Вопросы: Промышленная биотехнология





Скачать 435.12 Kb.
НазваниеВопросы: Промышленная биотехнология
страница5/6
Дата публикации07.08.2013
Размер435.12 Kb.
ТипЛекция
100-bal.ru > Биология > Лекция
1   2   3   4   5   6

Культуры клеток высших растений

Морфофизиологическая характеристика каллусных тканей


Выделяют два типа культивируемых растительных клеток: нормальные и опухолевые.

Опухолевые клетки морфологически мало отличаются от каллусных. Физиологическим различием является гормононезависимость опухолевых клеток. Благодаря этому свойству опухолевые клетки делятся и растут на питательных средах без добавок фитогормонов. Эти клетки также лишены способности дать начало нормально организованным структурам (корни, побеги) в процессе органогенеза. Иногда они образуют тератомы (уродливые органоподобные структуры), дальнейшее развитие которых невозможно.

Нормальные клетки в культуре могут существовать в двух видах: в виде суспензии в жидкой питательной среде и на поверхности твердой питательной среды в виде каллуса. Поверхностное культивирование осуществляют на полужидкой агаризованной среде, среде с добавлением других желирующих полимеров, на дисках из полиуретана, на мостиках из фильтровальной бумаги, полупогруженных в жидкую питательную среду. Можно также использовать комочки ваты, пропитанные питательной средой, которые сверху покрываются кусочком фильтровальной бумаги.

Каллусная ткань, выращиваемая поверхностным способом, представляет собой аморфную массу тонкостенных паренхимных клеток, не имеющую строго определенной анатомической структуры. Цвет массы может быть белым, желтоватым, зеленым, красным. В зависимости от происхождения и условий выращивания каллусные ткани бывают:

- рыхлые, сильно оводненные, легко распадающиеся на отдельные клетки;

- средней плотности, с хорошо выраженными меристематическими очагами;

- плотные, с зонами редуцированного камбия и сосудов. Как правило, в длительной культуре на средах, содержащих ауксины, каллусные ткани теряют пигментацию и становятся рыхлыми.

В цикле выращивания каллусной ткани клетки после ряда делений приступают к росту растяжением, дифференцируются как зрелая каллусная ткань и деградируют. Для того, чтобы не произошло старения, утраты способности к делению и дальнейшему росту, а также отмирания каллусных клеток, первичный каллус переносят на свежую питательную среду через 28 - 30 дней, то есть проводят пассирование или субкультивирование каллусной ткани.

Неорганизованно растущая каллусная ткань характеризуется тремя типами клеток: мелкими, средними и крупными. При пассировании ткани на среду, содержащую индукторы органогенеза, мелкие клетки приступают к делению и формируют меристематические очаги. Деление клеток меристематического очага приводит либо к формированию почек и последующему развитию из них побегов (геммогенез), либо к ризогенезу (рис. 7, 8).

Клетки меристемы с самых ранних стадий развития отличаются от каллусных высоким содержанием РНК и белка. При образовании соматических эмбриоидов каллусная клетка средних размеров обособляется, ограничивается плотной оболочкой, теряет крупные вакуоли. Она содержит крупное структурированное ядро с ядрышком. Клетка делится митотически, в результате чего возникают 2 клетки проэмбрио. Последующие деления клеток приводят к формированию шаровидного зародыша, а также органа, аналогичного суспензорам в зародышевом мешке семяпочки. Дальнейшее развитие соматического эмбриона через ряд стадий ведет к регенерации целого растения с корнями и побегами (рис. 9, 10 ), так как в этом случае формируется биполярная структура.

Каллусы с высоким морфогенетическим потенциалом обычно матовые, компактные, структурированные, имеют зеленые хлорофиллсодержащие участки, которые представляют собой зоны морфогенеза. Впоследствии там формируются побеги или растения-регенеранты. В культуре также встречаются каллусы рыхлые, не имеющие глобулярного характера. Такие каллусы либо совсем не способны к органогенезу, либо формируют только корни. Появление корней свидетельствует о сдвиге гормонального баланса в сторону ауксинов, что препятствует образованию побегов. Эти каллусы могут остаться ризогенными, и регенерировать из них растения не удастся. Неморфогенные каллусы могут быть переведены в суспензионную культуру для получения вторичных метаболитов.

Переход специализированных неделящихся клеток к пролиферации связан с их дедифференциацией, другими словами — утратой специализации. В основе этого процесса, как и при дифференциации клеток в интактном растении, лежит дифференциальная активность генов. Структура и функции клеток определяются активностью генов, и если клетки различаются по своей структуре и функциям, то это обусловлено различиями в экспрессии их генов, то есть специализация обеспечивается «включением» разных генов в разных клетках. Обычно активна небольшая часть (5%) всего пула генов, свойственных данному виду. В этот состав активных генов входят, кроме видоспецифичных и обязательных для поддержания клеточного метаболизма, гены, активные только в данном органе, ткани, клетке, а также гены, активные лишь в определенном возрасте или начавшие работать только под влиянием изменившихся внешних условий.

Возникновение физиологических и структурных различий между клетками и тканями растений, связанное с их функциональной специализацией, называют процессом дифференциации. Понятие «дифференциация» отражает превращение эмбриональной, меристематической клетки в специализированную. Меристематические клетки, однотипные по структуре и функции, начинают развиваться различными путями, создавая ткани разных органов. Как это осуществляется — один из труднейших вопросов клеточной биологии. Между геномами в клетках, которые приобретают разную форму и функцию, по-видимому, нет качественных различий, и клетки эти начинают различаться только вследствие разной экспрессии генов. Вновь возникшая клетка обладает широкими потенциями и может развиваться по любому из многих путей в морфологическом и физиологическом смысле.

Детерминация (определение) пути развития каждой клетки является основой физиологии развития. Вступление на тот или иной путь развития определяется особым набором белков, т. е. каждая специализированная клетка вырабатывает только ей свойственные белки, что является следствием дифференциальной активности генов — экспрессии одной группы генов при одновременной репрессии других. Способность одной-единственной зрелой соматической клетки дать начало целому организму (тотипотентность) показывает, что в процессе нормальной клеточной дифференциации у растений не происходит утраты или необратимой инактивации каких-либо генов.

У растений почти всякая дифференциация обратима при условии, если дифференцированная клетка живая, в протопласте сохранилось ядро и не образовалась вторичная оболочка. Даже такие высокоспециализированные клетки, как микроспоры, с помощью ряда экспериментальных процедур можно заставить пролиферировать и дать начало целому растению. Итак, в определенных условиях многие из зрелых растительных клеток сохраняют способность делиться, а в некоторых случаях даже вступить на новый путь развития. Однако вопрос о том. как это происходит, какие события на молекулярном уровне сопровождают этот процесс, остается открытым.

Таким образом, после деления перед каждой дочерней клеткой открывается одна из трех возможностей. Клетка может оставаться эмбриональной и вновь вступить в клеточный цикл с последующим митозом либо может оказаться как бы «вне цикла» (Go), перестав делиться, и наконец, приобретя компетенцию, постепенно детерминироваться и вступить на путь дифференцировки (специализации). Компетенция — способность клетки воспринимать индуцирующее воздействие и специфически реагировать на него изменением развития.

Индуцирующее воздействие могут оказывать различные факторы: гормоны, продукты жизнедеятельности соседних клеток, других тканей, электрофизиологические сигналы и т. д. Детерминация — приобретение клеткой состояния готовности к реализации определенных наследственных свойств.

Детерминация приводит к развитию по определенному пути с одновременным ограничением возможности развития в других направлениях. Детерминация компетентной клетки может начинаться сразу же после деления в начале роста протоплазмы. Детерминированная определенным образом клетка приобретает узкую специализацию, то есть дифференцируется и превращается в клетку какой-либо ткани. Из гормональных факторов в дифференциации и морфогенезе первостепенная роль отводится ауксинам и цитокининам.

В отношении органогенеза Скугом и Мурасиге была выдвинута концепция, согласно которой можно получить образование стеблей, корней или недифференцированный рост каллуса, изменяя относительное содержание ауксинов и цитокининов. В самом простом случае (табак) индукция и образование каллуса наблюдается при сбалансированном отношении ауксинов к цитокининам, стеблевые почки образуются при повышении уровня цитокининов по отношению к ауксинам, корни формируются при высоком содержании ауксинов в среде. В большинстве случаев формирование органов в культуре клеток можно объяснить гормональной теорией регуляции, но для некоторых видов она оказывается несостоятельной. Одни и те же физиологически активные вещества регулируют и деление клеток при недифференцированном росте каллуса, и клеточные деления, связанные с дифференциацией. Если дифференциация включает изменения в экспрессии генов на уровне транскрипции, тогда должны существовать и другие специфические вещества, определяющие компетентность клетки к обработке экзогенными фитогормонами.

Есть системы, не реагирующие на гормональные обработки. Клетки этих тканей не способны к дифференциации, или, пролиферирующие in vitro, не проявляют тотипотентности. Морфогенная способность клона зависит от генотипа. Имеет значение и орган, от которого взят первичный эксплант. Ткани одного и того же органа имеют разную способность к морфогенезу. Например, флоэмная ткань корня моркови дает начало корням, а ксилемная - формирует эмбриоиды.

Для понимания механизмов морфогенеза необходимо рассмотреть комплекс морфофизиологических процессов, протекающих в каллусной ткани, так как эти процессы лежат в основе того, что из каллуса при определенных условиях выращивания дифференцируется растение. В процессе культивирования отмечено возникновение новых микротрубочек в клетке in vitro, изменение ее размеров, активности рибосом, состояния пластидных пигментов, запасающих веществ. Роль микротрубочек, микрофиламентов и других структур в клеточном взаимодействии пока не выяснена. Эти структурные образования появляются обычно при регенерации и каким-то образом причастны к клеточному делению, взаимодействию между клетками, структуро- и формообразованию. Изменяется также структура и активность аппарата Гольджи, который выполняет важную функцию при клеточном делении.

Появляются многоядерные клетки, отмечается полиплоидизация в результате нарушения митоза. Характерное несинхронное течение митотических циклов является одним из условий морфологической гетерогенности клеток ткани. Важно, что при выращивании in vitro наблюдается генетическая гетерогенность клеток, появление мутантов с отличительными особенностями органогенеза. В основе лежат изменения состояния хромосом в виде транслокаций, делеций, другие нарушения связаны с полиплоидизацией.

Клетка, введенная в культуру, претерпевает последовательные изменения: переход к дедифференцированному состоянию, эмбриональному росту и, благодаря способности каллуса к вторичной дифференциации, формообразованию. Взаимодействие между клетками выступает как решающий фактор их дифференциации и специализации. Процесс дифференциации клеток обусловлен различной степенью репрессии и дерепрессии генетической информации.

В ассоциации клеток каллусной ткани одни клетки занимают определенное положение и осуществляют посредством физико-химических контактов влияние на другие, чем определяется их структурно-функциональное состояние. Межклеточные взаимодействия осуществляются с помощью соответствующих донорно-акцепторных молекул цитоплазматической мембраны. Этими молекулами могут быть низкомолекулярные белки, комплексы углеводов с белками, фитогормоны, ингибиторы, полярные соединения и другие. Но во всех случаях на основе нуклеиново-белкового, белково-углеводного и иного типа узнавания они будут способствовать слипанию или отталкиванию клеток, будут выступать как эффекторы или апорепрессоры. В клетке реципиента с помощью специальных рецепторов эти молекулы будут связываться и изменять в эпигенезе реакцию генетической информации. Таким образом, в основе дифференциации клетки лежат процессы репрограммирования, репрессии, дерепрессии генетической информации. Это приводит к образованию специализированных клеток, которые становятся способными к взаимодействию, ассоциации, образованию геометрических форм, к органо- и морфогенезу.

Важнейшим условием морфогенеза является адгезия клеток, в результате которой образуется ткань и орган. Поверхностные рецепторы, а также различные структуры типа микротрубочек обуславливают узнавание, сближение, слипание клеток в процессе дифференциации, ткане- и формообразования. Вещества, активные в процессах структуро- и формообразования, синтезируются под контролем ядра при поступлении сигналов из цитоплазмы клетки, а также экзогенных импульсов, эффекторов. При этом связующим звеном между генетической информацией, ее реализацией и эффектором выступают аллостерические белки, которые собирают, накапливают внешнюю информацию и преобразуют ее, в результате чего изменяют свою конформацию и вступают во взаимодействие с опероном.

Генетическая обусловленность процессов морфогенеза отражается в изменении синтеза и-РНК, белков, активных ферментов, то есть в комплексе скоординированных во времени и пространстве реакций, обуславливающих дифференциацию активности генов. Появление некоторых белков свидетельствует об их участии в морфогенезе и запуске морфогенетических реакций. Установлен специфический фактор пептидной природы, стимулирующий морфогенез. Изучая генетический контроль каллусообразования и органогенеза, ученые предположили, что интенсивность образования каллуса находится под генетическим контролем.

О генетической обусловленности признака регенерации в условиях in vitro свидетельствуют следующие факты:

1. Отсутствие определенных плеч хромосом (например, в клетках Triticum timopheevii при длительном культивировании теряются плечи хромосом генома At) может приводить к снижению выхода регенерантов.

2. С помощью гибридизации можно повысить интенсивность регенерации в каллусной ткани.

3. Использование разных по составу питательных сред для регенерации способствует разному уровню экспрессии генов, которые определяют этот признак.

4. В основе генетического контроля таких признаков, как частота каллусообразования, частота образования морфогенных каллусов и количество зон регенерации для озимой пшеницы основными являются сверхдоминирование, неполное доминирование и эпистаз; для озимой твердой –эпистаз, неполное доминирование и сверхдоминирование; для яровой твердой – эпистаз.

Одни генетические системы контроля для всех признаков проявляются стабильно (эпистаз), а другие (сверхдоминирование) – значительно изменяются в зависимоти от признаков и генотипов. Но следует отметить, что каллусогенез и регенерация растений не являются сопряженными процессами, вероятно, они контролируются различными генетическими механизмами. Общей закономерностью для культивируемых тканей остается возрастание цитогенетической вариабельности в процессе культивирования. С этим коррелирует в большинстве случаев потеря морфогенного потенциала. Способность к морфогенезу зависит и от состояния ядра. Как правило, регенерирующие в культуре тканей растения являются диплоидными, хотя ткани, из которых они произошли, имеют разный уровень плоидности.

Таким образом, для индукции морфогенеза in vitro необходимо вызвать неоднородность в клеточных популяциях и тканях. Любые воздействия, приводящие к увеличению неоднородности в культуре клеток, в пространственном распределении гормонов, будут способствовать дифференциации клеток и формообразованию в каллусе. Доказательством этого могут также служить эксперименты, проведенные с каллусной тканью пшеницы и кукурузы в космических условиях. Эти эксперименты были описаны М. Карабаевым (1994). В условиях космического полета можно выделить 2 принципиальных стадии клеточного ответа на экстремальные условия: 1. Эта стадия, или стадия адаптации, продолжается 10 - 12 дней и связана с адаптацией культуры к стрессу. Она сопровождается общим уменьшением жизнеспособности клеток и потерей значительного числа клеток. В этих условиях число жизнеспособных, стрессоустойчивых клеток постепенно возрастает. 2. Инициируется деление и меняется распределение клеток в популяции, уменьшается градиент элементов питательной среды, так же как и градиент продуктов жизнедеятельности клеток. Независимо от продолжительности космического полета, развитие клеток и структур, ответственных за клеточную дифференциацию, эмбриогенез и регенерацию растений подавляется космическими условиями. Основная причина этого может быть связана со специфическим распределением клеток в клеточной популяции и слабостью межклеточных контактов под действием невесомости. Анализ этих данных позволяет заключить, что гравитация имеет большое значение для развития растений, так как условия Земли способствуют более тесному взаимодействию гетерогенных спорадично растущих клеточных структур, а это впоследствии влияет на индукцию клеточной дифференциации.

1   2   3   4   5   6

Похожие:

Вопросы: Промышленная биотехнология iconУчебно-методический комплекс дисциплины «Молекулярная генетика»
ДС1 при подготовке дипломированных специалистов (инженер по специальности 240900 “Биотехнология”) и магистров по специальности химическая...
Вопросы: Промышленная биотехнология icon240700 «Биотехнология» Набор 2013 г. № п/п Наименование дисциплины и ее основные
Изучающее чтение с выделением главных компонентов содержания текста. Основы медицины. Фармацевтическое образование. Основы биотехнологии....
Вопросы: Промышленная биотехнология icon«Актуальные вопросы практики применения норм, вытекающих из публичных правоотношений»
Адрес юридический: 169711 Республика Коми, г. Усинск, ул. Промышленная, д. 19, каб. 5
Вопросы: Промышленная биотехнология iconМосковский энергетический институт
Профиль(и) подготовки: "Энергообеспечение предприятий", "Промышленная теплоэнергетика", "Промышленная теплоэнергетика", "Энергетика...
Вопросы: Промышленная биотехнология iconМосковский энергетический институт (технический университет)
Профиль(и) подготовки: «Энергетика теплотехнологии», «Энергообеспечение предприятий», «Промышленная теплоэнергетика», «Промышленная...
Вопросы: Промышленная биотехнология iconРабочая программа дисциплины Организация охраны труда Направление...
Профиль подготовки Промышленная безопасность технологических процессов и производств
Вопросы: Промышленная биотехнология iconРабочая программа дисциплины Теплофизика Направление подготовки 280700...
Профиль подготовки Промышленная безопасность технологических процессов и производств
Вопросы: Промышленная биотехнология iconВопросы для самостоятельного изучения по курсу дистанционного обучения...
Методические указания составлены в соответствии с рабочей программой по дисциплине "Грузоподъемные механизмы и транспортные средства"...
Вопросы: Промышленная биотехнология iconПрограмма элективного курса «Биотехнология вчера и сегодня»
Курс интегрированный, затрагивает вопросы, находящиеся на стыке биологии с другими науками, прежде всего с медициной, химией, географией....
Вопросы: Промышленная биотехнология icon«Экологическая биотехнология» Организационно-методические указания
Экологическая биотехнология : организационно-методические указания / Т. Г. Волова, И. Е. Суковатая. – Красноярск : ООО «Дарма», 2012...
Вопросы: Промышленная биотехнология iconУчебно-методического комплекса дисциплины рабочая программа учебной...
Учебно-методический комплекс дисциплины «Биотехнология комбинированных пищевых продуктов на основе молочного и микробиологического...
Вопросы: Промышленная биотехнология iconУчебно-методический комплекс рабочая программа для аспирантов специальности...
Боме Н. А. Генная инженерия. Учебно-методический комплекс. Рабочая программа для аспирантов специальности 03. 01. 06 – Биотехнология...
Вопросы: Промышленная биотехнология iconПрограмма дисциплины «Промышленная собственность» для специальности...
«Промышленная собственность» для специальности для специальности 030501. 65 Юриспруденция для студентов очной формы обучения
Вопросы: Промышленная биотехнология iconМосковский энергетический институт (технический университет)
Профиль(и) подготовки: Промышленная теплоэнергетика, Энергообеспечение предприятий
Вопросы: Промышленная биотехнология icon05. 14. 04 Промышленная теплоэнергетика
...
Вопросы: Промышленная биотехнология iconНазвание, характеристика, издательство и год издания
Промышленная экология и мониторинг загрязнения природной среды. Учебник. М.: Оникс,2009г


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск