Учебно-методический комплекс дисциплины





НазваниеУчебно-методический комплекс дисциплины
страница5/14
Дата публикации26.05.2015
Размер1.93 Mb.
ТипУчебно-методический комплекс
100-bal.ru > Математика > Учебно-методический комплекс
1   2   3   4   5   6   7   8   9   ...   14

Уравнения с разделяющимися переменными


Определение. Дифференциальное уравнение называется уравнением с разделяющимися переменными, если его можно записать в виде

.

Такое уравнение можно представить также в виде:



Перейдем к новым обозначениям

Получаем:



После нахождения соответствующих интегралов получается общее решение дифференциального уравнения с разделяющимися переменными.

Если заданы начальные условия, то при их подстановке в общее решение находится постоянная величина С, а, соответственно, и частное решение.

Пример. Найти общее решение дифференциального уравнения:







Интеграл, стоящий в левой части, берется по частям







  1. это есть общий интеграл исходного дифференциального уравнения, т.к. искомая функция и не выражена через независимую переменную. В этом и заключается отличие общего (частного) интеграла от общего (частного) решения.

Чтобы проверить правильность полученного ответа продифференцируем его по переменной х.



- верно

Пример. Найти решение дифференциального уравнения при условии у(2) = 1.











при у(2) = 1 получаем

Итого: или - частное решение;

Проверка: , итого

- верно.

Пример. Решить уравнение









- общий интеграл

- общее решение

Пример. Решить уравнение





Пример. Решить уравнение при условии у(1) = 0.







Интеграл, стоящий в левой части будем брать по частям





Если у(1) = 0, то

Итого, частный интеграл: .

Пример. Решить уравнение .











Для нахождения интеграла, стоящего в левой части . Получаем общий интеграл:



Пример. Решить уравнение

Преобразуем заданное уравнение:









Получили общий интеграл данного дифференциального уравнения. Если из этого соотношения выразить искомую функцию у, то получим общее решение.

Пример. Решить уравнение .





; ;



Допустим, заданы некоторые начальные условия х0 и у0. Тогда:



Получаем частное решение

Однородные уравнения.

Определение. Функция f(x, y) называется однородной n – го измерения относительно своих аргументов х и у, если для любого значения параметра t (кроме нуля) выполняется тождество:



Пример. Является ли однородной функция



Таким образом, функция f(x, y) является однородной 3- го порядка.

Определение. Дифференциальное уравнение вида называется однородным, если его правая часть f(x, y) есть однородная функция нулевого измерения относительно своих аргументов.

Любое уравнение вида является однородным, если функции P(x, y) и Q(x, y) – однородные функции одинакового измерения.

Решение любого однородного уравнения основано на приведении этого уравнения к уравнению с разделяющимися переменными.

Рассмотрим однородное уравнение

Т.к. функция f(x, y) – однородная нулевого измерения, то можно записать:



Т.к. параметр t вообще говоря произвольный, предположим, что . Получаем:



Правая часть полученного равенства зависит фактически только от одного аргумента , т.е.

Исходное дифференциальное уравнение таким образом можно записать в виде:



Далее заменяем y = ux, .



таким образом, получили уравнение с разделяющимися переменными относительно неизвестной функции u.



Далее, заменив вспомогательную функцию u на ее выражение через х и у и найдя интегралы, получим общее решение однородного дифференциального уравнения.

Пример. Решить уравнение .

Введем вспомогательную функцию u.

.

Отметим, что введенная нами функция u всегда положительна, т.к. в противном случае теряет смысл исходное дифференциальное уравнение, содержащее .

Подставляем в исходное уравнение:



Разделяем переменные:

Интегрируя, получаем:

Переходя от вспомогательной функции обратно к функции у, получаем общее решение:



Уравнения, приводящиеся к однородным.

Кроме уравнений, описанных выше, существует класс уравнений, которые с помощью определенных подстановок могут приведены к однородным.

Это уравнения вида .

Если определитель то переменные могут быть разделены подстановкой



где  и  - решения системы уравнений

Пример. Решить уравнение

Получаем

Находим значение определителя .

Решаем систему уравнений

Применяем подстановку в исходное уравнение:







Заменяем переменную при подстановке в выражение, записанное выше, имеем:


1   2   3   4   5   6   7   8   9   ...   14

Похожие:

Учебно-методический комплекс дисциплины iconУчебно-методический комплекс дисциплины красноярск 2012 пояснительная...
Учебно-методический комплекс дисциплины (умкд) «Психодиагностика» для студентов заочной формы обучения (3,5 года обучения) по специальности...
Учебно-методический комплекс дисциплины iconУчебно-методический комплекс дисциплины специальность 100110. 65...
Учебно-методический комплекс дисциплины (умкд) «Информационная культура» состоит из следующих элементов
Учебно-методический комплекс дисциплины iconУчебно-методический комплекс дисциплины специальность: 050706. 65 «Педагогика и психология»
Настоящий учебно-методический комплекс дисциплины (умкд) «Психолого-педагогическая коррекция» для студентов 5-го заочного отделения...
Учебно-методический комплекс дисциплины iconУчебно-методический комплекс дисциплины специальность : 040101. 65...
Учебно-методический комплекс дисциплины (умкд) «Информатика» для студентов очной формы обучения по специальности 040101. 65 социальная...
Учебно-методический комплекс дисциплины iconУчебно-методический комплекс дисциплины по выбору направление 050700. 62 «Педагогика»
Настоящий учебно-методический комплекс дисциплины по выбору (умкд) «Психолого-педагогическая коррекция» для студентов 4-го курса...
Учебно-методический комплекс дисциплины iconУчебно-методический комплекс дисциплины по направлению подготовки...
Учебно-методический комплекс дисциплины (умкд) «Основы экономических учений» состоит из следующих элементов
Учебно-методический комплекс дисциплины iconПояснительная записка Учебно-методический комплекс дисциплины (умкд)...
Учебно-методический комплекс дисциплины составлен к п н., доцентом Грасс Т. П., д э н., профессором Е. В. Щербенко
Учебно-методический комплекс дисциплины iconПояснительная записка Учебно-методический комплекс дисциплины (умкд)...
Учебно-методический комплекс дисциплины составлен к п н., доцентом Грасс Т. П., д э н., профессором Е. В. Щербенко
Учебно-методический комплекс дисциплины iconУчебно-методический комплекс дисциплины
Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего...
Учебно-методический комплекс дисциплины iconУчебно-методический комплекс дисциплины по направлению подготовки...
Учебно-методический комплекс дисциплины (умкд) «Основы экономических учений» состоит из следующих элементов
Учебно-методический комплекс дисциплины iconУчебно-методический комплекс «дисциплины»
Учебно-методический комплекс «дисциплины» физическая культура составлен в соответствии с Государственным образовательным стандартом...
Учебно-методический комплекс дисциплины iconУчебно-методический комплекс «дисциплины»
Учебно-методический комплекс «дисциплины» физическая культура составлен в соответствии с Государственным образовательным стандартом...
Учебно-методический комплекс дисциплины iconУчебно-методический комплекс дисциплины
Учебно-методический комплекс дисциплины Культура повседневности зарубежных стран Направление/ специальность — 031400. 62, культурология...
Учебно-методический комплекс дисциплины iconУчебно-методический комплекс дисциплины «информатика»
Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего...
Учебно-методический комплекс дисциплины iconУчебно-методический комплекс дисциплины «Риторика»
Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего...
Учебно-методический комплекс дисциплины iconУчебно-методический комплекс дисциплины
Учебно-методический комплекс дисциплины Источниковедение истории культуры Направление/ специальность — 031400. 62,культурология Форма...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск