Владимир Фролов Эндогенное дыхание медицина третьего тысячелетия





НазваниеВладимир Фролов Эндогенное дыхание медицина третьего тысячелетия
страница5/35
Дата публикации20.08.2013
Размер3.39 Mb.
ТипДокументы
100-bal.ru > Биология > Документы
1   2   3   4   5   6   7   8   9   ...   35

8. Клетка и энергия

Когда знакомишься с фундаментальными трудами человечества, нередко ловишь себя на мысли, что с развитием науки вопросов становится больше, чем ответов. В 80-х и 90-х годах молекулярная биология и генетика расширили представле-ние о клетках и клеточном взаимодействии. Был выделен целый класс клеточных факторов, которые регулируют межкле-точное взаимодействие. Это имеет важное значение для понимания функционирования многоклеточного человеческого организма и особенно клеток иммунной системы. Но с каждым годом биологи открывают все больше подобных межклеточ-ных факторов и все трудней воссоздать картину целостного организма. Таким образом, вопросов возникает больше, чем появляется ответов.

Неисчерпаемость человеческого организма и ограниченные возможности его изучения приводят к выводу о необходимос-ти ближайших и последующих приоритетов исследований. Таким приоритетом на сегодняшний день является энергетика клеток живого человеческого организма. Недостаточные знания об энергопроизводстве и об энергообмене клеток в организме становится препятствием для серьезных научных исследований.

Клетка является основной структурной единицей организма: все органы и ткани состоят из клеток. Трудно рассчитывать на успех лекарственных средств или немедикаментозных методов, если они разрабатываются без достаточных знаний об энергетике клеток и межклеточном энергетическом взаимодействии. Можно привести достаточно примеров, когда широко используемые и рекомендуемые средства наносят вред здоровью.

Господствующим в здравоохранении является субстанционный подход. Субстанция — вещество. Логика врачевания предельно простая: обеспечить организм необходимыми веществами (вода, пища, витамины, микроэлементы, а при необходимости лекарства) и вывести из организма продукты обмена (экскременты, избыточные жиры, соли, токсины и т. д.). Экспансия лекарственных средств продолжает торжествовать. Новые поколения людей во многих странах становятся добровольными участниками широкомасштабного эксперимента. Индустрия лекарств требует новых больных. Тем не менее, здоровых людей становится все меньше и меньше.

У создателя популярного справочника по лекарственным средствам как-то спросили о том, сколько лекарств ему лично пришлось опробовать. Ни одного — был ответ. По-видимому, этот умный человек имел блестящие знания о биохимии клетки и умел с пользой применять эти знания в жизни.

Представьте себе миниатюрную частичку живой материи, в форме эллипсоида, диска, шара, примерно 8-15 микрон (мкм) в поперечнике, одновременно являющуюся сложнейшей саморегулирующейся системой. Обычную живую клетку называют дифференцированной, как бы подчеркивая, что множество элементов, входящих в её состав, четко разделены относительно друг друга. Понятие «недифференцированная клетка», как правило, принадлежит видоизмененной, например, раковой клетке. Дифференцированные клетки отличаются не только строением, внутренним обменом, но и специализацией, например, почечные, печеночные, сердечные клетки.

В общем случае клетка состоит из трех компонентов: клеточной оболочки, цитоплазмы, ядра. В состав клеточной оболоч-ки, как правило, входит трех-, четырехслойная мембрана и наружная оболочка. Два слоя мембраны состоят из липидов (жиров), основную часть которых составляют ненасыщенные жиры — фосфолипиды. Мембрана клетки имеет весьма сложное строение и многообразные функции. Разность потенциалов по обе стороны мембраны может составлять несколько сотен милливольт. Наружная поверхность мембраны содержит отрицательный электрический заряд.

Как правило, клетка имеет одно ядро. Хотя есть клетки, у которых два ядра и более. Функция ядра заключается в хранении и передаче наследственной информации, например, при делении клетки, а также в управлении всеми физиологи-ческими процессами в клетке. В ядре содержатся молекулы ДНК, несущие генетический код клетки. Ядро заключено в двухслойную мембрану.

Цитоплазма составляет основную массу клетки и представляет собой клеточную жидкость с расположенными в ней органеллами и включениями. Органеллы — постоянные компоненты цитоплазмы, выполняющие специфические важные функции. Из них нас больше всего интересуют митохондрии, которые иногда называют электростанциями клетки. Каждая митохондрия имеет две мембранные системы: наружную и внутреннюю. Наружная мембрана гладкая, в ней поровну предс-тавлены липиды и белки. Внутренняя мембрана принадлежит к наиболее сложным типам мембранных систем человеческо-го организма. В ней множество складок, называемых гребешками (кристами), за счет которых мембранная поверхность существенно увеличивается. Можно представить эту мембрану в виде множества грибовидных выростов, направленных во внутреннее пространство митохондрии. На одну митохондрию приходится 10 в 4-10 в 5 степени таких выростов.

Кроме того, во внутренней митохондриальной мембране присутствует ещё 50-60 ферментов, общее число молекул разных типов достигает 80. Все это необходимо для химического окисления и энергетического обмена. Среди физических свойств этой мембраны следует отметить высокое электрическое сопротивление, что характерно для так называемых сопрягаю-щих мембран, способных аккумулировать энергию подобно хорошему конденсатору. Разность потенциалов по обе стороны внутренней митохондриальной мембраны составляет около 200-250 мВ.

Можно представить, насколько сложна клетка, если, например, печеночная клетка гепатоцит содержит около 2000 митохондрий. Но ведь в клетке множество и других органелл, сотни ферментов, гормонов и других сложных веществ. Каждая органелла имеет свой набор веществ, в ней осуществляются определенные физические, химические и биохимичес-кие процессы. В таком же динамическом состоянии находятся вещества в цитоплазматическом пространстве, они беспре-рывно обмениваются с органеллами и с внешним окружением клетки через её мембрану.

Прошу прощения у Читателя — неспециалиста за технические детали, но эти представления о клетке полезно знать каждому человеку, желающему быть здоровым. Мы должны восхищаться этим чудом природы и одновременно учитывать слабые стороны клетки, когда занимаемся лечением. Мне доводилось наблюдать, когда обычный анальгин приводил к отекам тканей у молодого здорового человека. Поражает, как не задумываясь, с какой легкостью иные глотают таблетки!

Представления о сложности клеточного функционирования будут не полными, если мы не расскажем об энергетике клеток. Энергия в клетке тратится на выполнение различной работы: механическую — движение жидкости, движение органелл; химическую — синтез сложных органических веществ; электрическую — создание разности электрических потенциа-лов на плазматических мембранах; осмотическую — транспорт веществ внутрь клетки и обратно. Не ставя перед собой задачу перечислить все процессы, ограничимся известным утверждением: без достаточного обеспечения энергией не может быть достигнуто полноценное функционирование клетки.

Откуда клетка получает необходимую ей энергию? Согласно научным теориям химическая энергия питательных веществ (углеводов, жиров, белков) превращается в энергию макроэргических (содержащих много энергии) связей аденозинтрифос-фата (АТФ). Эти процессы осуществляются в митохондриях клеток преимущественно в цикле трикарбоновых кислот (цикл Кребса) и при окислительном фосфорилировании. Запасенная в АТФ энергия легко освобождается при разрыве макроэрги-ческих связей, в результате обеспечиваются энергозатраты в организме.

Однако эти представления не позволяют дать объективную оценку количественных и качественных характеристик энергообеспечения и энергообмена в тканях, а также состояния энергетики клеток и межклеточного взаимодействия. Следует обратить внимание на важнейший вопрос (Г. Н. Петракович), на который не может ответить традиционная теория: за счет каких факторов осуществляется межклеточное взаимодействие? Ведь АТФ образуется и расходуется, выделяя энергию, внутри митохондрии.

Между тем, имеется достаточно оснований сомневаться в благополучии энергообеспечения органов, тканей, клеток. Можно даже прямо утверждать, что человек в этом отношении весьма не совершенен. Об этом свидетельствует уста-лость, которую ежедневно многие испытывают, и которая начинает досаждать человеку с детского возраста.

Проведенные расчеты показывают, что если бы энергия в человеческом организме производилась за счет указанных процессов (цикл Кребса и окислительное фосфорилирование), то при малой нагрузке энергетический дефицит составлял бы 30-50%, а при большой нагрузке — более 90%. Это подтверждают исследования американских ученых, которые пришли к выводу о недостаточном функционировании митохондрий в плане обеспечения человека энергией.

Вопросы об энергетике клеток и тканей возможно ещё долго оставались бы на обочине дороги, по которой медленно движется теоретическая и практическая медицина, если бы не произошли два события. Речь идет о Новой гипотезе дыхания и открытии Эндогенного Дыхания.

9. Новая гипотеза о дыхании

В 1992 году в журнале «Русская мысль» № 2 появилась статья Г. Н. Петраковича «Свободные радикалы против аксиом. Новая гипотеза о дыхании».

Автор статьи, московский врач-хирург и талантливый ученый, излагает совершенно новые представления о, казалось бы, всем известном дыхании и связанными с ним обменными процессами в организме.

Что же нового увидел Г. Н. Петракович в нашем «очень изученном» организме? Ответ на этот вопрос может быть коротко сформулирован в трех положениях:

— клетки обеспечивают свои потребности в энергии и кислороде за счет реакции свободно-радикального окисления ненасыщенных жирных кислот их мембран;

— побуждение клеток к указанной реакции и, следовательно, к активной работе осуществляют эритроциты крови за счет передачи им электронного возбуждения;

— электронное возбуждение эритроцитов крови осуществляется в капиллярах альвеол за счет энергии реакции углеводородов тканей с кислородом воздуха, которая протекает по механизму горения.

Первое положение буквально переворачивает наши обычные представления. Кислород не доставляется клетке кровью, а вырабатывается в ней. Аденозинтрифосфат (АТФ) и процессы, его обеспечивающие, отодвигаются на второй план. И все это благодаря протекающим в клетках процессам неферментативного свободнорадикального окисления ненасыщенных жирных кислот, являющихся главной составной частью мембран клеток. Выходит, наука просмотрела и по достоинству не оценила роль этого феномена в организме. Между тем, биохимикам свободно-радикальное окисление липидов (жиров) мембран клеток известно давно. Однако, оно представляется в обмене в основном как сопутствующий, в определенной мере повреждающий процесс, интенсивность которого должна ограничиваться. Имеются и другие взгляды на роль свободно-радикального окисления.

Ученые утверждают, что процесс свободно-радикального окисления в тканях живых организмов осуществляется непрерывно во всех молекулярных структурах за счет действия естественного фона ионизирующей радиации, ультрафиолетовой компоненты солнечного излучения, некоторых химических компонентов пищевого рациона, озона воздуха.

Таким образом, свободно-радикальное окисление с той или иной интенсивностью постоянно осуществляется в тканях организма. Этому способствует наличие кислорода и металлов с переменной валентностью, прежде всего железа, меди, имеющихся в тканях.

Энергия свободно-радикального окисления выделяется в виде тепла и в виде электронного возбуждения. В результате ряд продуктов свободно-радикального окисления — кислород, кетоны, альдегиды создаются с возбужденными электронными уровнями, т. е. готовы активно передавать энергию. К продуктам свободно-радикального окисления относится также всем известный этиловый спирт. Попутно следует заметить, что степень обеспечения этим продуктом организма находится в зависимости от интенсивности свободно-радикального окисления.

Таким образом, уровень свободно-радикального окисления липидов мембран клеток в нашем организме является суммой трех составляющих, вызываемых средой обитания, дыханием и приемом специальных продуктов питания.

Как Вы уже догадались, что доля свободно-радикального окисления, вызываемого дыханием, как правило, имеет наибольшее значение (среди других), иначе человек не был бы столь зависим от дыхания.

Г. Н. Петракович показал, что основная роль в обеспечении энергообменных процессов принадлежит не АТФ, а тесно связанным с процессами свободно-радикального окисления сверхвысокочастотному электромагнитному полю и ионизирую-щему протонному излучению. Эти идеи он развил в работе «Биополе без тайн».

По Петраковичу, в каждой клетке (в митохондриях), в том числе в эритроците (в гемоглобине), имеется около 400 миллио-нов субъединиц, объединяющих 4 атома железа с переменной валентностью Fe 2

= Fe 3+. Эти стабильные структуры или, как их называет Г. Н. Петракович, «электромагнитики», присущие только живой природе, принимают непосредственное участие в свободно-радикальном окислении.

Электронные «перескоки» между двух-и трехвалентными атомами железа создают сверхвысокочастотное электромагнит-ное поле митохондрии, клетки, являющееся источником энергозатратных и энергообменных процессов. Вот как описывает-ся автором этот процесс: «Итак, цепи постоянного тока — «цепи переноса электронов» — в митохондрии нет. Что тогда есть?

А есть стремительное, с огромной скоростью, равной скорости смены Г валентности в атоме железа, входящего в состав электромагнитика, передвижение — «перескок» выхваченного из субстрата ненасыщенной жирной кислоты электрона и «собственного» в пределах одного и того же электромагнитика. Каждое такое перемещение электрона порождает электри-ческий ток с образованием вокруг него, по законам физики, электромагнитного поля. Направление движения электронов в таком электромагнитике непредсказуемо, поэтому они могут порождать своими перемещениями только переменный вихревой электрический ток и, соответственно, переменное высокочастотное вихревое электромагнитное поле.

Феномен протонов (положительно заряженных атомов водорода), вылетающих из митохондрий в пространство клетки, биохимикам известен давно. Однако, ученые не находили адекватного места этим частицам в обменных процессах. По Петраковичу, протоны наряду с электронами являются для клеток важнейшими энергонесущими и энергопередающими частицами.

«Таким образом, речь идет о принципиально новом, никем ранее не представленном взгляде на получение и передачу энергии в живой клетке — речь идет об ионизирующем протонном излучении в живой клетке, как способе передачи энергии биологического окисления, из митохондрии в цитоплазму».

Второе и третье положения раскрывают тайну конвейера жизни, т. е. за счет каких процессов обеспечивается побуждение к активной работе клеток органов и тканей. Этот конвейер включает в себя: дыхание-горение, электронное возбуждение эритроцитов крови, наработку эритроцитами энергетического потенциала в период их движения по кровеносным сосудам, сброс эритроцитами электронного возбуждения клетке-мишени.

В легких осуществляется не переход кислорода в кровь. Здесь углеводороды тканей взаимодействуют с кислородом воз-духа в химической реакции, протекающей по механизму горения. При горении, особенно при горении в виде вспышки, мгнове-нно рождающей огромное количество электронов, происходит электромагнитное возбуждение, энергии которого вполне достаточно для возбуждения свободно-радикального окисления ненасыщенных жирных кислот мембран эритроцитов.

Г. Н. Петракович поставил вопрос о принципиально новой концепции энергопроизводства, энергообмена и клеточного взаимодействия в живых организмах. Его открытие определило важнейшее направление в исследовании живой материи и имеет самые интересные перспективы.

Однако мы не знаем количественные и качественные параметры работы клеток при энергообеспечении организма. При свободнорадикальном окислении высвобождается значительно больше энергии (около 100 ккал/моль), чем при биохимических процессах с использованием АТФ (6-12 ккал/моль). Куда же исчезает энергия? Или почему все же человеку не хватает энергии?
1   2   3   4   5   6   7   8   9   ...   35

Похожие:

Владимир Фролов Эндогенное дыхание медицина третьего тысячелетия iconДыхание организмов, его сущность и значение
Устинов, Ю. Ф. Практикум по теории механизмов и машин [Текст]: учеб пособие к практическим занятиям для студ немашиностроит спец...
Владимир Фролов Эндогенное дыхание медицина третьего тысячелетия iconПрограмма по формированию навыков безопасного поведения на дорогах...
Гипноз третьего тысячелетия. Пер с англ. Хасанов М. Ш. Спб.: Будущее Земли, 2004.— 208 с
Владимир Фролов Эндогенное дыхание медицина третьего тысячелетия iconПрограмма учебного курса «Искусство» для 8 класса
В наше время с особой остротой стоит задача формирования духовного мира человека третьего тысячелетия, возрождения и расцвета культурных...
Владимир Фролов Эндогенное дыхание медицина третьего тысячелетия iconПоложение о Фестивале занятий «Преподаватель третьего тысячелетия»
Цель урока: в ходе анализа предполагаемых сюжетов (коротких рассказов, сценок) дать возможность учащимся поразмышлять над решением...
Владимир Фролов Эндогенное дыхание медицина третьего тысячелетия iconКлеточное дыхание
...
Владимир Фролов Эндогенное дыхание медицина третьего тысячелетия iconУчебно-тематическое планирование по «Основам безопасности и жизнедеятельности» Классы
Учебник: Основы безопасности жизнедеятельности: 8-й кл.: учеб. О-75 для общеобразоват учреждений / М. П. Фролов, Е. Н. Литвинов,...
Владимир Фролов Эндогенное дыхание медицина третьего тысячелетия iconПрограмма по формированию навыков безопасного поведения на дорогах...
Информируют Вас, что с 29 по 30 ноября 2013 г проводится XVІІ международная научно-практическая интернет-конференция «Проблемы и...
Владимир Фролов Эндогенное дыхание медицина третьего тысячелетия iconДыхание на уроках физической культуры
...
Владимир Фролов Эндогенное дыхание медицина третьего тысячелетия iconДоклад «Роль творческих домашних заданий по физике в активизации...
Сегодня, в начале третьего тысячелетия, когда с экранов телевизоров, через компьютер и Интернет, на человека льется непрерывный поток...
Владимир Фролов Эндогенное дыхание медицина третьего тысячелетия iconДоклад «Роль творческих домашних заданий по физике в активизации...
Сегодня, в начале третьего тысячелетия, когда с экранов телевизоров, через компьютер и Интернет, на человека льется непрерывный поток...
Владимир Фролов Эндогенное дыхание медицина третьего тысячелетия iconРеферат Тема: «Дыхательная гимнастика для старшего дошкольного возраста»
Дыхание – важнейший физиологический процесс, происходящий автоматически, рефлекторно. Вместе с тем, на дыхание можно влиять, регулируя...
Владимир Фролов Эндогенное дыхание медицина третьего тысячелетия iconРабочая учебная программа дисциплины политология. Федерального компонента...
Хх веке и на пороге третьего тысячелетия, первостепенное значение в высшей школе приобретает политическое образование студенческой...
Владимир Фролов Эндогенное дыхание медицина третьего тысячелетия iconОбразовательная программа по хореографии в детском ансамбле народного...
Родине, о ее людях, и не разу не произнести ни слова? Да, можно! И это язык русского народного танца, в глубокое прошлое уходит история...
Владимир Фролов Эндогенное дыхание медицина третьего тысячелетия iconКомплексное лечение остеохондроза поясничного отдела позвоночника
Восстановительная медицина, лечебная физкультура и спортивная медицина, курортология и физиотерапия
Владимир Фролов Эндогенное дыхание медицина третьего тысячелетия iconСистемный подход к банкированию пуповинной крови для восстановительной медицины
«Восстановительная медицина, лечебная физкультура и спортивная медицина, курортология и физиотерапия»
Владимир Фролов Эндогенное дыхание медицина третьего тысячелетия iconОптимизация комплекса восстановительного лечения плоскостопия у лиц, занимающихся спортом
Восстановительная медицина, лечебная физкультура и спортивная медицина, курортология и физиотерапия


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск