Реферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби»





Скачать 386.43 Kb.
НазваниеРеферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби»
страница2/3
Дата публикации26.12.2014
Размер386.43 Kb.
ТипРеферат
100-bal.ru > Математика > Реферат
1   2   3

1.3 Дроби в Древнем Вавилоне.
Известно, что в древнем Вавилоне использовали шестидесятеричную систему счисления. Ученые этот факт связывают с тем, что вавилонская денежная и весовая единицы измерения подразделялись в силу исторических условий на 60 равных частей: 1 талант = 60 мин; 1 мина = 60 шекель. Шестидесятые доли были привычны в жизни вавилонян. Вот почему они пользовались шестидесятеричными дробями, имеющими знаменателем всегда число 60 или его степени: 602 = 3600, 603 = 216000 и т.д. Это первые в мире систематические дроби, т.е. дроби, у которых знаменателем являются степени одного и того же числа. Пользуясь такими дробями, вавилоняне должны были многие дроби изображать приближенно. В этом недостаток и в то же время преимущество этих дробей. Эти дроби стали постоянным орудием научных вычислений греческих, а затем арабоязычных и средневековых европейских ученых вплоть до XV века, пока не уступили место десятичным дробям. Но шестидесятеричными дробями пользовались в астрономии ученые всех народов вплоть до XVII, называя их астрономическими дробями.

Шестидесятеричная система счисления предопределила большую роль в математике Вавилона различных таблиц. Полная вавилонская таблица умножения должна была бы содержать произведения от 1х1 до 59х59, то есть 1770 чисел, а не 45 как наша таблица умножения. Запомнить наизусть такую таблицу практически невозможно. Даже в записанном виде она была бы очень громоздкой. Поэтому для умножения, как и для деления, существовал обширный набор различных таблиц. Операцию деления в вавилонской математике можно назвать «проблемой номер один». Деление числа m на число n вавилоняне сводили к умножению числа m на дробь 1\ n и даже термина «делить» у них не существовало. Например, при вычислении того, что мы записали бы как х = m : n, они всякий раз рассуждали так: возьми обратную от n, ты увидишь 1\ n, умножь m на 1\ n, и ты увидишь х. Конечно, вместо наших букв жители Вавилона называли конкретные числа. Таким образом, важнейшую роль в вавилонской математике играли многочисленные таблицы обратных величин.

Кроме того, для вычислений с дробями вавилоняне составляли обширнейшие таблицы, выражавшие в шестидесятиричных дробях основные дроби. Например:
1\16 = 3\60 + 45\602, 1\54 = 1\60 + 6\602 + 40\603.

Сложение и вычитание дробей вавилонянами производилось аналогично соответствующим действиям над целыми числами и десятичными дробями в нашей позиционной системе счисления. Но как умножалась дробь на дробь? Достаточно высокое развитие измерительной геометрии (землемерие, измерение площадей) позволяет предположить, что вавилоняне преодолевали эти затруднения с помощью геометрии: изменение линейного масштаба в 60 раз дает изменение масштаба площади в 60 · 60 раз. Следует заметить, что в Вавилоне расширение области натуральных чисел до области положительных рациональных чисел окончательно не произошло, так как вавилоняне рассматривали только конечные шестидесятеричные дроби, в области которых деление не всегда выполнимо. Кроме того, у вавилонян в обиходе были дроби 1\2,1\3,2\3,1\4,1\5,1\6,5\6, для которых существовали индивидуальные знаки.

Следы вавилонской шестидесятеричной системы счисления удержались в современной науке при измерении времени и углов. До наших дней сохранилось деление часа на 60 минут, минуты на 60 секунд, окружности на 360 градусов, градуса на 60 минут, минуты на 60 секунд Минута означает по-латыни «маленькая часть», секунда- «вторая»

( маленькая часть). [2]
1.4. Дроби в Древнем Риме.
Римляне пользовались, в основном, только конкретными дробями, которые заменяли абстрактные части подразделами используемых мер. Эта система дробей основывалась на делении на 12 долей единицы веса, которая называлась асс. Так возникли римские двенадцатеричные дроби, т.е. дроби у которых знаменатель всегда был двенадцать. Двенадцатую долю асса называли унцией. Вместо 1\12 римляне говорили «одна унция», 5\12 – «пять унций» и т.д. Три унции назывались четвертью, четыре унции – третью, шесть унций – половиной.

А путь, время и другие величины сравнивали с наглядной вещью- весом. Например, римлянин мог сказать, что он прошел семь унций пути или прочел пять унций книги. При этом, конечно, речь шла не о взвешивании пути или книги. Имелось в виду, что пройдено 7/12 пути или прочтено 5/12 книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия. Всего применялось 18 различных названий дробей. Например, в ходу были такие названия:


“скрупулус” - 1/288 асса,

”семис”- половина асса,

“секстанс”- шестая его доля,

“семиунция”- половина унции, т.е. 1/24 асса и т.д.
Чтобы работать с такими дробями, надо было помнить для этих дробей таблицу сложения и таблицу умножения. Поэтому римские купцы твёрдо знали, что при сложении триенса (1/3 асса) и секстанса получается семис, а при умножении беса (2/3 асса) на сескунцию ( 2/3 унции, т.е.1/8 асса) получается унция. Для облегчения работы составлялись специальные таблицы, некоторые из которых дошли до нас.

Унция обозначалась чертой - ,половина асса (6 унций) – буквой S (первой в латинском слове Semis-половина). Эти два знака служили для записи любой двенадцатеричной дроби, каждая из которых имела свое название. Например, 7\12 записывались так: S-.

Ещё в первом веке до нашей эры выдающийся римский оратор и писатель Цицерон говорил: “Без знания дробей никто не может признаваться знающим арифметику!”.

Характерен следующий отрывок из произведения знаменитого римского поэта I века до нашей эры Горация, о беседе учителя с учеником в одной из римских школ той эпохи:

- Учитель: Пусть скажет Сын Альбина, сколько останется, если от пяти унций отнять одну унцию!

- Ученик: Одна треть.

- Учитель: Правильно, ты хорошо знаешь дроби и сумеешь сберечь своё имущество. [1]
1.5. Дроби в Древней Греции.  
В Древней Греции арифметику – учение об общих свойствах чисел – отделяли от логистики – искусства исчисления. Греки считали, что дроби можно использовать только в логистике. Греки свободно оперировали всеми арифметическими действиями с дробями, но числами их не признавали. В греческих сочинениях по математике дробей не встречалось. Греческие ученые считали, что математика должна заниматься только целыми числами. Возиться с дробями они предоставляли купцам, ремесленникам, а также астрономам, землемерам, механикам и другому «черному люду». «Если ты захочешь делить единицу, математики высмеют тебя и не позволят это делать»,- писал основатель афинской академии Платон.

Но не все древнегреческие математики соглашались с Платоном. Так в трактате «Об измерении круга» Архимед употребляет дроби. С дробями свободно обращался и Герон Александрийский. Он подобно египтянам разбивает дробь на сумму основных дробей. Вместо 12\13 он пишет 1\2 + 1\3 + 1\13 + 1\78, вместо 5\12 пишет 1\3 + 1\12 и.т.п. Даже Пифагор, со священным трепетом относившийся к натуральным числам, создавая теорию музыкальной шкалы, связал основные музыкальные интервалы с дробями. Правда, самим понятием дроби Пифагор и его ученики не пользовались. Они позволяли себе говорить лишь об отношениях целых чисел.

Поскольку греки работали с обыкновенными дробями лишь эпизодически, они использовали различные обозначения. Герон и Диофант записывали дроби в алфавитной форме, причем числитель располагали под знаменателем. Для некоторых дробей применялись отдельные обозначения, например, для 1\2 - L′′, но в целом их алфавитная нумерация с трудом позволяла обозначать дроби.

Для единичных дробей применялась особая запись: знаменатель дроби сопровождался штрихом справа, числитель не писали. Например, в алфавитной системе означало 32, а ' – дробь 1\32. Встречаются такие записи обыкновенных дробей, в которых числитель со штрихом и дважды взятый знаменатель с двумя штрихами пишутся рядом в одной строке. Вот как записывал, например, Герон Александрийский дробь 3\4: .[5]

Недостатки греческих обозначений дробных чисел связано с тем, что слово «число» греки понимали как набор единиц, поэтому то, что мы теперь рассматриваем как единое рациональное число – дробь, – греки понимали как отношение двух целых чисел. Именно этим объясняется, почему обыкновенные дроби редко встречались в греческой арифметике. Предпочтение отдавалось либо дробям с единичным числителем, либо шестидесятиричным дробям. Областью, в которой практические вычисления испытывали величайшую потребность в точных дробях, была астрономия, а здесь вавилонская традиция была настолько сильна, что ее использовали все народы, включая Грецию.
1.6. Дроби на Руси
Первый русский математик, известный нам по имени, монах Новгородского монастыря Кирик занимался вопросами хронологии и календаря. В его рукописной книге «Учение им же ведати человеку числа всех лет» (1136 г.), т.е. «Наставление, как человеку познать счисление лет» применяется деление часа на пятые, двадцать пятые и т.д. доли, которые он называл «дробными часами» или «часцами». Доходит он до седьмых дробных часов, которых в дне или ночи 937 500, причем говорит, что от седьмых дробных уже ничего не получается. [5]

В первых учебниках математики (VII в.) дроби называли долями, позднее «ломаными числами». В русском языке слово дробь появилось в VIII веке, оно происходит от глагола «дробить» — разбивать, ломать на части. При записи числа использовалась горизонтальная черта.

В старых руководствах есть следующие названия дробей на Руси:

1/2 - половина, полтина

1/3 – треть

1/4 – четь

1/6 – полтреть

1/8 - полчеть

1/12 –полполтреть

1/16 - полполчеть

1/24 – полполполтреть (малая треть)

1/32 – полполполчеть (малая четь)

1/5 – пятина

1/7 - седьмина

1/10 – десятина.

Использовалась в России земельная мера четверть и более мелкая –

получетверть, которая называлась осьмина. Это были конкретные дроби, единицы для измерения площади земли, но осьминой нельзя было измерить время или скорость и др. Значительно позднее осьмина стала означать отвлеченную дробь 1/8, которой можно выразить любую величину.

О применении дробей в России XVII века можно прочитать в книге В.Беллюстина «Как постепенно люди дошли до настоящей арифметики» следующее: «В рукописи XVIIв. «Статия численная о всяких долях указ «начинается прямо с письменного обозначения дробей и с указания числителя и знаменателя. При выговаривании дробей интересны такие особенности: четвертая часть называлась четью, доли же со знаменателем от 5 до 11 выражались словами с окончанием «ина», так что 1/7 – седмина, 1/5 – пятина, 1/10 – десятина; доли же со знаменателями, большими 10, выговаривались с помощью слов «жеребей», например 5/13 – пять тринадцатых жеребьёв. Нумерация дробей была прямо заимствована из западных источников… Числитель назывался верхним числом, знаменатель исподним». [6]

С XVI века в России большой популярностью пользовался дощаной счет – вычисления при помощи прибора, бывшего прообразом русских счетов. Он позволял быстро и легко производить сложные арифметические действия. Дощаной счет имел весьма широкое распространение среди торговцев, служащих московских приказов, «мерщиков» - землемеров, монастырских экономов и т.д.

В первоначальной форме дощаной счет был специально приспособлен к нуждам сошной арифметики. Это система налогового обложения в России 15—17 вв., при которой, наряду со сложением, вычитанием, умножением и делением целых чисел, надо было производить те же операции и с дробями, поскольку условная единица обложения — соха, делилась на части.

Дощаный счёт представлял собой два складывающихся ящика. Каждый ящик разгораживался надвое (позже только внизу); второй ящик был необходим ввиду особенностей денежного счёта. Внутри ящика на натянутые шнуры или проволоку нанизывались кости. В соответствии с десятичной системой счисления ряды для целых чисел имели по 9 или 10 костей; операции с дробями производились на неполных рядах: ряд из трёх костей составлял три трети, ряд из четырёх костей — четыре четверти (чети). Ниже располагались ряды, в которых было по одной кости: каждая кость представляла половину от той дроби, под которой она располагалась (например, кость расположенная под рядом из трех костей, составляла половину от одной трети, кость под ней — половину от половины одной трети, и т. д.). Сложение двух одинаковых «сошных» дробей дает дробь ближайшего высшего разряда, например, 1/12+1/12=1/6 и т.п. На счетах сложение двух таких дробей соответствует переход к ближайшей вышестоящей костяшке.

Дроби суммировались без приведения к общему знаменателю, например «четь да полтрети, да полполчети» (1/4 + 1/6 + 1/16). Иногда операции с дробями производились как с целыми при помощи приравнивания целого (сохи) к определённой сумме денег. Например, при равенстве соха = 48 денежным единицам приведённая выше дробь составит 12 + 8 + 3 = 23 денежные единицы.

В сошной арифметике приходилось иметь дело и с более мелкими дробями. В некоторых рукописях приводятся чертежи и описания «дщиц счетных», аналогичных только что рассмотренным, но с большим числом рядов с одной костью, так что на них можно откладывать доли до 1/128 и 1/96. Несомненно, что изготовлялись и соответствующие приборы. Для удобства вычислителей приводилось много правил «Свода мелких костей», т.е. сложения употребительных в сошном счете дробей, вроде: три чети сохи да полчети сохи да пол-полчети сохи и т.д. вплоть до пол-пол-пол-пол-полчети сохи составляют соху без пол-пол-пол-пол-полчети, т.е. 3/4+1/8+1/16+1/32 +1/64 + 1/128 = 1 - 1/128 и т.п.

Но из дробей рассматривались только 1/2 и 1/3, а также полученные из них при помощи последовательного деления на 2. Для действий с дробями других рядов "дощатый счет" приспособлен не был. При оперировании с ними нужно было обращаться к специальным таблицам, в которых приводились итоги разного сочетания дробей.

В 1703г. выходит в свет первый русский печатный учебник по математике «Арифметика». Автор Магницкий Леонтий Филлипович. Во 2-ой части этой книги “О числах ломаных или с долями” подробно излагается учение о дробях.

Оно у Магницкого носит почти современный характер. Магницкий подробнее, чем современные учебники, останавливается на вычислении долей. Дроби Магницкий рассматривает как именованные числа (не просто 1/2, а 1/2 рубля, пуда и т.п.), а действия с дробями изучает в процессе решения задач. Что есть число ломаное, Магницкий отвечает: «Число ломаное не что же иное есть, токмо часть вещи, числом объявленная, сиречь полтина есть половина рубля, а пишется сице рубля, или рубля, или рубля, или две пятые части и всякие вещи яковые либо часть, объявлена числом, то есть ломаное число» [1]. Магницкий приводит название всех правильных дробей со знаменателями от 2 до 10. Например, дроби со знаменателем 6: едина шестина, две шестины, три шестины, четыре шестины, пять шестин.

Магницкий использует название числитель, знаменатель, рассматривает неправильные дроби, смешанные числа, помимо всех действий выделяет целую часть из неправильной дроби.

Учение о дробях всегда оставалось труднейшим разделом арифметики, но в то же время в любую из предшествующих эпох люди сознавали важность изучения дробей, и учителя в стихах и прозе старались приободрить своих учеников. Л.Магницкий писал:

Но несть той арифметик,

Ижо в целых ответчик,

А в долях сий ничтоже,

Отвещати возможе.

емже о ты радеяй,

Буди в частях умеяй.
1.7. Дроби в Древнем Китае
В Китае практически все арифметические операции с обыкновенными дробями были установлены уже ко II в. до н. э.; они описаны в фундаментальном своде математических знаний древнего Китая – «Математике в девяти книгах», окончательная редакция которой принадлежит Чжан Цану. Вычисляя на основе правила, аналогичного алгоритму Евклида, (наибольший общий делитель числителя и знаменателя), китайские математики сокращали дроби. Умножение дробей представлялось как нахождение площади прямоугольного земельного участка, длина и ширина которого выражены дробными числами. Деление рассматривалось с помощью идеи дележа, при этом китайских математиков не смущало, что число участников дележа может быть дробным, например, 3⅓ человека.

Первоначально китайцы использовали простейшие дроби, которые получили наименования с использованием иероглифа бань :

бань («половина») –1\2;

шао бань («малая половина») –1\3;

тай бань («большая половина») –2\3.

Следующим этапом было развитие общего представления о дробях и формирование правил оперирования с ними. Если в древнем Египте применялись только аликвотные дроби, то в Китае они, считаясь долями-фэнь, мыслились как одна из разновидностей дробей, а не единственно возможные. Китайская математика с древних времен имела дело со смешанными числами. Самый ранний из математических текстов, «Чжоу би суань цзин» («Канон расчета чжоуского гномона»/«Математический трактат о гномоне»), содержит вычисления, при которых возводятся в степень такие числа, как, например, 247933/1460. [5]

В «Цзю чжан суань шу» («Правила счета в девяти разделах») дробь рассматривается как часть целого, которая выражается в n-ном числе его долей-фэнь – m (n < m). Дробь – это «застывший» процесс деления одного числа на другое – делимого на делитель. Дробь всегда меньше единицы. Если в результате деления одного числа на другое получается остаток, то он принимается как числитель дроби, знаменателем которой является делитель. Например, при делении 22 на 5 получается 4 и остаток 2, который дает дробь 2\5.

В первом разделе «Цзю чжан суань шу», посвященном в целом измерению полей, отдельно приводятся правила сокращения, сложения, вычитания, деления и умножения дробей, а также их сравнения и «уравнивания», т.е. такого сравнения трех дробей, при котором необходимо найти их среднее арифметическое (более простое правило вычисления среднего арифметического двух чисел в книге не приводится).

Например, для получения суммы дробей в указанном сочинении предлагается следующая инструкция: «Поочередно перемножьте (ху чэн) числители на знаменатели. Сложите – это делимое (ши). Перемножьте знаменатели – это делитель (фа). Делимое соедините с делителем в одно (и). Если имеется остаток, то свяжите его с делителем». Эта инструкция означает, что если складывается несколько дробей, то числитель каждой дроби надо умножить на знаменатели всех остальных дробей. При «соединении» делимого (как суммы результатов такого умножения) с делителем (произведение всех знаменателей) получается дробь, которую следует при необходимости сократить и из которой путем деления следует выделить целую часть, тогда «остаток» – это числитель, а сокращенный делитель – это знаменатель. Сумма набора дробей есть результат такого деления, состоящий из целого числа плюс дробь. Указание «перемножьте знаменатели» означает, по сути, приведение дробей к наибольшему общему знаменателю.

Правило сокращения дробей в «Цзю чжан суань шу» содержит алгоритм нахождения общего наибольшего делителя числителя и знаменателя, который совпадает с так называемым алгоритмом Евклида, предназначенным для определения общего наибольшего делителя двух чисел. Но если последний, как известно, дан в «Началах» в геометрической формулировке, то китайский алгоритм представлен чисто арифметически. Китайский алгоритм нахождения общего наибольшего делителя, называемого дэн шу ( «одинаковое число»), строится как последовательное вычитание меньшего числа из большего. На это число дэн шу и надо сократить дробь. Например, предлагается сократить дробь 49\91. Проводим последовательное вычитание: 91 – 49 = 42; 49 – 42 = 7; 42 – 7 – 7 – 7 – 7 – 7 – 7 = 0. Дэн шу = 7. Сокращаем дробь на это число. Получаем:7\13.

Деление дробей в «Цзю чжан суань шу» отличается от принятого сегодня. В правиле «цзин фэнь» («порядок деления») указывается, что перед делением дробей их следует привести к общему знаменателю. Таким образом, процедура деления дробей имеет излишний этап: a/b : c/d = ad/bd : cb/bd = ad/cb. Только в V в. Чжан Цю-цзянь в своем сочинении «Чжан Цю-цзянь суань цзин» («Счетный канон Чжан Цю-цзяня») от него избавился, производя деление дробей по обычному правилу: a/b : c/d = ad/cb.

Возможно, долгая приверженность китайских математиков к усложненному алгоритму деления дробей была обусловлена стремлением сохранить его универсальность и использованием счетной доски. По сути дела, он заключается в сведении деления дробей к делению целых чисел. Этот алгоритм справедлив, если делится целое число на смешанное. В делении, например, 2922 на 1825/8, оба числа сначала умножались на 8, что позволяло далее делить целые числа: 23376:1461= 16
1.8. Дроби в других государствах древности и средних веков.
Дальнейшее развитие понятия обыкновенной дроби было достигнуто в Индии. Математики этой страны сумели достаточно быстро перейти от единичных дробей к дробям общего вида. Впервые такие дроби встречаются в «Правилах веревки» Апастамбы (VII-Vв. до н.э.), которые содержат геометрические построения и результаты некоторых вычислений. В Индии использовалась система записи – возможно, китайского, а возможно, позднегреческого происхождения, – при которой числитель дроби писался над знаменателем – как у нас, но без дробной черты, зато вся дробь помещалась в прямоугольную рамку. Иногда использовалось и «трехэтажное» выражение с тремя числами в одной рамке; в зависимости от контекста это могло обозначать неправильную дробь (a + b/c) или деление целого числа a на дробь b/c.

Например, дробь записывали как

2

1

5

Правила действий с дробями, изложенные индийским ученым Брамагуптой (VIII в.), почти не отличались от современных. Как и в Китае, в Индии для приведения к общему знаменателю долгое время перемножали знаменатели всех слагаемых, но с IX в. пользовались уже наименьшим общим кратным.

Средневековые арабы пользовались тремя системами записи дробей. Во-первых, на индийский манер, записывая знаменатель под числителем; дробная черта появилась в конце XII – начале XIII в. Во-вторых, чиновники, землемеры, торговцы пользовались исчислением аликвотных дробей, похожим на египетское, при этом применялись дроби со знаменателями, не превышающими 10 (только для таких дробей арабский язык имеет специальные термины); часто использовались приближенные значения; арабские ученые работали над усовершенствованием этого исчисления. В-третьих, арабские ученые унаследовали вавилонско-греческую шестидесятеричную систему, в которой, как и греки, применяли алфавитную запись, распространив ее и на целые части.

Индийское обозначение дробей и правила действий над ними были усвоены в IX в. в мусульманских странах благодаря Мухаммеду Хорезмскому (аль-Хорезми). В торговой практике стран Ислама широко пользовались единичными дробями, в науке применяли шестидесятиричные дроби и в гораздо меньшей мере обыкновенные дроби. Ал-Караджи (X-XI вв.), ал-Хассар (XII в.), ал-Каласади (XVв.) и другие ученые представляли в своих трудах правила представления обыкновенных дробей в виде сумм и произведений единичных дробей. Сведения о дробях были перенесены в Западную Европу итальянским купцом и ученым Леонардо Фибоначчи из Пизы (XIII в.). Он ввел слово дробь, стал применять черту дроби (1202г), дал формулы для планомерного разбиения дробей на основные. Названия числитель и знаменатель ввел в 13 веке Максим Плануд – греческий монах, ученый, математик. Способ приведения дробей к общему знаменателю был предложен в 1556 г. Н.Тартальей. Современная схема сложения обыкновенных дробей встречается в 1629г. у А.Жирара.
II. Применение обыкновенных дробей
2.1 Аликвотные дроби
Задачи с использованием аликвотных дробей составляют обширный класс  нестандартных задач, в том числе пришедших из глубины веков. Аликвотные дроби используются тогда, когда требуется что-то разделить на несколько частей с наименьшим количеством действий для этого. [3] Разложение дробей вида 2/n и 2/(2n +1) на две аликвотные дроби систематизировано в виде формул

2/n=1/n + 1/n; например, при n = 9 2\9 = 1\9 + 1\9

2/(2n+1)=1/(n+1) + 1/(2n+1)(n+1), например, при n = 2      2/5=1/3 + 1/15
2/(2n+1)=1/(2n+1) + 1/(2n+1) например, при n = 5        2/11=1/6 + 1/66 . 
Разложение на три, четыре, пять и т.д. аликвотных дробей можно произвести, разложив одно из слагаемых на две дроби, следующее слагаемое еще на две аликвотные дроби и т.д.

Чтобы представить какое-либо число в виде суммы аликвотных дробей, порой приходится проявлять незаурядную изобретательность. Скажем, число 2/43 выражается так: 2/43=1/42+1/86+1/129+1/301. Производить арифметические действия над числами, раскладывая их в сумму долей единицы, очень неудобно. Поэтому в процессе решения задач для разложения аликвотных дробей в виде суммы меньших аликвотных дробей возникла идея систематизировать разложение дробей в виде формулы. Эта формула действует, если требуется разложение аликвотной дроби на две аликвотные дроби.
Формула выглядит следующим образом:

1/n=1/(n+1) + 1/n ·(n+1)
Примеры разложения дробей:

1/3=1/(3+1)+1/3·(3+1)=1/4 +1/12;

1/5=1/(5+1)+1/5·(5+1)=1/6 +1/30;

1/8=1/(8+1)+1/8·(8+1)=1/9+ 1/72.
Эту формулу можно преобразовать и получить следующее полезное равенство: 1/n·(n+1)=1/n -1/(n+1)
Например, 1/6=1/(2·3)=1/2 -1/3
То есть аликвотную дробь можно представить разностью двух аликвотных дробей, или разность двух аликвотных, знаменателями которых являются последовательные  числа  равные  их  произведению.
Пример. Представить число 1 в виде сумм различных аликвотных дробей
а) трех слагаемых 1=1/2+1/2=1/2+(1/3+1/6)=1/2+1/3+1/6

б) четырех слагаемых

1=1/2+1/2=1/2+(1/3+1/6)=1/2+1/3+1/6=1/2+1/3+(1/7+1/42)= 1/2+1/3+1/7+1/42

в) пяти слагаемых

1=1/2+1/2=1/2+(1/3+1/6)=1/2+1/3+1/6=1/2+1/3+(1/7+1/42)=1/2+1/3+1/7+1/42=1/2+(1/4+ +1/12) +1/7+1/42=1/2+1/4+1/12 +1/7+1/42


2.2 Вместо мелких долей крупные
На машиностроительных заводах есть очень увлекательная профессия, называется она - разметчик. Разметчик намечает на заготовке линии, по которым эту заготовку следует обрабатывать, чтобы придать ей необходимую форму.

Разметчику приходится решать интересные и подчас нелегкие геометрические задачи, производить арифметические расчеты и т. д.
"Понадобилось как-то распределить 7 одинаковых прямоугольных пластинок равными долями между 12 деталями. Принесли эти 7 пластинок разметчику и попросили его, если можно, разметить пластинки так, чтобы не пришлось дробить ни одной из них на очень мелкие части. Значит, простейшее решение - резать каждую пластинку на 12 равных частей - не годилось, так как при этом получалось много мелких долей. Как же быть?
Возможно ли деление данных пластинок на более крупные доли? Разметчик подумал, произвел какие-то арифметические расчеты с дробями и нашел все-таки самый экономный способ деления данных пластинок.
Впоследствии он легко дробил 5 пластинок для распределения их равными долями между шестью деталями, 13 пластинок для 12 деталей, 13 пластинок для 36 деталей, 26 для 21 и т. п.

Оказывается, разметчик представил дробь 7\12 в виде суммы единичных дробей 1\3 + 1\4. Значит, если из 7 данных пластинок 4 разрезать на три равные части каждую, то получим 12 третей, то есть по одной трети для каждой детали. Остальные 3 пластинки разрежем 4 равные части каждую, получим 12 четвертей, то есть по одной четверти для каждой детали. Аналогично, используя представления дробей в виде суммы единичных дробей 5\6=1\2+1\3; 13\121\3+3\4; 13\36=1\4+1\9. [4]
2.3 Дележи при затруднительных обстоятельствах
Есть известная восточная притча о том, что отец оставил сыновьям 17 верблюдов и велел разделить между собой: старшему половину, среднему - треть, младшему- девятую часть. Но 17 не делится ни на 2, ни на 3, ни на 9. Сыновья обратились к мудрецу. Мудрец был знаком с дробями и смог помочь в этой затруднительной ситуации.

Он пустился на уловку. Мудрец прибавил к стаду на время своего верблюда, тогда их стало 18. Разделив это число, как сказано в завещании, мудрец забрал своего верблюда обратно. Секрет в том, что части, на которые по завещанию должны были делить стадо сыновья, в сумме не составляют 1. Действительно, 1\2 + 1\3 + 1\9 = 17\18.

Таких задач достаточно много. Например, задача из русского учебника о 4 друзьях, нашедших кошелек с 8 кредитными билетами: по одному в один, три, пять рублей, а остальные десятирублевые. По обоюдному согласию один хотел третью часть, второй-четверть, третий- пятую, четвертый-шестую. Однако самостоятельно они этого сделать не смогли: помог прохожий, предварительно добавив свой рубль. Чтобы разрешить эту трудность прохожий сложил единичные дроби 1\3 + 1\4 + 1\5 + 1\6 = 57\60, удовлетворив запросы друзей и заработав 2 рубля для себя. [3]
III. Занимательные дроби
3.1 Дроби-домино
Домино – настольная игра, распространенная во всем мире. Игра домино чаще всего состоит из 28 прямоугольных плиток-костей. Костяшка домино представляет собой прямоугольную плитку, лицевая сторона которой разделена линией на две квадратные части. Каждая часть содержит от нуля до шести точек. Если убрать кости, не содержащие очков хотя бы на одной половине (бланши), то оставшиеся кости можно рассматривать как дроби. Кости, обе половины которых содержат по одинаковому количеству очков (дубли), представляют из себя неправильные дроби, равные единице. Если убрать еще эти кости, то останется 15 костей. Их можно располагать по-разному и получать интересные результаты. [4]
1. Расположение в 3 ряда, сумма дробей в каждом из которых, равна 2.

; ;
2. Расположение всех 15 костей в три ряда по 5 костей в каждом, употребляя некоторые из костей домино как неправильные дроби, например 4/3, 6/1, 3/2 и т. д., так, чтобы сумма дробей в каждом ряду равнялась числу 10.
1\3+6\1+3\4+5\3+5\4=10

2\1+5\1+2\6+6\3+4\6=10

4\1+2\3+4\2+5\2+5\6=10
3. Расположение в ряды дробей, сумма которых будет числом целым (но разным в разных рядах).
3.2 Из глубины веков.

«Он скрупулёзно изучил этот вопрос». Это означает, что вопрос изучен до конца, что не одной самой малой неясности не осталось. А происходит странное слово «скрупулёзно» от римского названия 1/288 асса – «скрупулус».

«Попасть в дроби». Это выражение означает попасть в трудное положение.

«Асс» - единица измерения массы в фармакологии (аптекарский фунт).

«Унция» - единица массы в английской системе мер, единица измерения массы в фармакологии и химии.
IV. Заключение.
Учение о дробях считалось самым трудным разделом математики во все времена и у всех народов. Кто знал дроби, был в почете. Автор старинной славянской рукописи XVв. пишет: «Несть се дивно, что …в целых, но есть похвально, что в долях…».

Я сделала вывод, что история обыкновенных дробей - это извилистая дорога со многими препятствиями и трудностями. При работе над рефератом я узнала много нового и интересного. Прочитала много книг и разделов из энциклопедий. Познакомилась с первыми дробями, которыми оперировали люди, с понятием аликвотная дробь, узнала новые для меня имена ученых, внесших свой вклад в развитие учения о дробях. Сама попробовала решать олимпиадные и занимательные задачи, самостоятельно подбирала примеры разложения обыкновенных дробей на аликвотные дроби, разбирала решение приведенных в текстах примеров и задач. Ответ на вопрос, который я задала себе перед началом работы над рефератом: обыкновенные дроби необходимы, они важны. Интересно было готовить презентацию, пришлось обращаться за помощью к учителю и одноклассникам. Так же при наборе текста я впервые столкнулась с необходимостью печатать дроби и дробные выражения. На школьной конференции я представила свой реферат. Так же выступала перед своими одноклассниками. Слушали очень внимательно и, по-моему, им было интересно.

Задачи, которые я ставила перед началом работы над рефератом, считаю, мною выполнены.
Литература.

1.Бородин А.И. Из истории арифметики. Головное издательство «Вища школа»-К.,1986

2. Глейзер Г. И. История математики в школе: IV-VI кл. Пособие для учителей. – М.: Просвещение, 1981.

3.Игнатьев Е.И. В царстве смекалки. Главная редакция физико-математической литературы издательства «Наука»,М.,1978.

4. Кордемской Г.А.Математическая смекалка.-10-е изд., перераб. И доп.-М.:Юнисам,МДС,1994.

5.Стройк Д.Я. Краткий очерк истории математики. М.: Наука, 1990.

6.Энциклопедия для детей. Том 11. Математика. Москва, «Аванта+»,1998.

7. http://ru.wikipedia.org/wiki.Материал из Википедии — свободной энциклопедии.


Приложение 1.

Природный звукоряд

Все знают, что Пифагор был учёным и, в частности, автором знаменитой теоремы. А то, что он был еще и блестящим музыкантом, известно не так широко. Сочетание этих дарований позволило ему первым догадаться о существовании природного звукоряда. Надо было ещё доказать это. Пифагор построил для своих экспериментов полуинструмент-полуприбор — «монохорд». Это был продолговатый ящик с натянутой поверх него струной. Под струной, на верхней крышке ящика, Пифагор расчертил шкалу, чтобы удобнее было зрительно делить струну на части. Множество опытов проделал Пифагор с монохордом и, в конце концов, описал математически поведение звучащей струны. Работы Пифагора легли в основу науки, которую мы называем сейчас музыкальной акустикой. Оказывается, для музыки семь звуков внутри октавы такая же естественная вещь, как десять пальцев на руках в арифметике. Уже тетива самого первого лука, колеблясь после выстрела, давала готовым тот набор музыкальных звуков, которыми мы почти без изменения пользуемся до сих пор.

С точки зрения физики тетива и струна — одно и то же. Да и сделал человек струну, обратив внимание на свойства тетивы. Звучащая струна колеблется не только целиком, но одновременно и половинками, третями, четвертями и т.д. Подойдём теперь к этому явлению с арифметической стороны. Половинки колеблются вдвое чаще, чем целая струна, трети — втрое, четверти — вчетверо. Словом, во сколько раз меньше колеблющаяся часть струны, во столько же раз больше частота её колебаний. Допустим, вся струна колеблется с частотой 24 герца. Высчитывая колебания долей вплоть до шестнадцатых, мы получим ряд чисел, показанных в таблице. Эта последовательность частот так и называется — натуральный, т.е. природный, звукоряд.



1































24

48

72

96

120

144

168

192

216

240

264

288

321

336

360

384


Приложение 2.
Старинные задачи с использованием обыкновенных дробей.
В древних рукописях и старинных учебниках арифметики разных стран встречается много интересных задач на дроби. Решение каждой из таких задач требует немалой смекалки, сообразительности и умения рассуждать.
1. Приходит пастух с 70 быками. Его спрашивают:

- Сколько приводишь ты из своего многочисленного стада?

Пастух отвечает:

- Я привожу две трети от трети скота. Сочти, сколько быков в стаде?

Папирус Ахмеса (Египет, около 2000 лет до н.э.).

2. Некто взял из сокровищницы 1/13. Из того, что осталось, другой взял 1/17. Оставил же в сокровищнице 192. Мы хотим узнать, сколько было в сокровищнице первоначально

Акмимский папирус (VI в.)

3. Путник! Здесь прах погребён Диофанта. И числа поведать могут, о чудо, сколь долог был век его жизни.

1   2   3

Похожие:

Реферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби» iconРеферат по теме: «Необыкновенные обыкновенные дроби»
Не может быть так, что у нас в стране сложение дробей выполняют по одному правилу, а где-нибудь в Англии по-другому
Реферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби» iconУрок по теме: "Обыкновенные дроби". 5-й класс
Систематизация знаний по темам: "Обыкновенные дроби", "Сложение и вычитание смешанных чисел", "Сравнение обыкновенных дробей"
Реферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби» iconТема урока «Необыкновенные обыкновенные дроби»
Цель урока: обобщение понятий натурального числа и доли; ознакомить с понятием обыкновенная дробь; формирование навыка решения заданий...
Реферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби» iconУрок математики в 5-м классе по теме: "Обыкновенные дроби" Цели урока....
Закрепление умения сравнивать обыкновенные дроби и выполнять арифметические операции над ними
Реферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби» iconТема урока: «Обыкновенные дроби». Цель урока: закрепить пройденный...
Цель урока: усвоение знаний по теме: «Сложение и вычитание десятичных дробей», умение самостоятельно в комплексе применять зун, отработка...
Реферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби» iconУрок изучения нового материала 5 класс Тема: Доли. Обыкновенные дроби
Организовать деятельность учащихся по изучению понятий обыкновенные дроби, числитель и знаменатель дроби, доли
Реферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби» iconКонспект урока математики по учебнику А. Г. Мордкович. "Математика....
Учебник: Математика. 6 класс: учеб для общеобразоват учреждений / [Н. Я. Виленкин и др.]. 22-е изд., испр. – М. Мнемозина, 2008....
Реферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби» iconУрок математики в 5 классе по теме «Доли. Обыкновенные дроби»
Технологическая карта урока математики в 5 классе по теме: «Доли. Обыкновенные дроби»
Реферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби» iconУчебник для 5 класса общеобразовательных учреждений-Мнемозина, Москва,...
«Математика», Н. Я. Виленкин, В. И. Жохов. Учебник для 5 класса общеобразовательных учреждений-Мнемозина, Москва, 2008г
Реферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби» iconУрок обобщение (математика, 5 класс)
Сегодня у нас обобщающий урок по теме «Обыкновенные дроби». На этом уроке мы повторим правильные и неправильные дроби, сложение и...
Реферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби» iconУрок- повторение в 5 классе по теме «Обыкновенные дроби»
Обучающие: систематизировать знания учащихся об обыкновенных дробях. Совершенствовать умение складывать и вычитать дроби с одинаковыми...
Реферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби» iconПрограмма по формированию навыков безопасного поведения на дорогах...
Цель: подвести обучающихся к ответу по теме урока, повторить, как получить обыкновенные дроби, ввести понятие основного свойства...
Реферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби» icon«Обыкновенные дроби»
Цели: Обобщить и закрепить знания учащихся по понятию дроби, сложению и вычитанию
Реферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби» iconЗдравствуйте ребята! Продолжаем тему «Смешанные числа»
«Дробные числа», урок «Неправильные дроби. Смешанные числа», тренажер ( в конце конспекта в дополнительных рекомендациях), 5класс,...
Реферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби» iconКонспект урока повторения по теме «Обыкновенные дроби»
Частное общеобразовательное учреждение средняя общеобразовательная школа «Альтернатива»
Реферат по дисциплине: «Математика» по теме: «Необыкновенные обыкновенные дроби» iconРазработка урока Учитель: Жога Светлана Викторовна. Предмет: Математика
«Решать», «Закреплять»). А для чего вы объединились в группы? («Работать сообща», «Помогать друг другу») Сегодня мы закрепим понятия,...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск