Учебные материалы





НазваниеУчебные материалы
страница6/71
Дата публикации04.07.2013
Размер6.5 Mb.
ТипДокументы
100-bal.ru > География > Документы
1   2   3   4   5   6   7   8   9   ...   71

ВОЗДУХ И АТМОСФЕРА


(по С. П. Хромову)

Состав сухого воздуха у земной поверхности

Атмосфера состоит из смеси газов, называемой воздухом, в которой находятся во взвешенном состоянии жидкие и твер­дые частички. Общая масса последних незначительна в сравне­нии со всей массой атмосферы.

Атмосферный воздух у земной поверхности, как правило, яв­ляется влажным. Это значит, что в его состав, вместе с другими газами, входит водяной пар, т.е. вода в газообразном состоянии. Содержание водяного пара в воздухе меняется в значи­тельных пределах, в отличие от других составных частей воз­духа: у земной поверхности оно колеблется между сотыми до­лями процента и несколькими процентами. Это объясняется тем, что при существующих в атмосфере условиях водяной пар мо­жет переходить в жидкое и твердое состояние и, наоборот, мо­жет поступать в атмосферу заново вследствие испарения с зем­ной поверхности.

Воздух без водяного пара называют сухим воздухом. У зем­ной поверхности сухой воздух на 99% состоит из азота (78% по объему или 76% по массе) и кислорода (21% по объ­ему или 23% по массе). Оба эти газа входят в состав воздуха у земной поверхности в виде двухатомных молекул (N2 и О2).

Оставшийся 1 % приходится почти целиком на аргон (Аr). Всего 0,08% остается на углекислый газ (СО2). Многочислен­ные другие газы входят в состав воздуха в тысячных, миллион­ных и еще меньших долях процента. Это криптон, ксенон, неон, гелий, водород, озон, йод, радон, метан, аммиак, перекись водорода, закись азота и др.

Все перечисленные выше газы всегда сохраняют газообраз­ное состояние при наблюдающихся в атмосфере температурах и давлениях не только у земной поверхности, но и в высоких слоях.

Процентный состав сухого воздуха у земной поверхности очень постоянен и практически одинаков повсюду. Существенно меняться может только содержание углекислого газа. В резуль­тате процессов дыхания и горения его объемное содержание в воздухе закрытых, плохо вентилируемых помещений, а также промышленных центров может возрастать в несколько раз — до 0,1—0,2%. Совер­шенно незначительно меняется процентное содержание азота и кислорода.



Рис. 1. Состав сухого воздуха у земной поверхности.

Водяной пар в воздухе

Процентное содержание во­дяного пара во влажном воздухе у земной поверхности составляет в среднем от 0,2% в полярных широтах до 2,5% у экватора, а в отдельных случаях колеблется почти от нуля до 4%. В связи с этим становится переменным и процентное соотношение других газов во влажном воздухе. Чем больше в воздухе водяного пара, тем меньшая часть его объема приходится на постоянные газы при тех же условиях давления и температуры.

Водяной пар непрерывно поступает в атмосферу путем испа­рения с водных поверхностей, с влажной почвы и путем транспирации растений, при этом в разных местах и в разное время он поступает в различных количествах. От земной поверхности он распространяется вверх, а воздушными течениями перено­сится из одних мест Земли в другие.

В атмосфере может возникать состояние насыщения. В таком состоянии водяной пар содержится в воздухе в количестве, пре­дельно возможном при данной температуре. Водяной пар при этом называют насыщающим (или насыщенным), а воздух, содержащий его, насыщенным.

Состояние насыщения обычно достигается при понижении температуры воздуха. Когда это состояние достигнуто, то при дальнейшем понижении температуры часть водяного пара ста­новится избыточной и конденсируется, переходит в жидкое или твердое состояние. В воздухе возникают водяные капельки и ледяные кристаллики облаков и туманов. Облака могут снова испаряться; в других случаях капельки и кристаллики облаков, укрупняясь, могут выпадать на земную поверхность в виде осад­ков. Вследствие всего этого содержание водяного пара в каж­дом участке атмосферы непрерывно меняется.

С водяным паром в воздухе и с его переходами из газо­образного состояния в жидкое и твердое связаны важнейшие процессы погоды и особенности климата. Наличие водяного пара в атмосфере существенно сказывается на тепловых условиях атмосферы и земной поверхности. Водяной пар сильно погло­щает длинноволновую инфракрасную радиацию, которую излу­чает земная поверхность. В свою очередь и сам он излучает ин­фракрасную радиацию, большая часть которой идет к земной поверхности. Это уменьшает ночное охлаждение земной поверх­ности и тем самым также нижних слоев воздуха. На испарение воды с земной поверхности затрачиваются большие количества тепла, а при конденсации водяного пара в атмосфере это тепло отдается воздуху. Облака, возникающие в результате конден­сации, отражают и поглощают солнечную радиацию на ее пути к земной поверхности. Осадки, выпадающие из облаков, явля­ются важнейшим элементом погоды и климата. Наконец, нали­чие водяного пара в атмосфере имеет важное значение для физиологических процессов.

3. Упругость водяного пара и относительная влажность

Содержание водяного пара в воздухе называют влажностью воздуха. Основные характеристики влажности — это упругость водяного пара и относительная влажность.

Водяной пар, как всякий газ, обладает упругостью (давле­нием). Упругость водяного пара е пропорциональна его плотно­сти (содержанию в единице объема) и его абсолютной темпера­туре. Она выражается в тех же единицах, что и давление воздуха, т. е. либо в миллиметрах ртутного столба, либо в мил­либарах.

Упругость водяного пара в состоянии насыщения называют упругостью насыщения. Это максимальная упругость водяного пара, возможная при данной температуре. Например, при тем­пературе 0° упругость насыщения равна 6,1 мб. На каждые 10° температуры упругость насыщения увеличивается примерно вдвое.

Если воздух содержит водяного пара меньше, чем нужно для насыщения его при данной температуре, можно определить, на­сколько воздух близок к состоянию насыщения. Для этого вы­числяют относительную влажность. Так называют отношение фактической упругости е водяного пара, находящегося в воз­духе, к упругости насыщения Е при той же температуре, выра­женное в процентах, т. е.



Например, при температуре 20° упругость насыщения равна 23,4 мб. Если при этом фактическая упругость пара в воздухе будет 11,7 мб, то относительная влажность воздуха равна (11,7/23,4)*100 = 50%.

Упругость водяного пара у земной поверхности меняется от сотых долей миллибара (при очень низких температурах зимой в Антарктиде и в Якутии) до 35 мб и более (у экватора). Чем теплее воздух, тем больше водяного пара может он содержать без насыщения и, стало быть, тем больше может быть в нем упругость водяного пара.

Относительная влажность воздуха может принимать все зна­чения от нуля для вполне сухого воздуха (е = 0) до 100% для состояния насыщения (е = Е).

4. Изменение состава воздуха с высотой

Процентное содержание составных частей сухого воздуха в нескольких нижних десятках километров (до 100—120 км) с высотой почти не меняется. Воздух, находящийся в постоян­ном движении, хорошо перемешивается по вертикали, и атмо­сферные газы не расслаиваются по плотности, как это было бы в условиях спокойной атмосферы (где доля более легких газов должна была бы возрастать с высотой).

Однако выше 100 км такое расслоение газов по плотности начинается и постепенно увеличивается с высотой. Примерно до высоты 200 км преобладающим газом атмосферы все-таки остается азот. Выше начинает преобладать кислород, причем кислород в атомарном состоянии: под действием ультрафиолето­вой радиации Солнца его двухатомные молекулы разлагаются на заряженные атомы. Выше 1000 км атмосфера состоит глав­ным образом из гелия и водорода, причем водород — также в атомарном состоянии, т. е. в виде заряженных атомов, — пре­обладает.

Процентное содержание водяного пара в воздухе меняется с высотой. Водяной пар постоянно поступает в атмосферу снизу, а распространяясь вверх конденсируется, сгущается. Поэтому упругость и плотность водяного пара убывают с высо­той быстрее, чем упругость и плотность остальных газов воз­духа. Общая плотность воздуха становится вдвое меньше, чем у земной поверхности, на высоте более 5 км, а плотность водя­ного пара в среднем убывает вдвое в свободной атмосфере уже на высоте 1,5 км и в горах на высоте 2 км. Поэтому и процент­ное содержание водяного пара в воздухе убывает с высотой.

На высоте 5 км упругость водяного пара и, следовательно, его содержание в воздухе в десять раз меньше, чем у земной поверхности, а на высоте 8 км — в сто раз меньше. Таким обра­зом, выше 10—15 км содержание водяного пара в воздухе ни­чтожно мало.

5. Распределение озона в атмосфере

Изменение с высотой содержания озона в воздухе особенно интересно. У земной поверхности озон содержится в ничтожных количествах. С высотой содержание его возрастает, причем не только в процентном отношении, но и по абсолютным значе­ниям. Максимальное содержание озона наблюдается на высотах 25—30 км; выше оно убывает и на высотах около 60 км сходит на нет.

Процесс образования озона из кислорода происходит в слоях от 60 до 15 км при поглощении кислородом ультрафиолетовой солнечной радиации. Часть двухатомных молекул кислорода разлагается на атомы, а атомы присоединяются к сохранив­шимся молекулам, образуя трехатомные молекулы озона. Одно­временно происходит обратный процесс превращения озона в кислород. В слои ниже 15 км озон заносится из вышележа­щих слоев при перемешивании воздуха.

Возрастание содержания озона с высотой практически не ска­зывается на доле азота и кислорода, так как в сравнении с ними озона и в верхних слоях очень мало. Если бы можно было со­средоточить весь атмосферный озон под нормальным давлением, он образовал бы слой только около 3 мм толщиной (приведен­ная толщина слоя озона). Но и в таком ничтожном количестве озон важен потому, что, сильно поглощая солнечную радиацию, он повышает температуру тех слоев атмосферы, в которых он находится. Ультрафиолетовую радиацию Солнца с длинами волн от 0,15 до 0,29 мк (один микрон — тысячная доля миллиметра) он поглощает целиком. Эта радиация производит физиологиче­ски вредное действие, и озон, поглощая ее, предохраняет от нее живые организмы на земной поверхности.

6. Жидкие и твердые примеси к атмосферному воздуху

Кроме перечисленных выше атмосферных газов, в воздух местами могут проникать другие газы, особенно соединения, воз­никающие при сгорании топлива (окислы серы, углерода, фос­фора и др.). Наиболее заражается такими примесями воздух больших городов и промышленных районов.

В состав атмосферы входят также твердые и жидкие ча­стички, взвешенные в атмосферном воздухе. Кроме водяных ка­пелек и кристаллов, возникающих в атмосфере при конденсации водяного пара, это пыль почвенного и органического происхож­дения; твердые частички дыма, сажи, пепла и капельки кислот, попадающие в воздух при лесных пожарах, при сжигании топ­лива, при вулканических извержениях; частички морской соли, попадающие в воздух при разбрызгивании морской воды во время волнения (обычно, в силу своей гигроскопичности, это не твердые частички, а мельчайшие капельки насыщенного рас­твора соли в воде); микроорганизмы (бактерии); пыльца, споры; наконец, космическая пыль, попадающая в атмосферу (около миллиона тонн в год) из межпланетного пространства, а также возникающая при сгорании метеоров в атмосфере. Особое место среди атмосферных примесей занимают продукты искусствен­ного радиоактивного распада, заражающие воздух при испыта­тельных взрывах атомных и термоядерных бомб.

Небольшую часть перечисленных примесей составляет круп­ная пыль, с частичками радиусом более 5 мк. Почти 95% части­чек имеет радиусы менее 5 мк и до сотых и тысячных долей микрона. Вследствие такой малости они могут длительное время удерживаться в атмосфере во взвешенном состоянии. Удаляются из атмосферы они главным образом при выпадении осадков, присоединяясь к капелькам и снежинкам. Имеется ряд методов и приборов для определения их содержания в воздухе.

Все эти так называемые, аэрозольные примеси, или аэро­золи, в наибольшем количестве содержатся в самых нижних слоях атмосферы: ведь основной их источник — земная поверх­ность. Особенно загрязнен ими воздух больших городов. Не го­воря о вредных газовых примесях (SO2, CO и др.), на каждый кубический сантиметр воздуха здесь приходятся десятки тысяч аэрозольных частичек, а за год на каждый квадратный кило­метр выпадают из атмосферы сотни тонн аэрозолей. В сель­ских местностях количество частичек аэрозольных примесей в приземном воздухе исчисляется только тысячами на кубиче­ский сантиметр, а над океаном — только сотнями.

С высотой число взвешенных частичек быстро убывает; на высотах 5—10 км их всего десятки на кубический сантиметр.

В общем, в атмосферном столбе над каждым квадратным сантиметром земной поверхности содержится 108—109 аэрозоль­ных частичек. Общий их вес в атмосфере не менее 108 т. Это ог­ромное число; но оно мало по сравнению со всей массой атмо­сферы, которая, как мы увидим дальше, определяется в 5*1015 т.

Бактерии в центральных частях океанов встречаются в коли­честве нескольких единиц на кубический метр воздуха; в боль­ших городах их уже тысячи и десятки тысяч в том же объеме.

От количества и рода аэрозольных примесей зависят явления поглощения и рассеяния радиации в атмосфере, т. е. ее большая или меньшая прозрачность для радиации. Наличие взвешенных частичек создает в атмосфере также ряд оптиче­ских явлений, свойственных коллоидным растворам.

Наиболее крупные аэрозольные частички, обладающие ги­гроскопическими свойствами, играют в атмосфере роль ядер конденсации, т. е. центров, к которым присоединяются молекулы водяного пара, образуя водяные капельки. Об этом будет под­робнее сказано в своем месте.

Аэрозольные примеси к воздуху могут легко переноситься воздушными течениями на большие расстояния. Песчаная пыль, попадающая в воздух над пустынями Африки и Передней Азии, неоднократно выпадала в больших количествах на территории Южной и Средней Европы. Дым лесных пожаров в Канаде пе­реносился сильными воздушными течениями на высотах 8-13 км через Атлантику к берегам Европы, еще сохраняя доста­точную концентрацию. Дым и пепел больших вулканических извержений неоднократно распространялись в высоких слоях атмосферы на огромные расстояния, окутывая весь Земной шар. Помутнение воздуха и аномально красная окраска зорь наблю­дались в течение многих месяцев после извержений. После па­дения Тунгусского метеорита в 1908 г. также наблюдалось по­мутнение воздуха на больших расстояниях. Радиоактивные продукты, попадающие в атмосферу при термоядерных взрывах, распространяются в высоких слоях атмосферы над огромными пространствами Земного шара.

7. Дымка, облака, туманы

Капельки и кристаллы, в отличие от пылинок, возникают в самой атмосфере при конденсации водяного пара и могут ис­чезать, не выпадая, вследствие испарения. Если они очень разрежены и мелки, то обнаруживаются по некоторому помут­нению воздуха синеватого или сероватого цвета — дымке. Более плотные их скопления — облака и туманы.

Капельки облаков обычно очень мелки — от единиц до де­сятков микронов (т. е. от тысячных до сотых долей миллиметра) в диаметре. В каждом кубическом сантиметре облачного воз­духа содержится несколько десятков или сотен капелек. Это значит, что на один кубический метр облачного воздуха прихо­дится всего несколько граммов или даже долей грамма жидкой воды. Кристаллики в облаках также в большинстве очень мелки. Поэтому облака могут длительно удерживаться в атмосфере во взвешенном состоянии вследствие сопротивления воздуха и его восходящих движений. Но в облаках может происходить и укрупнение облачных элементов; достигнув определенных раз­меров, они начинают выпадать из облаков в виде осадков — капелек дождя, кристаллов снега и пр.

Облака наблюдаются на разных высотах в пределах нижних 10—15 км, причем с высотою водность облаков (т. е. содержа­ние в них жидкой воды на единицу объема) убывает. Изредка наблюдаются особые очень легкие облака на высотах около 20—25 км (перламутровые) и около 75—90 км (серебристые), о которых еще будет сказано дальше.

Нередко облакоподобные скопления капелек и кристаллов начинаются от самой земной поверхности; в этих случаях они называются туманами.

8. Ионы в атмосфере

1   2   3   4   5   6   7   8   9   ...   71

Похожие:

Учебные материалы iconУчебное издание Учебные программы и методические материалы кафедры...
Учебные программы и методические материалы кафедры теории и истории государства и права : учеб метод пособие / сост.: А. Р. Еремин,...
Учебные материалы iconУчебно-методический комплекс по дисциплине «Основы педиатрии и гигиены...
«Основы педиатрии и гигиены детей раннего и дошкольного возраста» включает три блока документов: организационные документы, методические...
Учебные материалы iconУчебно-методический комплекс по дисциплине «Основы педиатрии и гигиены...
«Основы педиатрии и гигиены детей раннего и дошкольного возраста» включает три блока документов: организационные документы, методические...
Учебные материалы iconУчебно-методический комплекс по дисциплине «Основы педиатрии и гигиены...
«Основы педиатрии и гигиены детей раннего и дошкольного возраста» включает три блока документов: организационные документы, методические...
Учебные материалы iconПрограмма по формированию навыков безопасного поведения на дорогах...
Что же такое эор? Электронными образовательными ресурсами называют учебные материалы, для воспроизведения которых используются электронные...
Учебные материалы iconУчебные пособия : Практический курс китайского языка, Москва изд....
Учебные пособия: Практический курс китайского языка, Москва изд. Восток-Запад в 2х томах 2009, дополнительные материалы из китайских...
Учебные материалы iconПрограмма по формированию навыков безопасного поведения на дорогах...
Инновационные учебные материалы к учебнику “nme” Деревянко Н. Н., Жаворонкова С. В. и др. 5 класс
Учебные материалы iconСелевко Г. К. Современные образовательные технологии doc
России. Учебные материалы для студентов: лекции, шпоры, конспекты, учебники более чем по 300 предметам
Учебные материалы iconМатериалы на конкурс «Мой классный классный
Высокие учебные результаты обучения при их позитивной динамике за последние три года
Учебные материалы iconУчебно-методический комплекс по дисциплине «история и философия науки»
Учебные материалы для подготовки кандидатского экзамена по истории и философии науки
Учебные материалы iconУроки Кирилла и Мефодия. Математика, русский язык, окружающий мир 1-4 классы
...
Учебные материалы iconУчебники и учебные пособия, методические материалы
Сборник лабораторных работ : Исследование трения и износа при ремонте машин и оборудования. Издание переработанное и дополненное....
Учебные материалы iconЧто такое электронные образовательные ресурсы (эор)?
...
Учебные материалы iconЧто такое электронные образовательные ресурсы (эор)?
...
Учебные материалы iconПрограмма по формированию навыков безопасного поведения на дорогах...
...
Учебные материалы iconПрограмма по формированию навыков безопасного поведения на дорогах...
...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск