Научныеоснов ы экологическойпаразитологии





НазваниеНаучныеоснов ы экологическойпаразитологии
страница5/43
Дата публикации14.07.2013
Размер6.09 Mb.
ТипКнига
100-bal.ru > Биология > Книга
1   2   3   4   5   6   7   8   9   ...   43

3. Среда обитания паразитов

3.1. Специфичность среды обитания паразитов

Все живые существа обитают в определенных условиях внешней среды. Все, что находится вне (снаружи) организма, относится к окружающей среде: земля, вода, животные и т.п.

Паразитизм - преимущественно экологическое понятие, аналогичное понятиям планктонного, бентосного, почвенного и им подобного образа жизни организмов. Качественная особенность паразитов, по сравнению с другими формами существования организмов, определяется своеобразием среды обитания, которой для паразита является другой живой организм (хозяин), активно реагирующий на присутствие паразита. Внешняя среда паразита, как это показали Е. Н. Павловский и В. А. Догель, имеет двойственный характер. Различают среду 1-го порядка - окружающие паразита органы и ткани хозяина - и среду 2-го порядка, окружающую хозяина.

Среда 1-го порядка. Наиболее важные преимущества живого организма как среды обитания схематически можно выразить четырьмя позициями.

1. Гомеостазированность внутренней среды организма по ряду физико-химических параметров означает высокую степень постоянства условий обитания. Это открывает возможность видам, эволюционировавшим в направлении использования этой среды, не вырабатывать многих механизмов, функция которых - приспособление к колеблющимся внешним условиям. Выгодность такого направления эволюции - в экономии энергии, затрачиваемой на адаптацию.

2. Использование живого организма как среды обитания означает формирование «среды второго порядка» и прекращение или, по крайней мере, упрощение взаимосвязей с внешней («первого порядка») средой. Все взаимодействия со сложными и изменчивыми окружающими условиями берет на себя организм хозяина, в котором благодаря комплексу адаптивных реакций создается устойчивая система условий жизни. Биологические преимущества обитания в другом организме и в этом случае связаны с отсутствием необходимости сложных адаптаций. Поэтому для обитателей внутренней среды организмов часто характерно отсутствие или крайнее упрощение систем адаптации к действию факторов внешней среды. Многие паразиты, обитающие внутри организма хозяев, помимо этого отличаются еще и весьма просто устроенной нервной системой - ее функции «переданы» нервной системе хозяина.

3. Организм хозяина - защищает своих обитателей не только от факторов абиотического характера, но и «укрывает» их от различного рода потенциальных врагов. Это делает ненужной выработку целого ряда приспособлений типа активной или пассивной обороны от возможного нападения хищников.

4. Обитая в (на) организме хозяина, его сожитель питается за его счет. Именно с взаимоотношений по линии питания и начиналась в большинстве случаев эволюция паразитизма. При этом в пищу исполь­зуются вещества, легко доступные для усвоения и не требующие сложной химической перестройки в процессе пищеварения (клеточный сок растений, кровь животных, содержимое их пищеварительного тракта, уже подвергнутое ферментативной обработке). Такой тип питания возможен и при весьма примитивном устройстве системы пищеварения, что и характерно для многих паразитов. Например, живущие в кишечнике животных ленточные черви вообще вторично утратили пищеварительную систему и всасывают готовые к усвоению вещества из содержимого кишечника прямо через покровы тела.

В целом наиболее общее биологическое преимущество, заложившее основы эволюции паразитизма, заключается в возможности более экономного расхода энергии на различные (в первую очередь адаптивные) процессы, не связанные с прямой функцией поддержания жизни. Эволюционное становление такого образа жизни - хороший пример правила, сформулированного известным экофизиологом Н.И. Калабуховым: любое приспособление, дающее возможность решать жизненные задачи с меньшими затратами энергии, подхватывается естественным отбором и закрепляется в эволюции (Калабухов,1946).

Чем сложнее устроен организм, чем выше эффективность его гомеостазирующих систем, тем больше благоприятных возможностей он предоставляет в качестве среды обитания. С другой стороны, чем организм совершеннее, тем меньшей становится для него потребность использовать благоприятные условия в другом организме. Поэтому явление паразитизма, весьма широко распространенное в органическом мире, наиболее богато представлено среди микроорга­низмов и примитивных многоклеточных; число видов, ведущих пара­зитический образ жизни, резко падает у высокоорганизованных растений и животных. Напротив, именно в организмах цветковых растений и высших животных встречается наиболее обильное и разнообразное население паразитов.

Взаимоотношения паразита со средою 2-го порядка в основном регулируются через хозяина, хотя имеет место (в различной степени для разных форм паразитов) и прямое воздействие факторов внешней среды (например, температуры) на паразита.

На продолжительность (в онтогенезе) пребывания паразитов в организменной среде хозяев влияют три основных фактора: 1 - эффективность снабжения паразитов (в их паразитических стадиях) питательными веществами; 2 - размеры паразитов (их соразмерность с тканями и органами хозяев); 3 - «эффективность передачи», т.е. выработка адаптаций, обеспечивающих переход следующего поколения в организм другого хозяина.

Например, малярийные плазмодии (одноклеточные, эффективно снабжаемые хозяином энергетическими ресурсами, организмы) в течение всего онтогенеза ведут паразитический образ жизни в разных хозяевах, один из которых (комар) выполняет также функции переносчика, при эффективном способе передачи.

В своё время, был подмечен весьма существенный факт, заключающийся в том, что до сих пор не известно ни одной группы или формы, которую можно было бы квалифицировать, как отошедшую от паразитизма и вернувшуюся к свободному образу жизни, вероятно, в силу "невыгодности" такого отхода с точки зрения "экономики организма". (Кнорре, 1937). В настоящее время по-прежнему не имеется сведений, касающихся "обращения" паразитов в свободноживущие организмы. Постепенно приходит понимание того, что стратегия эволюции паразитов заключается в захвате всех четырех жизненных сред (по В.И. Вернадскому: воздушной, водной, наземной и биологической) при сохранении возможности их перемен по наиболее выгодной для паразитов схеме. Это позволяет паразитам выживать в принципиально различных условиях, например, постоянно находясь в организменных энергоёмких средах хозяев и переносчиков (как, скажем, вирусы, или малярийные плазмодии), или - имея в своих жизненных циклах свободноживущие стадии (как, например, трематоды, цестоды, ортонектиды и др.). Всё это позволяет рассматривать паразитов, как наиболее приспособленных к выживанию в условиях Земли организмов.

3.2. Роль симбио-паразитарной конгруэнции в эволюции

Термин "конгруэнция" (лат.: "congruere" - соответствовать, сходиться) был введен в науку С.А. Северцовым (1951) применительно к внутривидовым отношениям, влияющим на эволюцию видов. Северцов придавал этому понятию сугубо морфологический смысл и полагал, что конгруэнция, это приспособления, возникающие в результате внутривидовых отношений в единой, целостной группе организмов. Однако конгруэнция может возникнуть между особями и при межвидовых отношениях. В этом смысле, оно может обозначаться как биоконгруэнция, а в нашем случае, как: симбио-паразитарная конгруэнция.

Смысл этого понятия заключается в пространственном совмещении морфо-физиологических признаков симбионтов (в том числе и паразитов, как одной из форм симбиотических взаимоотношений) с признаками биологической среды их обитания в партнёрах.

Функциональная разнокачественность среды окружающей паразита формирует универсальное свойство о котором говорится в трудах Г.П. Краснощекова. Рассуждая о среде обитания паразитов, Г.П. Краснощеков (1996-а; 1996-б) высказал интересную мысль. Она касается интерференции (наложения) физического пространства, занимаемого телом паразита, на таковое у хозяина, или точнее, - их совмещение. Краснощёков не обратил внимание на то, что этот феномен присущ всем паразитическим организмам, независимо от их систематического положения и проявляется на всех паразитических стадиях их жизненных циклов. Следовательно, такое совмещение можно отнести к числу универсальных свойств паразитизма. Приходится сталкиваться с возражениями такого рода: но ведь и все свободноживущие организмы тоже живут не в вакууме, они тоже "совмещаются" со средой, будь то биотоп, экосистема, биосфера. Однако, совершенно очевидно, что речь идет о совмещении паразита с биологически активной организменной средой, рассматриваемой на популяционном уровне.

Наиболее сложное и полное совмещение, образуется при эндопаразитизме. Только благодаря такому совмещению, возможен "запуск" механизмов тесного взаимодействия паразита и хозяина, или иными словами, становятся возможными обоюдные связи паразита со средой своего обитания. При этом совпадения пространств тела паразита и хозяина не носят простого ("механического") характера. Они обусловлены физико-химическими условиями, обеспечивающими контакты между особями в популяциях паразита и хозяина. Максимальное по тесноте совмещение достигается у эндопаразитов в их паразитических фазах развития.

Акт колонизации хозяина, начинающийся с проникновения эндопаразита в хозяина, приводит не только к пространственному (т.с. "формальному") совмещению его тела с энергоёмкой организменной средой обитания, но и к возникновению различного рода генетических и метаболических взаимодействий между паразитом и хозяином. Таким образом, результатом пространственного совмещения эндопаразитов (протист, эукариот, мезозоа) является формирование комбинированной живой структуры, состоящей из особей с разными, но взаимодействующими геномами, морфофизиологическими организациями и разными информационными свойствами. Возникшая ассоциация особей по отношению к каждой из составляющих обладает качественными признаками надорганизма.

Взаимоотношения паразитов с их средой обитания, многократно и с разных сторон рассматривались паразитологами. Но только в единичных работах упоминается о значении универсальности совмещения "пространств состояний" эндопаразита и хозяина. В принципе, любой вид животных или растений (может быть за очень редкими исключениями…), представляет для паразита необходимое для его существования пространство паразитарной экспансии. Совокупность множеств индивидуальных сред обитания (в популяции хозяина) составляет одну из основных характеристик паразитарной системы и образует многомерную экологическую нишу паразита. В результате совмещения эндопаразита и хозяина и возникновения сложных взаимодействий между "партнёрами" (паразитом и организменной средой), наблюдается либо - стабилизация гомеостаза системы хозяина ("положительное" влияние паразита), либо - его разбалансировка ("отрицательное" влияние). В целом же, взаимодействие партнеров направлено на получение фокусированного результата. При этом паразит и хозяин взаимодействуют как две биологические системы, деятельность которых, направлена на сохранение общего гомеостаза.

В отличие от свободноживущих организмов, эндопаразит формирует со средой своего обитания сложную экологическую систему, в которой взаимоотношения партнеров находятся в состоянии, как принято говорить, "запрограммированного равновесия". В свою очередь, в зависимости от структурно-функционального уровня организации (индивидуального, популяционного) каждый из партнеров представлен своей самовоспроизводящейся системой (организмом, популяцией), обладающей своими генетическими и морфофизиологическими свойствами. В результате взаимного адаптогенеза в ходе эволюции паразит приспосабливается к конкретной среде обитания, а та, в свою очередь, приобретает структурные и функциональные свойства, обеспечивающие защищенность от воздействия паразитарного фактора.

3.3. Надорганизменная конструкция «компликатобионт»

В экоморфологии живые системы принято классифицировать по уровню организации и иерархической соподчиненности на категории: организм и надорганизм. Организменный уровень признается основным и первичным; надорганизменный считается производным от него и характеризует популяции, колонии, экосистемы. Такая точка зрения исходит из того, что организмы обладают собственной централизованной программой развития, заложенной в их геноме. С другой стороны, в надорганизменных живых системах программа развития не является централизованной и существует как интегральный генофонд, образованный геномами конкретных организмов.

Живая система, в которой участвует эндопаразит, по всем соображениям должна рассматриваться как надорганизменная конструкция. В ней:

- особи паразитического партнера обязательно нуждаются в связи с организмом другого свободноживущего (или "базового паразитического", при гиперпаразитизме) компаньона по системе;

- партнеры сохраняют суверенность геномов, хотя взаимодействие геномами происходит и часто бывает очень значительным;

- организмы партнеров, при сохранении свойственных для каждого из них обменных процессов, тем не менее, обладают активным метаболическим, взаимодействием; и, наконец,

- различен, но тесно скоординирован, информационный вклад каждого партнера в функционировании общей системы.

Иными словами, "эндопаразит плюс специфический хозяин", может формировать образование, в котором бывает чрезвычайно трудно провести грань между составляющими его организмами.

Эти образования могут характеризоваться встраиваниями в геном хозяина значительных фрагментов генома паразита. Встраивание может происходить как в геном паразитов, стоящих на более высокой ступени развития (в случаях гиперпаразитизма), так и непосредственно в геном свободноживущего организма – хозяина, или "и туда, и туда".

При этом, принцип конвариантной (т.е. протекающей с изменениями генетических структур) репликации наследственной информации, дополняется принципом возможного горизонтального переноса генетической информации, т.е. способностью переноса информации между неродственными особями, например, между растениями и животными, или между вирусами и организмами (Тимофеев-Ресовский, 1983; Кнорре,1937; Маленков, 1989; Медников, 1989).

Помимо взаимодействия генетической информацией, этим сложным биологическим образованиям свойственны и другие важные характеристики:

-формирование ксенопаразитарных барьеров;

-теснейшие адгезивные связи, вплоть до образования "зон полного согласия" (хромофильная адгезия);

-инициация процессов "молекулярной мимикрии" (синтез антигенов общих для хозяев и паразитов);

-активные и разносторонние метаболические взаимодействия, в том числе и на молекулярном уровне;

-синхронизированные программы взаимодействия партнеров;

-саморегуляция численности в популяциях.

Все эти характеристики, принято оценивать как взаимные адаптации паразитов и их хозяев, обеспечивающие партнёрам существование в более или менее равновесных паразитарных системах. С одной стороны, это – так, однако, с другой, они же являются и основными факторами, необходимыми для формирования (синтеза) надорганизменной конструкции.

Суммарное воздействие этих характеристик может в итоге приводить к появлению в функционирующей (и, что важно - эволюционирующей!) конструкции новых эмерджентных свойств.

Хотя морфо-физиологические различия партнеров вследствие их филогенетической неоднородности и значительны, синтезированная с их участием сложная конструкция обладает системообразующими свойствами, и выступает как элемент систем более высокого ранга.

Такую живую систему: "особи свободноживущих животных (растений) + паразит", уже нельзя относить к категории "организм". Это неизбежно приведёт к фактологической и терминологической путанице. К ней может быть приложимо понятие "бионт". Такой тип живых систем можно было бы условно назвать "компликатобионт" (лат.: complicatio – сложный, усложнение).

Паразиты так выстраивали свою эволюционную стратегию, что, не исключая из круга живых объектов Земли понятие "паразит, как самостоятельный организм", инициировали (при "сходимости" всех необходимых признаков) формирование надорганизменных образований. В силу биологической специфики, образуемые с их участием сложные ассоциации обладают признаками живой системы.

Строго говоря, компликатобионт, как одно из следствий эволюции, может формироваться на основе любых форм симбиотических взаимоотношений с последующим отсевом нежизнеспособных форм.

Обосновывая теорию симбиогенеза, один из её создателей, Б.М. Козо-Полянский, в начале 20-го века считал, что все организмы в природе, по существу, представляют собою симбиотические системы, построенные из низших организмов. (Козо-Полянский, 1924). В результате сложения элементарных жизненных единиц в единицы более сложных порядков возможно возникновение самых разнообразных наследственных комбинаций. Более того Козо-Полянкий полагал, что единственными элементарными организмами, не представляющими из себя сочетаний других организмов, являются сине-зеленные дробянки и бактерии.

Эволюционным примером формирования компликатобионта могут служить лишайники, образованные разноименными организмами: грибом (микобионт) и водорослью, или цианобактериями (фотобионт), сформировавшиеся на основе паразитизма предположительно в конце мезозоя.

А.С. Фаминцыным на основании изучения лишайников в начале 20-го века была выдвинута гипотеза симбиогенеза (Фаминцын, 1907). Впоследствии, на многочисленных примерах эндосимбиоза, роль симбиогенеза была развита Lynn Sagan-Margulis (Маргелис, 1983).

С современных позиций, отношения между грибом и водорослью основаны на "умеренном паразитизме", особенно сильно проявляющимся со стороны гриба. "Умеренным" (термин предложен лихенологами) паразитизм назван потому, что гриб не разрушает водоросль, а ограничивает её половое размножение, позволяя размножаться только бесполым, вегетативным путем.

Пример с лишайниками - это, доказательный пример, в том смысле, что симбиоз двух разноименных организмов, один из которых в мезозое являлся паразитом, привел в результате проявления эмерджентных свойств, к формированию неразделимой биологической конструкции, которая в дальнейшем эволюционировала уже как единый организм.

Есть и другие примеры, которые можно рассматривать как синтез компликатобионтов. Например, Hypermastigida - симбионты термитов, которые благодаря ферменту целлюлазы переваривают клетчатку и без которых термиты существовать не могут. Биомасса гипермастигид доходит до 50% массы насекомого.

Анализируя факторы ускоренного видообразования в проблеме биоразнообразия, (Беэр, 2002) возникает необходимость рассмотрения гипотезы, согласно которой вирусные пандемии, проходя волнами через ареал вида-хозяина, могут вызывать массовые хромосомные перестройки (Воронцов, 1975). Резкое повышение их частоты может одновременно накладываться на сокращение численности видов хозяина под влиянием перенесенных пандемий. С этим тесно связано нарушение свободного скрещивания, как в результате распада сплошного ареала на серию изолятов, так и в силу возникновения хромосомных перестроек. В этих условиях резко повышается вероятность объединения гамет со сходными хромосомными изменениями. Совсем не исключено, что такие явления способствуют процессам ускоренного видообразования и синтезу сложных надорганизменных образований - компликатобионтов.

Скорее всего, такими же свойствами могут обладать и информационные молекулы. Хотя их, и нельзя называть паразитами, они, могут способствовать синтезу компликатобионтов. Информация, содержащаяся, например, в локусах плазмид или низкомолекулярной одноцепочечной РНК вироидов, может встраиваться в геном паразитических организмов (например, бактерий, простейших, гельминтов) или в геном свободноживущих хозяев, меняя, (точнее - ускоря) темпы их эволюции.

Изучение всех этих процессов невозможно без рассмотрения проблемы синтеза компликатобионтов, связывая воедино три процесса: 1- периодические ускорения темпов эволюции, 2- участие в этих процессах: факультативных симбионтов в начале совместной эволюции, облигатных симбионтов (скорее всего - мутуалов) на удаленных от начального этапах коэволюции, а "в промежутке" - симбионтов с "непогашенной патогенностью", т.е. - паразитов и 3- синтез компликатобионтов.

Вопрос о том, как долго такие "синтетические образования" будут создаваться, и функционировать, зависит от двух основных причин: во-первых, от – силы, глубины, продолжительности, частоты повторяемости процессов вмешательства симбионтов и (или) паразитов в организм партнёра; и во-вторых, от длительности стабилизирующего отбора.
1   2   3   4   5   6   7   8   9   ...   43



Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск