Методическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования





НазваниеМетодическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования
страница10/10
Дата публикации26.12.2014
Размер1.18 Mb.
ТипМетодическая разработка
100-bal.ru > Военное дело > Методическая разработка
1   2   3   4   5   6   7   8   9   10

Ошибки операторов

Первоначально утверждалось, что операторы допустили многочисленные нарушения. В частности, в вину персоналу ставилось то, что они отключили некоторые системы защиты реактора, продолжили работу после падения мощности до 30 МВт и не остановили реактор, хотя знали, что оперативный запас реактивности меньше разрешённого. Было заявлено, что эти действия были нарушением установленных инструкций и процедур и стали главной причиной аварии.

В докладе МАГАТЭ 1993 года эти выводы были пересмотрены. Было признано, что большинство действий операторов, которые ранее считались нарушениями, на самом деле соответствовали принятым в то время правилам или не оказали никакого влияния на развитие аварии. В частности:

  • Длительная работа реактора на мощности ниже 700 МВт не была запрещена, как это утверждалось ранее.

  • Одновременная работа всех восьми насосов не была запрещена ни одним документом.

  • Отключение системы аварийного охлаждения реактора (САОР) допускалось, при условии проведения необходимых согласований. Система была заблокирована в соответствии с утверждённой программой испытаний и необходимое разрешение от Главного инженера станции было получено. Это не повлияло на развитие аварии — к тому моменту, когда САОР могла бы сработать, активная зона уже была разрушена.

  • Блокировка защиты, останавливающей реактор в случае остановки двух турбогенераторов, не только допускалась, но была обязательной при работе на низкой мощности.

  • То, что не была включена защита по низкому уровню воды в баках-сепараторах, технически, являлось нарушением регламента. Однако это нарушение не связано непосредственно с причинами аварии и, кроме того, другая защита (по более низкому уровню) была включена.

Теперь при анализе действий персонала основное внимание уделяется не конкретным нарушениям, а низкой «культуре безопасности». Следует отметить, что само это понятие специалисты по ядерной безопасности стали использовать лишь после чернобыльской аварии. Обвинение относится не только к операторам, но и к проектировщикам реактора, руководству АЭС и т. п. Эксперты указывают на следующие примеры недостаточного внимания к вопросам безопасности:

  • После отключения системы аварийного охлаждения реактора (САОР) 25 апреля от диспетчера Киевэнерго было получено указание отложить остановку энергоблока, и реактор несколько часов работал с отключённой САОР. У персонала не было возможности вновь привести САОР в состояние готовности (для этого нужно было вручную открыть несколько клапанов, а это заняло бы несколько часов), однако с точки зрения культуры безопасности, как её понимают сейчас, реактор следовало остановить, несмотря на требование Киевэнерго.

  • 25 апреля в течение нескольких часов оперативный запас реактивности (ОЗР), по измерениям, был меньше разрешённого (в этих измерениях, возможно, была ошибка, о которой персонал знал; реальное значение было в разрешённых пределах[14]). 26 апреля, непосредственно перед аварией, ОЗР также (на короткое время) оказался меньше разрешённого. Последнее стало одной из главных причин аварии. Эксперты МАГАТЭ отмечают, что операторы реактора не знали о важности этого параметра. До аварии считалось, что ограничения, установленные в регламенте эксплуатации, связаны с необходимостью поддержания равномерного энерговыделения во всей активной зоне. Хотя разработчикам реактора было известно (из анализа данных, полученных на Игналинской АЭС), что при малом запасе реактивности, срабатывание защиты может приводить к росту мощности, соответствующие изменения так и не были внесены в инструкции. Кроме того, не было средств для оперативного контроля этого параметра. Значения, нарушающие регламент, были получены из расчётов, сделанных уже после аварии на основании параметров, записанных регистрирующей аппаратурой.

  • При проведении эксперимента персонал отклонился от утверждённой программы и по своему усмотрению принял решение не поднимать мощность до предписанных 700 МВт после её падения.

Несмотря на то, что в новом докладе акценты были смещены и основными причинами аварии названы недостатки реактора, эксперты МАГАТЭ считают, что недостаточная квалификация персонала, его плохая осведомлённость об особенностях реактора, влияющих на безопасность, и неосмотрительные действия также явились важными факторами, приведшими к аварии.

Роль оперативного запаса реактивности



Глубины погружения управляющих стержней (в сантиметрах) на момент времени 1 ч 22 мин 30 с

Для поддержания постоянной мощности реактора (т. е. нулевой реактивности) при малом оперативном запасе реактивности необходимо почти полностью извлечь из активной зоны управляющие стержни. Такая конфигурация (с извлечёнными стержнями) на реакторах РБМК была опасна по нескольким причинам:

  • затруднялось обеспечение однородности энерговыделения по активной зоне

  • увеличивался паровой коэффициент реактивности

  • создавались условия для увеличения мощности в первые секунды после срабатывания аварийной защиты из-за «концевого эффекта» стержней

Персонал станции, по-видимому, знал только о первой из них; ни об опасном увеличении парового коэффициента, ни о концевом эффекте в действовавших в то время документах ничего не говорилось.

Следует отметить, что нет прямой связи между проявлением концевого эффекта и оперативным запасом реактивности. Этот эффект возникает, когда большое количество управляющих стержней находится в крайних верхних положениях. Это возможно только когда ОЗР мал, однако, при одном и том же ОЗР можно расположить стержни по-разному — так что различное количество стержней окажется в опасном положении. В регламенте отсутствовали ограничения на максимальное число полностью извлечённых стержней.

Таким образом, персоналу не было известно об истинных опасностях, связанных с работой при низком запасе реактивности. Кроме того, проектом не были предусмотрены адекватные средства для измерения ОЗР. Несмотря на огромную важность этого параметра на пульте не было индикатора, который бы непрерывно его показывал. Обычно оператор получал последнее значение в распечатке, которую ему приносили два раза в час; была, также, возможность дать задание ЭВМ на расчёт текущего значения, этот расчёт длился несколько минут.

Перед аварией большое количество управляющих стержней оказалось в верхних положениях, а ОЗР меньше разрешённого регламентом значения. Операторы не знали текущего значения ОЗР и, соответственно, не знали, что нарушают регламент. Тем не менее, эксперты МГАТЭ считают, что операторы действовали неосмотрительно и поставили стержни в такое положение, которое было бы опасным, даже если бы не было концевого эффекта.
Альтернативные версии

В разное время выдвигались различные версии для объяснения причин чернобыльской аварии. Специалисты предлагали разные гипотезы о том, что привело к скачку мощности. Среди причин назывались: так называемый «срыв» циркуляционных насосов (нарушение их работы в результате кавитации), вызванный превышением допустимого расхода воды, разрыв трубопроводов большого сечения и другие. Рассматривались также различные сценарии того, как конкретно развивались процессы, приведшие к разрушению реактора после скачка мощности, и что происходило с топливом после этого. Некоторые из версий были опровергнуты исследованиями, проведёнными в последующие годы, другие остаются актуальными до сих пор. Хотя среди специалистов существует консенсус по вопросу о главных причинах аварии, некоторые детали до сих пор остаются неясными.

Выдвигаются также версии, кардинально отличные от официальной, не поддерживаемые специалистами.

Например, сразу после аварии было высказано предположение, что взрыв является результатом диверсии, по какой-то причине скрытой властями. Как и любую другую «теорию заговора», эту версию трудно опровергнуть, так как любые факты, которые в неё не укладываются, объявляются сфальсифицированными. Ещё одна версия, получившая широкую известность, объясняет аварию локальным землетрясением. В качестве обоснования ссылаются на сейсмический толчок, зафиксированный примерно в момент аварии. Однако, остальные три блока не пострадали и никто из находившихся на них землетрясения не почувствовал (3-й блок непосредственно примыкает к 4-му).

Особое место среди подобных версий занимает версия, представленная сотрудником Межотраслевого научно-технического центра «Укрытие» Национальной Академии Наук Украины Б. И. Горбачёвым. По этой версии, взрыв произошёл из-за того, что операторы, при подъёме мощности после её провала, извлекли слишком много управляющих стержней и заблокировали аварийную защиту, которая мешала им быстро поднимать мощность. При этом, они, якобы, не заметили что мощность начала расти, что привело, в итоге, к разгону реактора на мгновенных нейтронах.

По версии Б. И. Горбачёва, в отношении первичных исходных данных, используемых для анализа всеми техническими экспертами, был совершён подлог (при этом он сам выборочно использует эти данные). И он считает, что, на самом деле, хронология и последовательность событий аварии были другими. Так, например, по его хронологии взрыв реактора произошёл за 25—30 секунд до нажатии кнопки аварийной защиты (АЗ-5), а не через 6—10 секунд после, как считают все остальные. Нажатие кнопки АЗ-5 Б. И. Горбачёв совмещает в точности со вторым взрывом, который для этого переносится им на 10 секунд назад. По его версии, этот второй взрыв был взрывом водорода и он зарегистрирован сейсмическими станциями как слабое землетрясение.

Версия Б. И. Горбачёва содержит очевидные специалистам внутренние нестыковки, не согласуется с физикой процессов, протекающих в ядерном реакторе и противоречит зарегистрированным фактам. На это было неоднократно указано, однако, версия получила широкое распространение в Интернете.
4. Последствия аварии

Непосредственные последствия

Непосредственно во время взрыва на четвёртом энергоблоке погиб один человек (ещё один скончался в тот же день от ожогов), однако этим число жертв не ограничилось. Вскоре после аварии на ЧАЭС прибыли пожарные и начали тушение огня, в основном на крыше машинного зала между третьим и четвёртым блоком. Они не имели никаких индивидуальных средств защиты и не знали о радиационной опасности. Все они получили высокие дозы радиации и многие впоследствии умерли от лучевой болезни. В распоряжении персонала были только дозиметры с пределом измерения 1 миллирентген в секунду. Из двух имевшихся приборов на 1000 рентген в секунду один вышел из строя, а другой оказался недоступен из-за возникших завалов. Поэтому никто точно не знал реальных уровней радиации в помещениях блока и вокруг него. Неясным было и состояние реактора.



Покинутые дома в прилегающих селениях

В первые часы после аварии, многие, по-видимому, не сознавали, насколько сильно повреждён реактор, поэтому было принято ошибочное решение обеспечить подачу воды в активную зону реактора для её охлаждения. Эти усилия были бесполезными, так как и трубопроводы и сама активная зона были разрушены, но они требовали ведения работ в зонах с высокой радиацией. Другие действия персонала станции, такие как тушение локальных очагов пожаров в помещениях станции, меры, направленные на предотвращение возможного взрыва водорода, и др., напротив, были необходимыми. Возможно, они предотвратили ещё более серьёзные последствия. При выполнении этих работ многие сотрудники станции получили большие дозы радиации, в том числе смертельные. В их числе оказались начальник смены блока А. Акимов и оператор Л. Топтунов, управлявшие реактором во время аварии.

Эвакуация населения

Первоначально население не было проинформировано об аварии. В первые часы это было, вероятно, связано с непониманием масштаба опасности. Однако очень скоро стало понятно, что потребуется эвакуация г. Припять, которая и была проведена 27 апреля. В последующие дни было эвакуировано население других населённых пунктов 30-километровой зоны. Несмотря на это, ни 26, ни 27 апреля жителей не предупредили о существующей опасности и не дали никаких рекомендаций о том, как следует себя вести, чтобы уменьшить влияние радиоактивного загрязнения.

Первое официальное сообщение было сделано по телевидению лишь 28 апреля. К этому времени повышение радиационного фона уже было зарегистрировано в Швеции и по изотопному составу радиоактивного облака специалисты определили, что произошла авария на атомной станции. Это первое сообщение содержало очень мало информации о том, что произошло, и население по-прежнему не было предупреждено об опасности.

Локализация последствий аварии





Значок ликвидатора

Защитный саркофаг

Для ликвидации последствий аварии была создана правительственная комиссия, председателем которой был назначен заместитель председателя Совета министров СССР Б. Е. Щербина. Для координации работ были также созданы республиканские комиссии в Белорусской, Украинской ССР и в РСФСР, различные ведомственные комиссии и штабы. В 30-километровую зону вокруг ЧАЭС стали прибывать специалисты, командированные для проведения работ на аварийном блоке и вокруг него, а также воинские части, как регулярные, так и составленные из срочно призванных резервистов. Их всех позднее стали называть «ликвидаторами». Ликвидаторы работали в опасной зоне посменно: те, кто набрал максимально допустимую дозу радиации, уезжали, а на их место приезжали другие. Основная часть работ была выполнена в 1986—1987 годах, в них приняли участие примерно 240 000 человек. Общее количество ликвидаторов (включая последующие годы) составило около 600 000.



Памятник героям — ликвидаторам аварии на Митинском кладбище (Москва)

В первые дни основные усилия были направлены на снижение радиоактивных выбросов из разрушенного реактора и предотвращение ещё более серьёзных последствий. Например, существовали опасения, что из-за остаточного тепловыделения в топливе, остающемся в реакторе, произойдёт расплавление активной зоны. Расплавленное вещество могло бы проникнуть в затопленное помещение под реактором и вызвать ещё один взрыв с большим выбросом радиоактивности.

Затем начались работы по очистке территории и захоронению разрушенного реактора. Вокруг 4-го блока был построен бетонный «саркофаг» (т. н. объект «Укрытие»). Так как было принято решение о запуске 1-го, 2-го и 3-го блоков станции, радиоактивные обломки, разбросанные по территории АЭС и на крыше машинного зала были убраны внутрь саркофага или забетонированы. В помещениях первых трёх энергоблоков проводилась дезактивация. Строительство саркофага было завершено в ноябре 1986 года.

Правовые последствия

После аварии на Чернобыльской АЭС в законодательстве СССР, а затем и России была закреплена ответственность лиц, намеренно скрывающих или не доводящих до населения последствия экологических катастроф, техногенных аварий. Информация, относящаяся к экологической безопасности мест, ныне не может быть классифицирована как секретная.

Долговременные последствия

В результате аварии из сельскохозяйственного оборота было выведено около 5 млн га земель, вокруг АЭС создана 30-километровая зона отчуждения, уничтожены и захоронены (закопаны тяжёлой техникой) сотни мелких населённых пунктов.



Карта радиоактивного загрязнения изотопом цезия-137:

Перед аварией в реакторе четвёртого блока находилось 180—190 тонн ядерного топлива (диоксида урана). По оценкам, которые в настоящее время считаются наиболее достоверными, в окружающую среду было выброшено от 5 до 30 % от этого количества. Некоторые исследователи оспаривают эти данные, ссылаясь на имеющиеся фотографии и наблюдения очевидцев, которые показывают, что реактор практически пуст. Следует, однако, учитывать, что объём 180 тонн диоксида урана составляет лишь незначительную часть от объёма реактора. Реактор в основном был заполнен графитом, который сгорел в первые дни после аварии. Кроме того, часть топлива сейчас находится за пределами корпуса реактора.

Кроме топлива, в активной зоне в момент аварии содержались продукты деления и трансурановые элементы — различные радиоактивные изотопы, накопившиеся во время работы реактора. Именно они представляют наибольшую радиационную опасность. Большая их часть осталась внутри реактора, но наиболее летучие вещества были выброшены наружу, в том числе:

  • все благородные газы, содержавшиеся в реакторе;

  • примерно 55 % иода в виде смеси пара и твёрдых частиц, а также в составе органических соединений;

  • цезий и теллур в виде аэрозолей.

Суммарная активность веществ, выброшенных в окружающую среду, составила, по различным оценкам, до 14.1018 Бк (14 ЭБк), в том числе:

  • 1,8 ЭБк йода-131,

  • 0,085 ЭБк цезия-137,

  • 0,01 ЭБк стронция-90 и

  • 0,003 ЭБк изотопов плутония;

  • на долю благородных газов приходилось около половины от суммарной активности.




Загрязнению подверглось более 200 000 км2, примерно 70 % — на территории Белоруссии, России и Украины. Радиоактивные вещества распространялись в виде аэрозолей, которые постепенно осаждались на поверхность земли. Благородные газы рассеялись в атмосфере и не вносили вклада в загрязнение прилегающих к станции регионов. Загрязнение было очень неравномерным, оно зависело от направления ветра в первые дни после аварии. Наиболее сильно пострадали области, в которых в это время прошёл дождь. Большая часть стронция и плутония выпала в пределах 100 км от станции, так как они содержались в основном в более крупных частицах. Иод и цезий распространились на более широкую территорию.

Процентное соотношение загрязнения, создаваемого различными изотопами через некоторое время после аварии

С точки зрения воздействия на население в первые недели после аварии наибольшую опасность представлял радиоактивный иод, имеющий сравнительно малый период полураспада (восемь дней) и теллур. В настоящее время (и в ближайшие десятилетия) наибольшую опасность представляют изотопы стронция и цезия с периодом полураспада около 30 лет. Наибольшие концентрации цезия-137 обнаружены в поверхностном слое почвы, откуда он попадает в растения и грибы. Загрязнению также подвергаются насекомые и животные, которые ими питаются. Радиоактивные изотопы плутония и америция сохранятся в почве в течение сотен, а возможно и тысяч лет, однако их количество не представляет угрозы.

В городах основная часть опасных веществ накапливалась на ровных участках поверхности: на лужайках, дорогах, крышах. Под воздействием ветра и дождей, а также в результате деятельности людей, степень загрязнения сильно снизилась и сейчас уровни радиации в большинстве мест вернулись к фоновым значениям. В сельскохозяйственных областях в первые месяцы радиоактивные вещества осаждались на листьях растений и на траве, поэтому загрязнению подвергались травоядные животные. Затем радионуклиды вместе с дождём или опавшими листьями попали в почву, и сейчас они поступают в сельскохозяйственные растения, в основном, через корневую систему. Уровни загрязнения в сельскохозяйственных районах значительно снизились, однако в некоторых регионах количество цезия в молоке всё ещё может превышать допустимые значения. Это относится, например, к Гомельской и Могилёвской областям в Белоруссии, Брянской области в России, Житомирской и Ровненской области в Украине.



Доза внешнего гамма-облучения, получаемого человеком около чернобыльской станции

Значительному загрязнению подверглись леса. Из-за того, что в лесной экосистеме цезий постоянно рециркулирует, а не выводится из неё, уровни загрязнения лесных продуктов, таких как грибы, ягоды и дичь, остаются опасными. Уровень загрязнения рек и большинства озёр в настоящее время низкий. Однако в некоторых «замкнутых» озёрах, из которых нет стока, концентрация цезия в воде и рыбе ещё в течение десятилетий может представлять опасность.

Загрязнение не ограничилось 30-километровой зоной. Было отмечено повышенное содержание цезия-137 в лишайнике и мясе оленей в арктических областях России, Норвегии, Финляндии и Швеции.

В 1988 году на территории, подвергшейся загрязнению, был создан экологический заповедник. Наблюдения показали, что количество мутаций у растений и животных хотя и выросло, но незначительно, и природа успешно справляется с их последствиями. С другой стороны, снятие антропогенного воздействия положительно сказалось на экосистеме заповедника и влияние этого фактора значительно превысило негативные последствия радиации. В результате природа стала восстанавливаться быстрыми темпами, выросли популяции животных, увеличилось многообразие видов растительности.
5. Влияние аварии на здоровье людей

Оценки влияния чернобыльской аварии на здоровье людей очень противоречивы. Гринпис и Международная организация «Врачи против ядерной войны» утверждают[21], что в результате аварии только среди ликвидаторов умерли десятки тысяч человек, в Европе зафиксировано 10 000 случаев уродств у новорождённых, 10 000 случаев рака щитовидной железы и ожидается ещё 50 000. По данным организации Союз «Чернобыль», из 600 000 ликвидаторов 10 % умерло и 165 000 стало инвалидами.

С другой стороны, Чернобыльский форум — организация, действующая под эгидой ООН, в том числе таких её организаций, как МАГАТЭ и ВОЗ, — в 2005 году опубликовала обширный доклад, в котором проанализированы многочисленные научные исследования влияния факторов, связанных с аварией, на здоровье ликвидаторов и населения. Выводы, содержащиеся в этом докладе, а также в менее подробном обзоре «Чернобыльское наследие», опубликованном этой же организацией, значительно отличаются от приведённых выше оценок. Количество возможных жертв к настоящему времени и в ближайшие десятилетия оценивается в несколько тысяч человек. При этом подчёркивается, что это лишь оценка по порядку величины, так как из-за очень малых доз облучения, полученных большинством населения, эффект от воздействия радиации очень трудно выделить на фоне случайных колебаний заболеваемости и смертности и других факторов, не связанных напрямую с облучением. К последним факторам относится, например, снижение уровня жизни после распада СССР, которое привело к общему увеличению смертности и сокращению продолжительности жизни в трёх наиболее пострадавших от аварии странах, а также изменение возрастного состава населения в некоторых сильно загрязнённых районах (часть молодого населения уехала). Также отмечается, что несколько повышенный уровень заболеваемости среди людей, не участвовавших непосредственно в ликвидации аварии, а переселённых из зоны отчуждения в другие места, не связан непосредственно с облучением (в этих категориях отмечается несколько повышенная заболеваемость сердечно-сосудистой системы, нарушения обмена веществ, нервные болезни и другие заболевания, не вызываемые облучением), а вызван стрессами, связанными с самим фактом переселения, потерей имущества, социальными проблемами, страхом перед радиацией.

Учитывая большое число людей, живущих в областях, пострадавших от радиоактивных загрязнений, даже небольшие отличия в оценке риска заболевания могут привести к большой разнице в оценке ожидаемого количества заболевших. Гринпис и ряд других общественных организаций настаивают на необходимости учитывать влияние аварии на здоровье населения и в других странах. Ещё более низкие дозы облучения затрудняют получение статистически достоверных результатов и делают такие оценки неточными.

26 апреля 2006, в 20-ю годовщину взрыва на Чернобыльской АЭС, российские газеты «Ведомости» и «Коммерсант» опубликовали статью помощника генерального секретаря ООН, помощника администратора программы развития ООН, директора регионального бюро ПРООН по странам Европы и СНГ Калмана Мижея и старшего менеджера программ ПРООН по СНГ и Кавказу, эксперта координационного центра по Чернобылю Луизы Винтон «Чернобыль: Мифы и заблуждения». Авторы утверждают со ссылкой на результаты научных исследований, что воздействие радиации в результате Чернобыльской аварии оказалось слабее, чем предполагалось ранее. В статье приводятся следующие данные о пострадавших:

  • несколько десятков работников спасательных служб, участвовавших в тушении пожара на АЭС, погибли от острой лучевой болезни;

  • отмечен повышенный уровень заболеваемости онкологическими, сердечно­сосудистыми заболеваниями и катарактой у ликвидаторов аварии;

  • выявлено около 5000 случаев заболевания раком щитовидной железы у тех, кто пережил аварию в детском возрасте, в результате попадания в организм радиоактивного йода вместе с молоком;

  • в то же время радиация не оказала какого-либо определяемого влияния на физическое здоровье 5 млн. жителей пораженных районов — по мнению авторов, «это объясняется тем, что эти люди подверглись воздействию небольших доз радиации, в большинстве случаев сопоставимых с естественным радиационным фоном». При этом, указывается в статье, «учёные не смогли установить связь между радиацией и медицинскими проявлениями, за исключением рака щитовидной железы, который успешно лечится в 98,5 % случаев».

Дозы облучения

Наибольшие дозы получили примерно 1000 человек, находившихся рядом с реактором в момент взрыва и принимавших участие в аварийных работах в первые дни после него. Эти дозы варьировались от 2 до 20 Гр и в ряде случаев оказались смертельными.

Большинство ликвидаторов, работавших в опасной зоне в последующие годы, и местных жителей получили сравнительно небольшие дозы облучения на всё тело. Для ликвидаторов они составили, в среднем, 100 мЗв, хотя иногда превышали 500. Дозы, полученные жителями, эвакуированными из сильно загрязнённых районов, достигали иногда нескольких сотен миллизиверт, при среднем значении, оцениваемом в 33 мЗв. Дозы, накопленные за годы после аварии, оцениваются в 10—50 мЗв для большинства жителей загрязнённой зоны, и до нескольких сотен для некоторых из них.

Для сравнения, жители некоторых регионов Земли с повышенным естественным фоном (например, в Бразилии, Индии, Иране и Китае) получают дозы облучения, равные примерно 100—200 мЗв за 20 лет.

Многие местные жители в первые недели после аварии употребляли в пищу продукты (в основном, молоко), загрязнённые радиоактивным иодом-131. Иод накапливался в щитовидной железе, и это привело к большим дозам облучения на этот орган, помимо дозы на всё тело, полученной за счёт внешнего излучения и излучения других радионуклидов, попавших внутрь организма. Для жителей Припяти эти дозы были существенно уменьшены (по оценкам, в 6 раз) благодаря применению йодсодержащих препаратов, в других районах такая профилактика не проводилась. Полученные дозы варьировались от 0,03 до нескольких грэй, а в некоторых случаях достигали 50 Гр.

В настоящее время большинство жителей загрязнённой зоны получает менее 1 мЗв в год сверх естественного фона.

Онкологические заболевания

Щитовидная железа — один из органов, наиболее подверженных риску возникновения рака в результате радиоактивного загрязнения, потому что она накапливает иод-131; особенно высок риск для детей. В 1992—2002 годах было зарегистрировано более 4000 случаев заболевания раком щитовидной железы среди тех, кому в момент аварии было менее 18 лет. Учитывая низкую вероятность заболевания в таком возрасте, большинство из этих случаев считают прямым следствием облучения. Эксперты Чернобыльского форума ООН полагают, что при своевременной диагностике и правильном лечении эта болезнь представляет не очень большую опасность для жизни, однако по меньшей мере 15 человек от неё уже умерло. Эксперты считают, что количество заболеваний раком щитовидной железы будет расти ещё в течение многих лет.

Некоторые исследования показывают увеличение числа случаев лейкемии и других видов рака (кроме лейкемии и рака щитовидной железы) как у ликвидаторов, так и у жителей загрязнённых районов. Эти результаты противоречивы и часто статистически недостоверны, убедительных доказательств увеличения риска этих заболеваний, связанного непосредственно с аварией, не обнаружено. Однако наблюдение за большой группой ликвидаторов, проведённое в России, выявило увеличение смертности на несколько процентов. Если этот результат верен, он означает, что среди 600 000 человек, подвергшихся наибольшим дозам облучения, смертность от рака увеличится в результате аварии примерно на четыре тысячи человек сверх примерно 100 000 случаев, вызванных другими причинами.

Из опыта, полученного ранее, например, при наблюдениях за пострадавшими при ядерных бомбардировках Хиросимы и Нагасаки, известно что риск заболевания лейкемией снижается спустя несколько десятков лет после облучения. В случае других видов рака ситуация обратная. В течение первых 10-15 лет риск заболеть невелик, а затем увеличивается. Однако не ясно, насколько применим этот опыт, так как большинство пострадавших в результате чернобыльской аварии получили значительно меньшие дозы.

Наследственные болезни

Различные общественные организации сообщают об очень высоком уровне врождённых патологий и высокой детской смертности в загрязнённых районах. Согласно докладу Чернобыльского форума, опубликованные статистические исследования не содержат убедительных доказательств этого.



Синдром Дауна у новорождённых (Белоруссия)

Было обнаружено увеличение числа врождённых патологий в различных районах Белоруссии между 1986 и 1994 годами, однако оно было примерно одинаковым как в загрязнённых, так и в чистых районах. В январе 1987 года было зарегистрировано необычно большое число случаев синдрома Дауна, однако последующей тенденции к увеличению заболеваемости не наблюдалось.

Детская смертность очень высока во всех трёх странах, пострадавших от чернобыльской аварии. После 1986 года смертность снижалась как в загрязнённых районах, так и в чистых. Хотя в загрязнённых районах снижение в среднем было более медленным, разброс значений, наблюдавшийся в разные годы и в разных районах, не позволяет говорить о чёткой тенденции. Кроме того, в некоторых из загрязнённых районов детская смертность до аварии была существенно ниже средней. В некоторых наиболее сильно загрязнённых районах отмечено увеличение смертности. Неясно, связано ли это с радиацией или с другими причинами — например, с низким уровнем жизни в этих районах или низким качеством медицинской помощи.

В Белоруссии, России и в Украине проводятся дополнительные исследования, результаты которых ещё не были известны к моменту публикации доклада Чернобыльского форума.

Другие болезни

В ряде исследований было показано, что ликвидаторы и жители загрязнённых областей подвержены повышенному риску различных заболеваний, таких как катаракта, сердечно­сосудистые заболевания, снижение иммунитета. Эксперты Чернобыльского форума пришли к заключению, что связь заболеваний катарактой с облучением после аварии установлена достаточно надёжно. В отношении других болезней требуются дополнительные исследования с тщательной оценкой влияния конкурирующих факторов.

Кроме того, у жителей ныне загрязнённых территорий, у людей, родившихся там, развились психические заболевания, из-за эвакуации.
6. Дальнейшая судьба станции

После аварии на 4-м энергоблоке работа электростанции были приостановлена из-за опасной радиационной обстановки. Однако уже в октябре 1986 года, после обширных работ по дезактивации территории и постройки «саркофага», 1 -й и 2-й энергоблоки были вновь введены в строй; в декабре 1987 года возобновлена работа 3-го.



В 1991 году на 2-м энергоблоке вспыхнул пожар, и в октябре этого же года реактор был полностью выведен из эксплуатации. В декабре 1995 года был подписан меморандум о взаимопонимании между Правительством Украины и правительствами стран «большой семёрки» и Комиссией Европейского Союза, согласно которому началась разработка программы полного закрытия станции к 2000 году. 15 декабря 2000 года был навсегда остановлен реактор последнего, 3-го энергоблока.

Саркофаг, возведённый над четвёртым, взорвавшимся, энергоблоком постепенно разрушается. Опасность, в случае его обрушения, в основном определяется тем, как много радиоактивных веществ находится внутри него. По официальным данным, эта цифра достигает 95 % от того количества, которое было на момент аварии. Если эта оценка верна, то разрушение укрытия может привести к очень большим выбросам. В 2009 году планируется начать строительство нового, более прочного саркофага над 4-м энергоблоком.
Заключение

Атомная энергетика – активно развивающаяся отрасль. Очевидно, что ей предназначено большое будущее, так как запасы нефти, газа, угля постепенно иссякают, а уран – достаточно распространенный элемент на Земле. Но следует помнить, что атомная энергетика связана с повышенной опасностью для людей, которая, в частности, проявляется в крайне неблагоприятных последствиях аварий с разрушением атомных реакторов. В связи с этим необходимо закладывать решение проблемы безопасности (в частности, предупреждение аварий с разгоном реактора, локализацию аварии в пределах биозащиты, уменьшение радиоактивных выбросов и др.) еще в конструкцию реактора, на стадии его проектирования.

Стоит также рассматривать другие предложения по повышению безопасности объектов атомной энергетики, как-то: строительство атомных электростанций под землей, отправка ядерных отходов в космическое пространство. Но не надо преувеличивать опасность ядерной энергетики. Риск для всего человечества только от наличия на Земле ядерного оружия неизмеримо выше.

Целью настоящей работы было всего лишь рассказать о современной атомной энергетике, показать устройство и основные типы ядерных реакторов. К сожалению, объем доклада не позволяет более подробно остановиться на вопросах физики реактора, тонкостях конструкции отдельных типов и вытекающих из них проблем эксплуатации, надежности и безопасности.

Список литературы

  1. И.Х.Ганев. Физика и расчет реактора. Учебное пособие для вузов. М, 1992, Энергоатомиздат.

  2. Л.В.Матвеев, А.П.Рудик. Почти все о ядерном реакторе. М, 1990, Энергоатомиздат.


Список литературы





  1. Воспитание учащихся и подготовка их к труду при обучении физике (под редакцией Чеботарева А.В.). – М.: Просвещение, 1986

  2. Патриотическое воспитание (нормативные правовые документы). – М.: Творческий центр, 2005

  3. Тульчинский М.Е. Сборник качественных задач по физике. – М.: Просвещение, 1987

  4. Основы военно-патриотического воспитания (под редакцией Средина Г.В.). – М.: Просвещение, 1988

  5. “Физика. Приложение к газете 1 сентября”. - № 23, 1998

  6. Физика в школе. - № 3, 2005; № 3, 1997.



1   2   3   4   5   6   7   8   9   10

Похожие:

Методическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования iconМетодическая разработка на тему: «Проектная деятельность на уроках...

Методическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования iconМетодическая разработка на тему: «Формирование исследовательской...
Кузнецова Марина Станиславовна, преподаватель (руководитель дисциплины физика и астрономия)
Методическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования iconАнализ состояния преподавания информатики в 7 11 классах в 2012/2013учебном год
Использование интерактивных модулей как средство повышения качества знаний на уроках физики
Методическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования iconМетодическая разработка цикла уроков по кубановедению и изобразительному...
Данная методическая разработка предназначена для реализации на уроках кубановедения и изобразительного искусства в 5 классе общеобразовательной...
Методическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования iconМетодическая разработка на тему: «Проектная деятельность на уроках...
«Проектная деятельность на уроках физики и астрономии с использованием сетевых компьютерных технологий»
Методическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования iconПлан работы методического объединения учителей математики на 2011-2012 учебный год
Актуальность использования дифференцированных заданий на уроках математики с целью повышения качества математического образования...
Методическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования iconМетодическая разработка по Основам безопасности жизнедеятельности...
Методическая разработка ориентирована на программу 10 – 11 класса по обж. Материалы предназначены для работы преподавателей курса...
Методическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования iconВладимир Мегре
Актуальность использования дифференцированных заданий на уроках математики с целью повышения качества математического образования...
Методическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования iconРуководство к программе AutoClickExtreme
Актуальность использования дифференцированных заданий на уроках математики с целью повышения качества математического образования...
Методическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования iconТема: Использование икт на уроках русского языка и литературы
Цель работы: внедрение икт в образовательный процесс с целью повышения качества знаний учащихся
Методическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования iconРабота над аккомпанентом на уроках сольфеджио
...
Методическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования iconГанс Селье. От мечты к открытию
Актуальность использования дифференцированных заданий на уроках математики с целью повышения качества математического образования...
Методическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования iconКсавьера Холландер Мадам сошествие в ад
Актуальность использования дифференцированных заданий на уроках математики с целью повышения качества математического образования...
Методическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования iconМетодическая разработка по внедрению проектного метода на уроках географии
Данная методическая разработка предполагает проведение уроков по дисциплине География с использованием элементов проектного метода...
Методическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования icon1. Шамбала (лог Льва Андреевича Ермолова)
Актуальность использования дифференцированных заданий на уроках математики с целью повышения качества математического образования...
Методическая разработка на тему: Приемы работы на уроках физики для реализации военной направленности преподавания предмета с целью повышения качества образования iconМетодическая разработка «Проверка знаний, умений, навыков учащихся на уроках физики»
Русский язык: Грамматика. Текст. Стили речи: Учеб. Пособие для 10-11 кл общеобразоват. Учреждений, Дейкина А. И. Власенков, Л. М....


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск