вселенной направлены в сторону достижения состояния термодинамического равновесия, соответствующего максимуму энтропии, а следовательно, состояния, характеризуемого наибольшей степенью хаоса, беспорядка и дезорганизации. В таком случае во Вселенной наступит тепловая смерть и никакой полезной работы в ней произвести будет нельзя. Такие мрачные прогнозы встретили критику со стороны ряда выдающихся ученых и философов, но в середине прошлого века было еще мало научных аргументов для опровержения мнения Р.Клаузиуса и обоснования альтернативного взгляда. Некоторые авторы предполагали, что наряду с энтропийными процессами в природе происходят антиэнтропийные процессы, которые препятствуют наступлению «тепловой смерти» во Вселенной. Другие высказывали сомнение в правомерности распространения понятий термодинамики, в частности энтропии, с отдельных систем на Вселенную в целом. Но только единицы догадывались, что само понятие закрытой, или изолированной, системы является далеко идущей абстракцией, не отражающей реального характера систем, которые встречаются в природе.1

Фиксация концепций естествознания, предусматривающих в своем содержании воспроизведение алгоритмов экономического развития, позволяет провести исследование углубления причинно-следственных взаимосвязей в исследуемом экономическом явлении на основе выявления аналогичных алгоритмов самоорганизации элементов в живой и неживой природе.
1   ...   15   16   17   18   19   20   21   22   23

Похожие:

Учебно-методический комплекс дисциплины «Концепции современного естествознания» iconУчебно-методический комплекс по дисциплине Концепции современного...
Учебно-методический комплекс по дисциплине «Концепции современного естествознания» составлен в соответствии с требованиями Государственного...
Учебно-методический комплекс дисциплины «Концепции современного естествознания» iconУчебно-методический комплекс на модульной основе дисциплины «концепции...
Целью курса «Концепции современного естествознания» является обеспечение фундаментальности и целостности высшего образования, что,...
Учебно-методический комплекс дисциплины «Концепции современного естествознания» iconПояснительная записка требования гос к уровню знаний, умений и навыков,...
Т. В. Сазанова. Концепции современного естествознания: Учебно-методический комплекс. Рабочая программа для студентов озо специальности...
Учебно-методический комплекс дисциплины «Концепции современного естествознания» iconРабочая программа составлена в соответствии с требованиями гос впо...
Дубов В. П. Концепции современного естествознания. Учебно-методический комплекс. Рабочая программа для студентов специальности 032001....
Учебно-методический комплекс дисциплины «Концепции современного естествознания» iconУчебно-методический комплекс дисциплины «Концепции современного естествознания»
Учебно-методический комплекс составлен на основании требований государственного образовательного стандарта высшего профессионального...
Учебно-методический комплекс дисциплины «Концепции современного естествознания» iconУчебно-методический комплекс дисциплины «концепции современного естествознания»
Учебно-методический комплекс составлен в соответствии с требованиями государственного образовательного стандарта высшего профессионального...
Учебно-методический комплекс дисциплины «Концепции современного естествознания» iconУчебно-методический комплекс дисциплины «концепции современного естествознания»
Учебно-методический комплекс составлен в соответствии с требованиями государственного образовательного стандарта высшего профессионального...
Учебно-методический комплекс дисциплины «Концепции современного естествознания» iconУчебно-методический комплекс дисциплины «концепции современного естествознания»
Учебно-методический комплекс составлен в соответствии с требованиями государственного образовательного стандарта высшего профессионального...
Учебно-методический комплекс дисциплины «Концепции современного естествознания» iconУчебно-методический комплекс дисциплины «концепции современного естествознания»
Учебно-методический комплекс составлен в соответствии с требованиями государственного образовательного стандарта высшего профессионального...
Учебно-методический комплекс дисциплины «Концепции современного естествознания» iconУчебно-методический комплекс дисциплины «концепции современного естествознания»
Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего...
Учебно-методический комплекс дисциплины «Концепции современного естествознания» iconУчебно-методический комплекс дисциплины
Протокол согласования рабочей программы дисциплины «Концепции современного естествознания»
Учебно-методический комплекс дисциплины «Концепции современного естествознания» iconУчебно-методический комплекс дисциплины концепции современного естествознания...
...
Учебно-методический комплекс дисциплины «Концепции современного естествознания» iconУчебно-методический комплекс дисциплины «концепции современного естествознания»
Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего...
Учебно-методический комплекс дисциплины «Концепции современного естествознания» iconУчебно-методический комплекс дисциплины «концепции современного естествознания»
Учебно-методический комплекс составлен в соответствии с требованиями государственного образовательного стандарта высшего профессионального...
Учебно-методический комплекс дисциплины «Концепции современного естествознания» iconУчебно-методический комплекс дисциплины «Концепции современного естествознания»
Контрольный экземпляр находится на кафедре биохимии, микробиологии и биотехнологии
Учебно-методический комплекс дисциплины «Концепции современного естествознания» iconРабочая программа дисциплины концепции современного естествознания...
Рабочая программа учебной дисциплины «Концепции современного естествознания» подготовлена Голигузовым Д. В., к ф н., доцентом кафедры...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск