Учебные материалы





НазваниеУчебные материалы
страница8/71
Дата публикации04.07.2013
Размер6.5 Mb.
ТипДокументы
100-bal.ru > География > Документы
1   ...   4   5   6   7   8   9   10   11   ...   71

14. Основное уравнение статики атмосферы

Теперь поставим вопрос: по какому закону меняется ат­мосферное давление с высотой? Допустим, что известно давле­ние на одном уровне. Каково оно в тот же момент на другом, выше- или нижележащем уровне?

Возьмем вертикальный столб воздуха с поперечным сече­нием, равным единице, и выделим в этом столбе бесконечно тонкий слой, ограниченный снизу поверхно­стью на высоте z, а сверху — поверхностью на высоте z + dz; толщина слоя, таким образом, dz (рис. 2). На нижнюю поверх­ность выделенного элементарного объема смежный воздух действует с силой давления, направленной снизу вверх; величина этой силы на рассматриваемую поверхность с площадью, равной единице, и будет давле­нием воздуха р на этой поверхности. На верхнюю поверхность элементарного объе­ма смежный воздух действует с силой дав­ления, направленной сверху вниз. Числовая величина этой силы p + dp есть давление на верхней границе. Это давление отличается от давления на нижней границе на бесконечно малую вели­чину dp, причем заранее не известно, будет ли dp положитель­ным или отрицательным, т. е. будет ли давление на верхней границе выше или ниже, чем на нижней границе.



Рис. 2. Силы, дей­ствующие на элемен­тарный объем воздуха.

Что касается сил давления, действующих на боковые стенки объема, то допустим, что в горизонтальном направлении атмо­сферное давление не меняется. Это значит, что силы давления, действующие со всех сторон на боковые стенки, уравновешива­ются; их равнодействующая равна нулю. Отсюда следует, что воздух в горизонтальном направлении не обладает ускорением и не перемещается.

Кроме того, воздух в рассматриваемом элементарном объеме испытывает силу тяжести, которая направлена вниз и равна ускорению силы тяжести g (ускорению свободно падающего тела), умноженному на массу воздуха во взятом объеме. Так как при поперечном сечении, равном единице, объем равен dz, то масса воздуха в нем равна ρ*dz, где ρ — плотность воздуха, а сила тяжести равна gρdz. Допустим, что в атмосфере суще­ствует равновесие также и в вертикальном направлении, т. е. что взятый объем воздуха не имеет никакого ускорения также и по вертикали и, таким образом, остается на одном и том же уровне, несмотря на наличие веса. Это значит, что сила тяжести (вес) и силы давления уравновешиваются. Вниз направлены сила давления p + dp и вес gρdz; возьмем их с отрицательным знаком. Вверх направлена сила давления р, которую возьмем с положительным знаком. Сумму всех этих трех сил приравняем нулю и, таким образом, получим



или



Отсюда следует, что при положительном dz имеем отрица­тельное dp, т. е. что с высотой атмосферное давление падает. При этом разность давлений на нижней и верхней границах рассматриваемого элементарного объема равна весу воздуха в этом объеме.

Уравнение (10) носит название основного уравнения статики атмосферы. Это дифференциальное уравнение говорит о том, как меняется давление при бесконечно малом приросте высоты.

Основное уравнение статики можно написать еще так:



Величина –dp/dz падение давления на единицу прироста высоты, т. е. вертикальный барический градиент (вертикальный градиент давления). Это равнодействующая сил давления, направленных сверху и снизу на единицу нашего объема.

Разделив ее на плотность ρ, мы получим –1/ρ*dp/dz — силу верти­кального барического градиента, отнесенную к единице массы и направленную вверх.

Второй член — это сила тяжести, действующая на ту же еди­ницу массы и направленная вниз. Она равна силе барического градиента, но направлена в противоположную сторону. Следова­тельно, основное уравнение статики выражает условие равнове­сия между двумя силами, действующими на единицу массы воз­духа по вертикали, — силой вертикального барического гради­ента и силой тяжести.

Чтобы получить выражение для изменения давления при конечном приросте высоты, нужно уравнение (10) проинтегрировать в пределах от уровня z1 с давлением р1 до вышележа­щего уровня z2 с давлением р2. При этом плотность воздуха р является переменной величиной, функцией высоты.

Плотность воздуха непосредственно не измеряется; поэтому выгодно представить ее через температуру и давление с по­мощью уравнения состояния газов ρ = p/RT. Подставив это зна­чение для р в уравнение (10), получим



или



Возьмем определенные интегралы от обеих частей уравнения (13) в пределах от р1 до р2 и от z1 до z2. При этом g и R, как постоянные, можно вынести за знак интеграла. Получим



или



Температура Т — величина переменная, являющаяся функ­цией высоты. Но характер этой функции в разных случаях раз­ный и, вообще говоря, не может быть точно выражен математи­чески. Однако можно определить из наблюдений среднее значе­ние температуры Тт между уровнями z1 и z2, а его уже можно вынести за знак интеграла. Определить Тт можно с достаточ­ным приближением, измерив, например, температуру на уров­нях z1 и z2 и взяв среднюю арифметическую из этих двух зна­чений. Тогда



или, что то же самое,



Потенцируя, получим



Уравнение (17) или (18) представляет собой интеграл основ­ного уравнения статики атмосферы. Его называют еще баромет­рической формулой высоты. Эта формула показывает, как ме­няется атмосферное давление с высотой в зависимости от температуры воздуха.

Выше было показано, что бесконечно малая разность давле­ний равна весу элементарного объема воздуха с толщиной dz. Следовательно, и конечная разность давлений между нижним и верхним уровнем равна весу воздушного столба между этими уровнями. Если за верхний уровень принять верхнюю границу атмосферы, на которой давление практически равно нулю, то очевидно, что давление на любом уровне равно весу всего столба атмосферы, простирающегося над данным уровнем.

Основное уравнение статики выводится в предположении равновесия воздуха по вертикали. В действительности может су­ществовать какая-то равнодействующая сил тяжести и верти­кального барического градиента, отличная от нуля. Но, как правило, эта равнодействующая незначительна, и, стало быть, ускорение, сообщаемое ею воздуху, мало. Основное уравнение статики будет при этом выполняться не абсолютно строго, но с большой степенью точности.

15. Применения барометрической формулы

С помощью барометрической формулы можно решить три задачи:

1) зная давление на одном уровне и среднюю температуру столба воздуха, найти давление на другом уровне;

2) зная давление на обоих уровнях и среднюю температуру столба воздуха, найти разность уровней (барометрическое ни­велирование);

3) зная разность уровней и величины давления на них, найти среднюю температуру столба воздуха.

Для практического использования барометрическая формула приводится к рабочему виду. От натуральных логарифмов пере­ходят к десятичным, от абсолютной температуры — к темпера­туре по Цельсию и подставляют числовые значения для R и g. При этом в случае влажного воздуха берется значение Rd для сухого воздуха, умноженное на (1+0,377*e/p). Иначе можно сказать, что берется Rd для сухого воздуха, но температура за­меняется виртуальной температурой.

Кроме того, и ускорение силы тяжести g не есть величина строго постоянная — она меняется, хотя и немного, в зависимо­сти от географической широты и высоты над уровнем моря. На это также вводятся поправки.

Важным вариантом первой задачи, поставленной выше, является приведение давления к уровню моря. Зная давление на некоторой станции, расположенной на высоте z над уровнем моря, и температуру t на этой станции, вычисляют сначала во­ображаемую среднюю температуру между рассматриваемой станцией и уровнем моря (в действительности атмосферного столба между станцией и уровнем моря не будет). Для уровня станции берется фактическая температура, а для уровня моря — та же температура, но увеличенная в той мере, в какой в сред­нем меняется температура воздуха с высотой.

Средний верти­кальный градиент температуры в тропосфере принимается рав­ным 0,6° на 100 м. Следовательно, если станция имеет высоту 200 м и температура на ней +16°, то для уровня моря прини­мается температура +17,2°, а средняя температура столба между станцией и уровнем моря +16,6°. После этого по давле­нию на станции и по полученной средней температуре опреде­ляется давление на уровне моря. Для этого составляют особые таблицы для каждой станции.

Приведение давления к уровню моря является очень важной операцией. На приземные синоптические карты всегда наносится давление, приведенное к уровню моря. Этим исключается влия­ние различий в высотах станций на величины давления и стано­вится возможным выяснить горизонтальное распределение дав­ления.

16. Барическая ступень

Быстрые подсчеты, связанные с изменением давления с высотой, можно делать с помощью так называемой бариче­ской ступени. Напишем основное уравнение статики (12) так:



Выражение dz/dp называется барической ступенью (или баро­метрической ступенью). Барическая ступень — величина, обрат­ная вертикальному барическому градиенту –dp/dz, составляю­щая, очевидно, прирост высоты, при котором атмосферное давление падает на единицу. Из формулы (19) видно, что барическая ступень обратно пропорциональна величине самого дав­ления и прямо пропорциональна температуре воздуха. Чем больше высота и чем, следовательно, ниже давление, тем больше барическая ступень. При одном и том же давлении барическая ступень больше прибо­лев высокой температуре, чем при более низкой.

Подставляя в формулу (19) числовые значения для g и R, можно найти величину бариче­ской ступени для разных р и Т. За единицу давления принимаем миллибар. Тогда барическая сту­пень измеряется приростом вы­соты, на котором давление падает на 1 мб. При температуре 0° и давлении 1000 мб барическая ступень равна 8 м/мб. Стало быть, у земной поверхности нуж­но подняться примерно на 8 м, чтобы давление упало на 1 мб. С приростом температуры бариче­ская ступень растет на 0,4% на каждый градус.

На высоте около 5 км, где дав­ление близко к 500 мб, бариче­ская ступень уже около 16 м/мб (при той же температуре 0°).

Зная величину барической ступени для разных р и Т, можно легко производить те расчеты, для которых применяются баро­метрические формулы, если толь­ко разность высот не очень ве­лика.



Рис. 3. Убывание атмосферного давления с высотой в зависимости от температуры воздушного столба.

При одинаковом давлении внизу дав­ление 500 мб в теплом столбе наблю­дается на 350 м выше, чем в холодном.

Допустим, что в теплом воздухе и в холодном воздухе давление внизу одинаково. Однако в теплом воздухе, где бари­ческая ступень больше, давление падает с высотой медленнее, чем в холодном воздухе. Поэтому на высотах давление в теплом и холодном воздухе уже становится неодинаковым: в теплом воздухе оно будет выше, чем в холодном (рис. 3). Иными словами, теплые области в атмосфере являются в высоких слоях областями высокого давления, а холодные области — областями низкого давления. Этот важный факт нам понадобится в главе шестой.

17. Среднее распределение атмосферного давления с высотой

Распределение атмосферного давления по высоте зависит от того, каково давление внизу и как распределяется темпера­тура воздуха с высотой. В многолетнем среднем для Европы давление на уровне моря равно 1014 мб, на высоте 5 км — 538 мб, 10 км — 262 мб, 15 км — 120 мб и 20 км — 56 мб. Эти значения подтверждают вывод, который можно сделать из ба­рометрической формулы: дав­ление убывает примерно в геометрической прогрессии, когда высота возрастает в арифме­тической прогрессии. На уров­не 5 км давление почти вдвое ниже, чем на уровне моря, на уровне 10 км — почти в четыре раза, на уровне 15 км — почти в 8 раз и на уровне 20 км — в 18 раз (рис. 4). На вы­соте 100 км давление изме­ряется только долями милли­бара.

Давление меняется не только с высотой. На одном и том же уровне оно не везде одинаково. Кроме того, в каж­дой точке атмосферы давление непрерывно меняется с тече­нием времени; стало быть, не­прерывно меняется и распределение его во всей атмосфере. Ясно, что изменения давления в лю­бой точке связаны с изменениями всей массы воздуха над этой точкой. А изменения массы воздуха в свою очередь обусловлены движением воздуха.



Рис. 4. Изменение атмосферного давления с высотой.

18. Общая масса атмосферы

Знание атмосферного давления позволяет рассчитать общую массу атмосферы. Среднее атмосферное давление на уровне моря эквивалентно весу столба ртути высотой 760 мм. В пара­графе 11 показано, что масса ртутного столба высотой 760 мм над одним квадратным сантиметром земной поверхности состав­ляет 1033,2 г; таков же будет вес этого столба ртути в граммах. Таков же, очевидно, будет и средний вес столба атмосферы над одним квадратным сантиметром поверхности на уровне моря. Зная площадь земной поверхности и превышение материков над уровнем моря, можно вычислить общий вес всей атмосферы. Пренебрегая изменениями силы тяжести с высотой, можно счи­тать этот вес численно равным массе атмосферы.

Общая масса атмосферы составляет немного больше 5 • 1021 г, или 5 • 1015 т. Это примерно в миллион раз меньше, чем масса самого Земного шара. При этом, как уже говорилось, по­ловина всей массы атмосферы находится в нижних 5 км, три четверти — в нижних 10 км и 95% — в нижних 20 км.
1   ...   4   5   6   7   8   9   10   11   ...   71

Похожие:

Учебные материалы iconУчебное издание Учебные программы и методические материалы кафедры...
Учебные программы и методические материалы кафедры теории и истории государства и права : учеб метод пособие / сост.: А. Р. Еремин,...
Учебные материалы iconУчебно-методический комплекс по дисциплине «Основы педиатрии и гигиены...
«Основы педиатрии и гигиены детей раннего и дошкольного возраста» включает три блока документов: организационные документы, методические...
Учебные материалы iconУчебно-методический комплекс по дисциплине «Основы педиатрии и гигиены...
«Основы педиатрии и гигиены детей раннего и дошкольного возраста» включает три блока документов: организационные документы, методические...
Учебные материалы iconУчебно-методический комплекс по дисциплине «Основы педиатрии и гигиены...
«Основы педиатрии и гигиены детей раннего и дошкольного возраста» включает три блока документов: организационные документы, методические...
Учебные материалы iconПрограмма по формированию навыков безопасного поведения на дорогах...
Что же такое эор? Электронными образовательными ресурсами называют учебные материалы, для воспроизведения которых используются электронные...
Учебные материалы iconУчебные пособия : Практический курс китайского языка, Москва изд....
Учебные пособия: Практический курс китайского языка, Москва изд. Восток-Запад в 2х томах 2009, дополнительные материалы из китайских...
Учебные материалы iconПрограмма по формированию навыков безопасного поведения на дорогах...
Инновационные учебные материалы к учебнику “nme” Деревянко Н. Н., Жаворонкова С. В. и др. 5 класс
Учебные материалы iconСелевко Г. К. Современные образовательные технологии doc
России. Учебные материалы для студентов: лекции, шпоры, конспекты, учебники более чем по 300 предметам
Учебные материалы iconМатериалы на конкурс «Мой классный классный
Высокие учебные результаты обучения при их позитивной динамике за последние три года
Учебные материалы iconУчебно-методический комплекс по дисциплине «история и философия науки»
Учебные материалы для подготовки кандидатского экзамена по истории и философии науки
Учебные материалы iconУроки Кирилла и Мефодия. Математика, русский язык, окружающий мир 1-4 классы
...
Учебные материалы iconУчебники и учебные пособия, методические материалы
Сборник лабораторных работ : Исследование трения и износа при ремонте машин и оборудования. Издание переработанное и дополненное....
Учебные материалы iconЧто такое электронные образовательные ресурсы (эор)?
...
Учебные материалы iconЧто такое электронные образовательные ресурсы (эор)?
...
Учебные материалы iconПрограмма по формированию навыков безопасного поведения на дорогах...
...
Учебные материалы iconПрограмма по формированию навыков безопасного поведения на дорогах...
...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск