Курс лекций для студентов дневной формы обучения Энгельс 2009 введение





НазваниеКурс лекций для студентов дневной формы обучения Энгельс 2009 введение
страница14/24
Дата публикации04.08.2013
Размер2.29 Mb.
ТипРеферат
100-bal.ru > Химия > Реферат
1   ...   10   11   12   13   14   15   16   17   ...   24

Процесс массопередачи, т.е. процесс переноса вещества из одной фазы в другую через разделяющую их поверхность, описывается уравнением нестационарной диффузии:
µ §, (10Ѓ|7)
Для математического описания процесса экстрагирования последнее выражение интегрируют. После преобразований интеграл уравнения нестационарной диффузии принимает вид:
µ §, (10Ѓ|8)
где µ § Ѓ| начальная концентрация извлекаемого вещества в твердой частице,% мас.;

µ § Ѓ| средняя концентрация целевого компонента в твердой частице в определенный момент времени, % мас.;

C’ Ѓ| средняя концентрация целевого компонента в экстрагенте в определенный момент времени, % мас.;

µ §Ѓ|табулированная величина, которая является функцией критерия Био; µ § Ѓ| критерий Био;

µ §Ѓ| диффузионный критерий Фурье;

R Ѓ| определяющий геометрический размер, м; q Ѓ| соотношение расходов твердой и жидкой фаз;

S Ѓ| коэффициент, зависящий от взаимного направления движения фаз

(S = Ѓ|IЃ| для противотока; S =Ѓ|I Ѓ| для прямотока);

µ §Ѓ| табулированная функция, учитывающая форму твердых частиц.

На эффективность процесса экстрагирования оказывает значительное влияние соотношение расхода твердой и жидкой фаз µ § , а также взаимное

направление движения взаимодействующих фаз. Эти же величины определяют движущую силу и характер ее изменения.

Наиболее эффективно процесс осуществляется при противоточном движении фаз. Главным достоинством противоточного движения является возможность достижения максимальной стенки извлечения целевого компонента из твердой фазы, с одновременным получением высококонцентрированного экстракта.

В случае прямотока концентрация ключевого компонента в твердых частицах никогда не станет меньше конечной концентрации экстрагента независимо от продолжительности процесса. В это же время следует отметить, что при противоточном движении фаз коэффициент массоотдачи чаще всего имеет меньшие величины, чем при прямотоке. Это объясняется ухудшением условий смывания частиц жидкостью, что следовательно приводит к уменьшению действительной поверхности частиц, участвующих в процессе.

В промышленных аппаратах, как правило, осуществляется комбинированный способ взаимодействия фаз, т.е. на отдельных участках аппарата или в отдельных стадиях процесса наблюдается прямоток (при высоких значениях коэффициента массоотдачи), а весь процесс в целом приближается к противотоку.

Кроме вышеперечисленных способов взаимодействия фаз существуют также процессы идеального смешения по жидкой фазе и процессы в большом объеме жидкости. Однако эти методы в промышленных аппаратах практически не применяются.

Второй фактор Ѓ| соотношение расхода твёрдой и жидкой фаз Ѓ|оказывает не меньшее влияние на скорость экстрагирования. С увеличением массы экстрагента, участвующего в процессе, возрастает движущая сила и увеличивается степень извлечения целевого компонента. Но в то же время снижается содержание извлекаемых веществ в конечном экстракте, увеличиваются габаритные размеры аппаратов при одинаковой производительности. В связи с этим вопрос о выборе соотношения расхода масс должен решаться как оптимальная задача.
10.5. Расчет процесса экстрагирования
В процессе экстрагирования сырье, перерабатываемое в пищевой промышленности, существенно меняет механические, теплофизические и другие свойства. Поэтому, в настоящей время получил широкое распространение интервальный метод расчета, который заключается в том, что по продолжительности весь процесс разбивается на 10Ѓ|20 и большее число интервалов. При этом делается предположение, что на каждом из этих интервалов значения кинетических коэффициентов µ § и µ §, величина соотношения расхода масс µ § и свойства взаимодействующих фаз остаются постоянными.

Целью расчета процесса экстрагирования являются определение необходимой продолжительности процесса для получения заданной степени извлечения целевого компонента µ §из твердого тела Ѓ| прямой (проектный) расчет или определение конечных концентраций в фазах при заданной продолжительности процесса Ѓ| обратный (проверочный) расчет. Методика прямого расчета выглядит следующим образом:

1. Выбирают продолжительность интервала.

2. По известным значениям размера частиц µ §, величинам µ § и µ §

рассчитывают критериальные уравнения µ § и µ § для каждого интервала.

3. Определяют значение µ §.

4. Задаются произвольным значением µ § и рассчитывают изменение

концентрации на интервале, концентрацию целевого компонента в твердой и жидкой фазах.

5. Определяют предварительную степень извлечения целевого компонента из твердого тела. Если расчетная степень извлечения целевого компонента не соответствует заданной величине, то производят интерполяцию по времени.

6. Выполняют уточненный расчет процесса и определяют конечные концентрации целевого компонента в экстракте и в твердом теле.
10.6. Методы интенсификации экстракционного процесса
Скорость протекания процесса экстрагирования, как и любого массообменного процесса, прямо пропорциональна движущей силе процесса и обратно пропорциональна диффузионному сопротивлению.

Увеличить движущую силу процесса можно двумя способами: применением противоточного метода движения взаимодействующих фаз, а также повышением соотношения расхода масс экстрагента и твердых частиц.

Диффузионное сопротивление при экстрагировании складывается из сопротивлений основных стадий процесса: переноса целевого компонента непосредственно в самой частицей от поверхности частицы в окружающую ее жидкость. Для уменьшения диффузионного сопротивления необходимо увеличить величины кинетических коэффициентов диффузии и массоотдачи и, кроме этого, уменьшить размер частиц твердой фазы. Увеличение величины коэффициента диффузии возможно только повышением температуры процесса. Увеличить значение коэффициента массоотдачи можно несколькими способами. В настоящее время наибольшее распространение получили методы, создания режима кипящего слоя, электроимпульсные воздействия, ультразвуковые колебания, вибрация и т.п. Кроме этого на эффективность процесса влияет также способ подготовки сырья. Кроме измельчения сырья к этим способам можно отнести термохимическое воздействие, увлажнение высушенного сырья, СВЧ Ѓ|воздействие и ряд других методов, которые улучшают не только диффузионные, но и механические свойства твердых частиц.

Следует отметить, на все вышеперечисленные факторы следует накладывать строгие ограничения, т.к. ускоряя процесс на одной стадии, эти факторы могут вызвать значительное снижение скорости на другой стадии. Например, уменьшение размера частиц увеличивает поверхность контакта фаз, однако более плотный слой частиц ухудшает контакт с экстрагентом и замедляет процесс массообмена. Поэтому определение оптимальных режимов ведения процесса необходимо с учетом особенностей строения исходного сырья, изменения его в течение процесса, особенностей аппарата, в котором протекает процесс, условий проведения экстрагирования, и т.д., с тем чтобы свести экономические затраты на получение готового продукта и затраты на вспомогательные операции к минимуму.
Эффективность процесса экстрагирования из твердого продукта обеспечивают следующие условия:

• Правильный подбор типа растворителя. Растворитель должен извлекать из продукта только нужный компонент без посторонних примесей; полностью удаляться из экстрагируемого продукта; не должен вызывать коррозии аппаратуры. В пищевой промышленности в качестве экстрагентов используют воду, бензин, этиловый спирт, ацетон, дихлорэтан.

• Достижение необходимой степени измельчения продукта, что приводит к увеличению поверхности контакта.

• Создание оптимальных температурных условий. Повышение температуры ведет к увеличению скорости внутренней диффузии.

• Создание нужного давления. Повышение давления в системе приводит к увеличению выхода экстрагируемых веществ.

• Достаточное количество растворителя и соблюдение оптимальной продолжительности процесса.
10.7. Конструкции экстракторов
В пищевой промышленности получили широкое распространение непрерывноЃ|действующие аппараты, в основном противоточного и комбинированного действия, которые бывают вертикального, горизонтального или наклонного исполнения. В данных аппаратах применяются шнековые, ленточные, ковшовые и ряд других рабочих органов. Самостоятельно изучить следующие конструкции аппаратов для экстрагирования:

1. Ленточный экстрактор.

2. Секционный экстрактор.

3. Вертикальный ковшовый экстрактор.

4. Горизонтальный шнековый экстрактор.

5. Двухшнековый наклонный экстрактор.
Контрольные вопросы

1. Назначение и сущность процесса экстракции. Каково отличие процесса экстракции от экстрагирования ?

2. Какие вы знаете методы экстракции?

3. Классификация аппаратов для экстракции.

4. Какие стадии являются наиболее важными при экстрагировании ?

5. Какие факторы влияют на величину коэффициента диффузии и коэффициента массоотдачи?

6. Методы интенсификации экстракционного процесса.

7. Какие вы знаете аппараты для экстрагирования?
10.8. Сущность процесса и виды перегонки
Одним из наиболее распространенных методов разделения жидких однородных смесей, состоящих из двух или большего числа компонентов, является перегонка, которая представляет собой процесс, включающий частичное испарение разделяемой смеси и последующую конденсацию образующихся паров, осуществляемые однократно или многократно. В результате конденсации получают жидкость, состав которой отличается от состава исходной смеси. Разделение перегонкой основано на различной летучести компонентов смеси при одной и той же температуре. При кипении смеси, состоящей из различных по летучести компонентов, более летучий компонент переходит в паровую фазу в относительно большем количестве, чем менее летучий. Следовательно, в процессе перегонки жидкая фаза обедняется, а паровая фаза обогащается низкокипящим компонентом Ѓ| НК. Неиспарившаяся жидкость имеет состав более богатый труднолетучим или высококипящим компонентом (ВК). Эта жидкость называется кубовым остатком, а жидкость, полученная в результате конденсации паров Ѓ|дистиллятом или ректификатом.

Существует два вида перегонки: простая перегонка и ректификация.

Простая перегонка представляет собой процесс однократного частичного испарения жидкой смеси и конденсации образующихся паров. Простая перегонка применима для предварительного, грубого разделения жидких смесей.

Значительно более полное разделение жидких смесей на компоненты достигается путем ректификации. Ректификация представляет собой процесс многократного частичного испарения жидкости и конденсации паров. Процесс осуществляется путем контакта потоков пара и жидкости, имеющих различную температуру, и проводится обычно в колонных аппаратах. При каждом контакте из жидкости испаряется преимущественно НК, которым обогащаются пары, а из паров конденсируется преимущественно ВК, переходящий в жидкость. Такой двухсторонний обмен компонентами, повторяемый многократно, позволяет получить в конечном счете пары, представляющие собой почти чистый НК. Эти пары после конденсации в отдельном аппарате дают дистиллят (ректификат) и флегму Ѓ| жидкость, возвращаемую для орошения колонны и взаимодействия с поднимающимися парами. Пары получают путем частичного испарения снизу колонны остатка, являющегося почти чистым высококипящим компонентом Ѓ| ВК.

Ректификация широко применяется в спиртовой промышленности и в производстве эфирных масел. Пример простой перегонки Ѓ| получение дистиллированной воды.
10.9. Классификация бинарных смесей
В основу теории перегонки положены закономерности перегонки бинарных смесей. Основные законы, управляющие перегонкой бинарных смесей, установлены Д.П. Коноваловым и М.С. Вревским.

В основу классификации бинарных смесей положена функциональная зависимость общего давления паров бинарной системы от состава жидкой фазы. Если на горизонтальной оси (рис.10.2) отложить содержание НК, а на вертикальной Ѓ| общее давление паров смеси, то в зависимости от характера смеси линии давления могут иметь тот или иной вид.

Линия 1 соответствует случаю полной нерастворимости компонента. В этом случае общая упругость паров равна сумме давлений паров чистых компонентов до тех пор, пока в жидкой среде имеются оба компонента, например, смесь бензола и воды.

Линия 2 соответствует смеси компонентов, частично растворимых один в другом, например, смесь изобутилового спирта и воды.

Линия 3 соответствует смеси компонентов, полностью растворимых один в другом. Общая упругость пара этих смесей имеет максимум, отвечающий определенному составу жидкой фазы при данной температуре. К таким смесям относятся смеси этилового спирта и воды.

Линия 4 соответствует предельному случаю, когда компоненты полностью растворяются один в другом, не образуя максимума или минимума. Например, смесь метилового спирта и воды, аммиака и воды.

Линия 5 отвечает случаю полной растворимости компонентов с образованием особой точки, соответствующей минимуму давления, например, смесь воды и муравьиной кислоты.

Смеси, соответствующие линии 4, являются простейшими или идеальными, которые подчиняются закону Рауля: парциальное давление пара

компонента Pa равно давлению насыщенного пара этого компонента при

данной температуре pa, умноженному на его мольную долю в жидкости xa , т.е:

µ § (10Ѓ|9)
Растворы, линии давления пара которых отклоняются от прямой, образуются из чистых компонентов с заметным тепловым эффектом. Если сила притяжения молекул неодинаковых компонентов меньше, чем одинаковых, то давление пара смеси будет отклоняться вверх от линии идеальных растворов (линия 3).

Если сила притяжения молекул неодинаковых компонентов больше силы притяжения молекул одинаковых компонентов, кривая пойдет ниже прямой идеальных растворов (линия 5).

Если сила притяжения молекул мала, то жидкая фаза расслаивается на два слоя. Каждый из них посылает молекулы в паровую фазу так, как будто бы он находится в растворе один. В этом случае общее давление паров равно сумме давлений чистых компонентов при данной температуре (линии 1 и 2).
10.10. Основные законы перегонки
Для двух взаимно растворимых жидкостей правило фаз Гиббса может быть записано так:
µ §, (10Ѓ|10)
где µ § Ѓ| число степеней свободы;

µ § Ѓ| число компонентов;

µ § Ѓ| число фаз.

Следовательно, из трех независимых параметров, полностью

определяющих состояние системы Ѓ| температуры µ §, давления µ § и концентрации µ § Ѓ| можно произвольно выбрать любые два; при этом определится значение третьего параметра, которое не может быть произвольным.

Вопрос о составе фаз, находящихся в равновесии, является важнейшим для изучения процессов перегонки. Основные закономерности этих процессов установлены Д.П. Коноваловым, который, исследуя растворы спиртов и органических кислот в воде, установил два основных закона.

Первый закон Д.П. Коновалова сформулирован следующим образом: "Пар, находящийся в равновесии с раствором, всегда содержит в избытке тот компонент, прибавление которого к жидкости повышает общее давление паров над ней или снижает температуру кипения". Иначе говоря, пар обогащается тем компонентом, прибавление которого к жидкости повышает общее давление паров над ней или снижает ее температуру кипения. Этот закон определяет качественный состав паровой фазы. Рассмотрим для примера систему С2Н5ОНЃ| Н2О. Прибавление к жидкой фазе спирта вызывает в этой системе снижение температуры кипения. Следовательно, при кипении паровая фаза будет обогащаться парами спирта. В случае идеальных растворов это положение будет справедливо для любого состава жидкой фазы.

Для растворов, кривая давления которых имеет максимум или минимум, существует некоторый состав жидкой смеси, при котором выделяющиеся пары имеют тот же состав, что и жидкая фаза. Такая смесь называется

нераздельнокипящей или азеотропной. Положение этой смеси на графике µ §устанавливается вторым законом Д.П. Коновалова: "В экстремумах давлений пара (или точек кипения) смесей составы жидкой и паровой фаз совпадают". К группе нераздельнокипящих смесей относится смесь этилового спирта и воды.
1   ...   10   11   12   13   14   15   16   17   ...   24

Похожие:

Курс лекций для студентов дневной формы обучения Энгельс 2009 введение iconУчебно-методический комплекс для специальности 080504 − Государственное...
Общепрофессиональный курс «Информатизация муниципальных органов» предназначен для студентов четвертого курса дневной, вечерней и...
Курс лекций для студентов дневной формы обучения Энгельс 2009 введение iconПрограмма по формированию навыков безопасного поведения на дорогах...
Методические указания предназначены для выполнения лабораторных работ по курсу «Технология автоматизированного машиностроения» для...
Курс лекций для студентов дневной формы обучения Энгельс 2009 введение iconУчебно методический комплекс Для студентов специальности 1 24 01...
Для студентов специальности 1 – 24 01 02 Правоведение юридического факультета дневной формы обучения
Курс лекций для студентов дневной формы обучения Энгельс 2009 введение iconРабочая программа Наименование дисциплины Учебная практика (ознакомительная)
По профилям подготовки Информационно-аналитическая деятельность (для студентов дневной формы обучения) и Технология автоматизированных...
Курс лекций для студентов дневной формы обучения Энгельс 2009 введение iconВыполнили: Воспитатель мдоу №45, г. Энгельс, Егорова Е. А. Воспитатель...
История развития географической науки и роль выдающих ученых в формировании системы географических знаний
Курс лекций для студентов дневной формы обучения Энгельс 2009 введение iconЧрезвычайные ситуации на химически опасных объектах с выбросом аварийно...
Чрезвычайные ситуации на химически опасных объектах с выбросом аварийно химически опасных веществ (ахов) в окружающую природную среду:...
Курс лекций для студентов дневной формы обучения Энгельс 2009 введение iconМосковский государственный университет технологий и управления
Учебно-практическое пособие предназначено для студентов 3 курса сокращенной и 5 курса полной форм обучения, а также 3 и 4 курсов...
Курс лекций для студентов дневной формы обучения Энгельс 2009 введение iconПрограмма курса для специальности 020400 Психология
Курс “Зоо- и сравнительная психология” является общепрофессиональной дисциплиной и предназначен для студентов 1 курса Института психологии...
Курс лекций для студентов дневной формы обучения Энгельс 2009 введение iconТематический план для студентов дневной формы обучения 4 тематический...
Предприятия питания в индустрии туризма и гостеприимства: учебно-методический комплекс для студентов специальности 080507 «Менеджмент...
Курс лекций для студентов дневной формы обучения Энгельс 2009 введение iconПрограмма по формированию навыков безопасного поведения на дорогах...
Конспект лекций по курсу «Делопроизводство» составлен на основе базовой программы «Делопроизводство и документационное обеспечение...
Курс лекций для студентов дневной формы обучения Энгельс 2009 введение iconУчебное пособие к курсу лекций «Введение в современную литературу»
Предлагаемое издание является учебным пособием к вузовскому курсу «Введение в современную литературу», который читается для студентов...
Курс лекций для студентов дневной формы обучения Энгельс 2009 введение iconМетодическое пособие для студентов Составил: Андраковский Максим...
...
Курс лекций для студентов дневной формы обучения Энгельс 2009 введение iconЭкзаменационные вопросы по математике для студентов 2 курса гф дистанционно-заочной...
Курс высшей математики. Введение в математический анализ. Дифференциальное исчисление. Лекции и практикум: Учебное пособие / Под...
Курс лекций для студентов дневной формы обучения Энгельс 2009 введение iconТематика рефератов по отечественной истории для студентов 1 курса...

Курс лекций для студентов дневной формы обучения Энгельс 2009 введение iconПланы семинарских занятий для студентов дневной формы обучения Планы...
«Административное право» и предназначен для студентов мгюа и пмюи всех форм обучения
Курс лекций для студентов дневной формы обучения Энгельс 2009 введение iconЧрезвычайные ситуации мирного и военного времени. Характеристика...
Чрезвычайные ситуации мирного и военного времени. Характеристика зон чрезвычайных ситуаций: метод, разработка для студентов всех...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск