Геометрические преобразования





Скачать 446.24 Kb.
НазваниеГеометрические преобразования
страница3/4
Дата публикации26.03.2015
Размер446.24 Kb.
ТипРеферат
100-bal.ru > Военное дело > Реферат
1   2   3   4
Часть IV. Проективные преобразования.
1. Проективные преобразования плоскости.
Определение. Проективная плоскостьобычная (евклидова) плоскость, дополненная бесконечно удаленными точками и бесконечно удаленной прямой, называемыми также несобственными элементами. При этом каждая прямая дополняется одной несобственной точкой, вся плоскость – одной несобственной прямой; параллельные прямые дополняются общей несобственной точкой, непараллельные – разными; несобственные точки, дополняющие всевозможные прямые плоскости, принадлежат несобственной прямой.
Определение. Преобразование проективной плоскости, переводящее любую прямую в прямую, называется проективным.
Следствие. Проективное преобразование, сохраняющее бесконечно удалённую прямую является аффинным; любое аффинное преобразование является проективным, сохраняющим бесконечно удалённую прямую.
Определение. Центральным проектированием плоскости α на плоскость β с центром в точке О, не лежащей на этих плоскостях, называется отображение, которое любой точке А плоскости α ставит в соответствие точку А´ пересечения прямой ОА с плоскостью β.

При этом, если плоскости α и β не параллельны, то в плоскости α найдётся прямая ℓ такая, что плоскость, проходящая через точку О и прямую ℓ, параллельна плоскости β. Будем считать, что ℓ при нашем проектировании переходит в бесконечно удалённую прямую плоскости β (при этом каждая точка B прямой ℓ переходит в ту точку бесконечно удалённой прямой, что дополняет прямые параллельные ОВ). В плоскости β найдётся прямая ℓ´ такая, что плоскость, проходящая через точку О и прямую ℓ´, параллельна плоскости α. Будем считать ℓ´ образом бесконечно удалённой прямой плоскости α. Прямые ℓ и ℓ´ будем называть выделенными.

Мы можем говорить, что задано просто преобразование проективной плоскости (если совместить плоскости α и β).
Из определения сразу вытекают свойства центральной проекции:

  1. Центральное проектирование – проективное преобразование.

  2. Обратное к центральному проектированию преобразование – центральное проектирование с тем же центром.

  3. Прямые, параллельные выделенным, переходят в параллельные.


Определение. Пусть точки А, В, С, D лежат на одной прямой. Двойным отношением (АВ; СD) этих точек называется величина . Если одна из точек является бесконечно удалённой, то длины отрезков, концом которых является эта точка, можно сократить.
Теорема 1.1. Центральная проекция сохраняет двойные отношения.
Доказательство. Пусть О – центр проектирования, А, В, С, D – четыре точки, лежащие на одной прямой, A´, B´, C´, D´ – их образы.

Тогда .

Аналогично .

Поделив одно равенство на другое, получим .

Аналогично, вместо точки С рассматривая точку D, получим .

Отсюда , т.е. .

Чтобы доказательство было полным, осталось заметить, что все отрезки, площади и углы можно считать ориентированными.
Теорема 1.2. Пусть даны четыре точки A, B, C, D плоскости π, не лежащие на одной прямой, и четыре точки M, N, P, Q плоскости π´, не лежащие на одной прямой. Тогда существует композиция центральной (параллельной) проекции и подобия, переводящая A в M, В в N, С в Р, D в Q.
Доказательство.

Будем для удобства говорить, что ABCD и MNPQ – четырёхугольники, хотя на самом деле это не обязательно (например, могут пересекаться отрезки АВ и CD). Из доказательства будет видно, что мы нигде не используем, что точки A, В, С, D и M, N, P, Q в указанном порядке образуют четырёхугольники.

I. Если наши четырёхугольники – трапеции (АD||BC и MQ||NP), то доказательство совсем простое. Рассмотрим четырёхугольник A´B´C´D´, подобный четырёхугольнику MNPQ, такой, что AD=A´D´. Расположим плоскости π и π´ так, чтобы совпали точки А с А´ и D с D´. Теперь, если , то нужный нам результат даст центральная проекция с центром О (см. рис.), а если ВВ´||CC´, то нужный нам результат даст параллельная проекция с направлением ВВ´.



II. Теперь докажем утверждение, если четырёхугольники произвольные. Пусть , . Отметим точки Х1, Х2, Z1, Z2 на прямых АВ, CD, MN, PQ соответственно так, что

; ; ; .

Проведём теперь через точки A, B, C, D прямые АK, BL, CF, DG, параллельные X1X2 (K, L лежат на DC; G, F – на АВ), а через точки N, M – прямые NT, MS, параллельные Y1Y2 (T, S лежат на PQ). Переведём центральной (параллельной) проекцией f трапецию АВLK в трапецию А´В´L´K´ плоскости π´, подобную трапеции MNTS (это возможно по части I нашего доказательства). При этом из выбора точек Х1, Х2 следует, что прямая Х1Х2 – выделенная прямая плоскости π´. Отметим на прямой L´K´ точки С´, D´ такие, что трапеция ABCD подобна трапеции A´B´C´D´. Проведём прямые C´F´, D´G´, параллельные прямой B´L´ (F´, G´ лежат на А´В´), и отметим на прямой А´В´ точку Y1´ такую, что , . На прямой C´D´ отметим точку Y2´ такую, что Y1´Y2´||A´K´ (см. рис.). Из выбора точек Y1´ и Y2´ следует, что прямая Y1´Y2´ – выделенная прямая плоскости π´. При преобразовании f точка Е переходит в точку Е´ пересечения прямых A´B´ и L´K´. Точка С переходит в некоторую точку С0´ прямой С´D´.



Докажем, что С0 совпадает с С´. Из того, что Х2 при преобразовании f переходит в бесконечно удалённую точку прямой C´D´, а Y2´ - образ бесконечно удалённой точки прямой CD и центральная проекция сохраняет двойные отношения, следует, что , откуда . Теперь рассмотрим преобразование g, композицию центральной проекции и подобия, переводящее трапецию CDGF в трапецию C´D´G´F´. Для преобразования g аналогично можно показать, что . Отсюда будет следовать, что точки С0 и С´ совпадают. Аналогично можно показать, что D0 – образ точки D при преобразовании f – совпадает с D´. Итак, преобразование f переводит четырёхугольник ABCD в четырёхугольник A´B´C´D´, подобный четырёхугольнику MNPQ, что и требовалось.
Теорема 1.3. Пусть даны четвёрки точек, из которых никакие три не лежат на одной прямой: A, B, C, D и A´, B´, C´, D´. Тогда существует единственное проективное преобразование, переводящее А в А´, В в В´, С в С´, D в D´.
Существование такого преобразования следует из теоремы 1.1.

Единственность можно доказывать так же, как и единственность аффинного преобразования (теорема 1.1, часть III): рассматривать квадратную решётку, строить её образ, а затем измельчать. Обойти те трудности, с которыми мы столкнулись при доказательстве аффинной теоремы, нам опять не удастся.
Из теорем 1.1, 1.2, 1.3 сразу следуют некоторые важные утверждения:

Следствия.

  1. Любое проективное преобразование является композицией центральной (параллельной) проекции и подобия.

  2. Проективное преобразование сохраняет двойные отношения.


Задача 1.

Даны две прямые a и b и не лежащая на них точка Р. Через Р проводятся различные пары прямых, пересекающих прямые a и b в точках А, С и B, D соответственно. М – точка пересечения AD и ВС. Доказать, что все такие точки М лежат на одной прямой, проходящей через точку пересечения прямых a и b.

Решение.

Пусть О – точка пересечения прямых a и b. Переведём прямую ОР в бесконечно удалённую. Тогда четырёхугольник ABDC будет параллелограммом; М, точка пересечения его диагоналей, будет лежать на прямой, параллельной прямым a и b и отстоящей от них на равные расстояния.
Задача 2.

Можно ли окрасить 2006 точек плоскости в красный цвет и 1003 – в синий так, чтобы любая прямая, проходящая через две точки разных цветов, содержала ещё одну из окрашенных точек и все окрашенные точки не лежали на одной прямой.

Решение.

Рассмотрим проективную плоскость и правильный 2006-угольник на ней. Все вершины 2006-угольника покрасим в красный цвет, а точки пересечения сторон с бесконечно удалённой прямой покрасим в синий цвет. Легко проверить, что этот набор точек обладает требуемым свойством. Осталось лишь сделать проективное преобразование так, чтобы на бесконечно удалённой прямой не осталось отмеченных точек…

Ответ: можно.
Теорема 1.4. Дана окружность и точка M внутри неё. Существует центральная проекция, при которой данная окружность переходит в окружность, а точка M – в её центр.
Доказательство. Пусть АВ – тот диаметр нашей окружности, на котором лежит точка M. Рассмотрим косой круговой конус, основанием которого является наша окружность, а вершиной такая точка О, что . На прямых ОА и ОВ за точку О отложим точки В´ и А´ соответственно так, что ОВ=ОВ´ и ОА=ОА´:



Пусть С´ – середина А´В´ и . Применяя теорему синусов к треугольникам ОАС, ОВС, ОВ´С´ и ОС´А´, нетрудно получить соотношение , т.е. точка С в точности совпадает с точкой М. Теперь осталось заметить, что из соображений симметрии сечение нашего конуса плоскостью α, проходящей через прямую А´В´ перпендикулярно плоскости (АОВ), является окружностью, поэтому центральная проекция с центром О на плоскость α является искомой.

Из доказательства этой теоремы следует также

Теорема 1.5: Любое проективное преобразование сохраняет какую-то окружность.
Теорема 1.6. Дана окружность и не пересекающая её прямая ℓ. Существует проективное преобразование, переводящее данную окружность в окружность, а ℓ – в бесконечно удалённую прямую.
Доказательство. Пусть А, В – произвольные точки прямой ℓ, АK, AL, BM, BN – касательные к окружности из точек А и В, . По теореме 1.4 существует преобразование, сохраняющее нашу окружность, переводящее Р в её центр. При этом преобразовании отрезки KL и MN перейдут в диаметры окружности, поэтому А и В перейдут в бесконечно удалённые точки, а ℓ - в бесконечно удалённую прямую.
Задача 3.

Доказать, что прямые, соединяющие вершины треугольника с точками касания противоположных сторон и вписанной окружности, пересекаются в одной точке.

Решение.

Пусть АВС – наш треугольник, А´, В´, С´ – точки касания вписанной окружности со сторонами треугольника, . Проведём проективное преобразование, сохраняющее вписанную окружность и переводящее точку Т в её центр. Тогда AA´ и ВВ´ станут одновременно и высотами, и биссектрисами треугольника АВС, т.е. треугольник АВС перейдёт в правильный, а точка Т – в его центр. Значит СС´ проходит через Т.
2. Проективные теоремы.
Ниже приводятся известные теоремы геометрии, которые легко доказываются применением проективного преобразования:
Теорема 2.1. (теорема Дезарга) Если прямые, содержащие соответственные стороны треугольников ABC и A´B´C´ (т.е. AB и A´B´, BC и B´C´, AC и A´C´), пересекаются в точках P, Q, R лежащих на одной прямой ℓ, то прямые, соединяющие соответственные вершины этих треугольников, пересекаются в одной точке.
Теорема 2.2. (теорема Паппа) Если точки А, В, С лежат на прямой ℓ, точки А´, В´, С´ - на прямой ℓ´, то точки P, Q, R пересечения прямых АВ´ и А´В, АС´ и А´С, ВС´ и В´С соответственно лежат на одной прямой.
Теорема 2.3. (теорема Паскаля) Точки пересечения противоположных сторон вписанного шестиугольника лежат на одной прямой.
Теорема 2.4. (теорема Брианшона) Главные диагонали описанного шестиугольника пересекаются в одной точке.
Не будем подробно проводить доказательство этих теорем, покажем лишь, какое преобразование сводит каждую из этих задач к очевидной:

Теорема 2.1 – проективное преобразование, переводящее прямую ℓ в бесконечно удалённую;

Теорема 2.2 – проективное преобразование, переводящее прямую PQ в бесконечно удалённую;

Теорема 2.3 – проективное преобразование, сохраняющее описанную окружность, переводящее прямую PQ в бесконечно удалённую, где P, Q – точки пересечения двух пар противоположных сторон шестиугольника;

Теорема 2.4 – проективное преобразование, сохраняющее вписанную окружность, переводящее точку пересечения двух диагоналей в центр этой окружности.
3. Полярное соответствие, принцип двойственности.
Определение. Полярное соответствие на плоскости относительно окружности с центром О и радиусом r ставит в соответствие каждой точке А, отличной от О, прямую а, перпендикулярную ОА и пересекающую луч ОА в такой точке А´, что . Прямая а называется полярой точки А, а точка А – полюсом прямой а. Полярой точки О является бесконечно удалённая прямая, а полярой бесконечно удалённой точки – прямая, содержащая диаметр, перпендикулярный проходящим через неё параллельным прямым.
Свойства.

  1. Если точка В лежит на поляре а точки А, то её поляра проходит через А.

  2. Полюс прямой является пересечением поляр всех её точек.

  3. Поляра точки является геометрическим местом полюсов всех проходящих через эту точку прямых.

  4. Полярой точки А, лежащей вне окружности, будет прямая, соединяющая точки касания окружности с касательными, проведёнными к ней из точки А.

  5. Если проективное преобразование сохраняет данную окружность и переводит точку А в А´, то поляра а точки А переходит в поляру а´ точки А´.


Первое свойство является очевидным, а каждое следующее свойство сразу вытекает из предыдущих.
Следствие. (принцип двойственности) Пусть доказано некоторое проективное утверждение. Тогда верным будет и утверждение, полученное из доказанного взаимной заменой следующих терминов:

(точка)↔(прямая)

(лежать на прямой)↔(проходить через точку)

(лежать на окружности)↔(касаться окружности)
Двойственны, например, теоремы Паскаля и Брианшона.
Теорема 3.1. (теорема обратная теореме Дезарга) Если прямые, соединяющие соответственные вершины треугольников ABC и A´B´C´, пересекаются в одной точке, то прямые, содержащие соответственные стороны этих треугольников, пересекаются в точках, лежащих на одной прямой.
Доказательство. Эта теорема двойственна теореме 2.1. (теореме Дезарга).

1   2   3   4

Похожие:

Геометрические преобразования iconТемы Вашего учебного проекта
И они не догадываются что геометрические формы находят свое отражение практически во всех отраслях знаний: архитектура, искусство,...
Геометрические преобразования iconРеферат Геометрические фракталы
Целью моего реферата является знакомство с фракталами. Центральным предметом изучения являются фракталы геометрические. Вопрос, который...
Геометрические преобразования iconПрограмма по формированию навыков безопасного поведения на дорогах...
Применять на практике: проводить моделирование в среде графического редактора; создавать меню типовых мозаичных форм; создавать геометрические...
Геометрические преобразования iconПрограмма вступительного экзамена в аспирантуру ики ран по специальности...
Инерциальные и неинерциальные системы отсчета. Законы Ньютона. Экспериментальные основы теории относительности. Принцип относительности...
Геометрические преобразования iconРабочая программа по учебной дисциплине Устройства преобразования и обработки
Рабочая программа дисциплины «Устройства преобразования и обработки информации (упои)»
Геометрические преобразования iconРеферат статьи «Новая интерпретация преобразования Лоренца»
Реферат статьи «Новая интерпретация преобразования Лоренца», авторы Корнева М. В., Кулигин В. А., Кулигина Г. А. (исследовательская...
Геометрические преобразования iconМашина постоянного тока электрическая машина для преобразования механической...
Машина постоянного тока — электрическая машина для преобразования механической энергии в электрическую постоянного тока (генератор)...
Геометрические преобразования icon«Сопряжение»
Данный урок является продолжением темы: «Геометрические построения, необходимые при выполнении чертежей»
Геометрические преобразования iconРеферат Отчет: «Развитие культуры позитивного восприятия изменений...
Содержание деятельности и результаты мероприятия 1: «Развитие культуры позитивного восприятия изменений рекреационной среды через...
Геометрические преобразования iconАнализ посещенного урока
Наименование прорабатываемой на занятиях темы геометрические построения и правила вычерчивания контуров технических деталей
Геометрические преобразования iconАнализ посещенного урока
Наименование прорабатываемой на занятиях темы Геометрические построения и правила вычерчивания контуров технических деталей
Геометрические преобразования iconРешение задачи электронной томографии на основе сверхмасштабируемого...

Геометрические преобразования iconРуководство по лётной эксплуатации самолёта як-52 Москва, 2001
Основные геометрические, регулировочные весовые и центровочные данные самолета 42
Геометрические преобразования iconПрограмма по формированию навыков безопасного поведения на дорогах...
Оборудование: геометрические фигуры, числовой ряд от 1 до 10, клей, цветной картон
Геометрические преобразования iconСпособ мамаева а. И. Преобразования химической энергии в электрическую...

Геометрические преобразования iconПреобразования графиков функций
Муниципальное общеобразовательное учреждение зато северск «средняя общеобразовательная школа №87»


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск