Рецензенты: кафедра математического моделирования экономических процессов





НазваниеРецензенты: кафедра математического моделирования экономических процессов
страница5/29
Дата публикации13.07.2013
Размер1.63 Mb.
ТипДокументы
100-bal.ru > Экономика > Документы
1   2   3   4   5   6   7   8   9   ...   29

Глава 2 СТРАТЕГИЧЕСКИЕ ИГРЫ

2.1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ СТРАТЕГИЧЕСКИХ ИГР


На практике часто появляется необходимость согласования дей­ствии фирм, объединении, министерств и других участников проек­тов в случаях, когда их интересы не совпадают. В таких ситуациях теория игр позволяет найти лучшее решение для поведения участ­ников, обязанных согласовывать действия при столкновении инте­ресов. Теория игр все шире проникает в практику экономических решений и исследований. Ее можно рассматривать как инструмент, помогающий повысить эффективность плановых и управленческих решений. Это имеет большое значение при решении задач в про­мышленности, сельском хозяйстве, на транспорте, в торговле, осо­бенно при заключении договоров с иностранными государствами на любых иерархических уровнях. Так, можно определить научно обоснованные уровни снижения розничных цен и оптимальный уровень товарных запасов, решать задачи экскурсионного обслужи­вания и выбора новых линий городского транспорта, задачу плани­рования порядка организации эксплуатации месторождений полез­ных ископаемых в стране и др. Классической стала задача выбора участков земли под сельскохозяйственные культуры. Метод теории игр можно применять при выборочных обследованиях конечных со-вокупностей, при проверке статистических гипотез.

Обычно теорию игр определяют как раздел математики для изучения конфликтных ситуаций. Это значит, что можно вырабо­тать оптимальные правила поведения каждой стороны, участву­ющей в решении конфликтной ситуации.

В экономике, например, оказался недостаточным аппарат ма­тематического анализа, занимающийся определением экстрему­мов функций. Появилась необходимость изучения так называе­мых оптимальных минимаксных и максиминных решений. Сле­довательно, теорию игр можно рассматривать как новый раздел оптимизационного подхода, позволяющего решать новые задачи при принятии решений.

Игра - упрощенная формализованная модель реальной кон­фликтной ситуации. Математически формализация означает, что выработаны определенные правила действия сторон в процессе игры: варианты действия сторон; исход игры при данном вари­анте действия; объем информации каждой стороны о поведении всех других сторон.

Одну играющую сторону при исследовании операций может представлять коллектив, преследующий некоторую общую цель. Однако разные члены коллектива могут быть по-разному инфор­мированы об обстановке проведения игры.

Выигрыш или проигрыш сторон оценивается численно, дру­гие случаи в теории игр не рассматриваются, хотя не всякий выигрыш в действительности можно оценивать количественно.

Игрок - одна из сторон в игровой ситуации. Стратегия иг­рока - его правила действия в каждой из возможных ситуаций игры. Существуют игровые системы управления, если процесс управления в них рассматривается как игра.

Платежная матрица (матрица эффективности, матрица игры) включает все значения выигрышей (в конечной игре). Пусть игрок 1 имеет т стратегий Аi, а игрок 2 - п стратегий Вj, (; ). Игра может быть названа игрой тхп. Представим мат­рицу эффективности игры двух лиц с нулевой суммой, сопрово­див ее необходимыми обозначениями (табл. 2.1).

Таблица 2.1



В данной матрице элементы – значения выигрышей игро­ка 1 – могут означать и математическое ожидание выигрыша (среднее значение), если выигрыш является случайной величи­ной. Величины ,– соответственно мини­мальные значения элементов , по строкам и максимальные - по столбцам. Их содержательный смысл будет отражен ниже.

В теории игр не существует установившейся классификации видов игр. Однако по определенным критериям некоторые виды можно выделить.

Количество игроков. Если в игре участвуют две сто­роны, то ее называют игрой двух лиц. Если число сторон больше двух, ее относят к игре п игроков. Наибольший интерес вызыва­ют игры двух лиц. Они и математически более глубоко прорабо­таны и в практических приложениях имеют наиболее обширную библиографию [3, 7, 12, 13].

Количество стратегий игры. По этому критерию игры делятся на конечные и бесконечные. В конечной игре каж­дый из игроков имеет конечное число возможных стратегий. Если хотя бы один из игроков имеет бесконечное число возможных стратегий, игра является бесконечной.

Взаимоотношения сторон. Согласно данному кри­терию игры делятся на кооперативные, коалиционные и бескоа­лиционные. Если игроки не имеют право вступать в соглашения, образовывать коалиции, то такая игра относится к бескоалицион­ным; если игроки могут вступать в соглашения, создавать коали­ции - коалиционной. Кооперативная игра - это игра, в которой заранее определены коалиции.

Характер выигрышей. Этот критерий позволяет клас­сифицировать игры с нулевой и с ненулевой суммой. Игра с ну­левой суммой предусматривает условие: «сумма выигрышей всех игроков в каждой партии равна нулю». Игры двух игроков с нулевой суммой относят к классу антагонистических. Естествен­но, выигрыш одного игрока при этом равен проигрышу другого. Примерами игр с нулевой суммой служат многие экономические задачи. В них общий капитал всех игроков перераспределяется между игроками, но не меняется. К играм с ненулевой суммой также можно отнести большое количество экономических задач. Например, в результате торговых взаимоотношений стран, уча­ствующих в игре, все участники могут оказаться в выигрыше. Игра, в которой нужно вносить взнос за право участия в ней, является игрой с ненулевой суммой.

Вид функции выигрышей. По этому критерию игры подразделяются на матричные, биматричные, непрерывные, выпуклые, сепарабельные и т. д. Поясним суть некоторых из них.

Матричная игра - конечная игра двух игроков с нулевой суммой. В общем случае ее платежная матрица является прямо­угольной (см. табл. 2.1). Номер строки матрицы соответствует номеру стратегии, применяемой игроком 1. Номер столбца соот­ветствует номеру стратегии игрока 2. Выигрыш игрока 1 являет­ся элементом матрицы. Выигрыш игрока 2 равен проигрышу игрока 1. Как показано в приложении, матричные игры всегда имеют решения в смешанных стратегиях. Они могут быть реше­ны методами линейного программирования.

Биматричная игра - конечная игра двух игроков с ненулевой суммой. Выигрыши каждого игрока задаются своей матрицей, в которой строка соответствует стратегии игрока 1, а столбец — стратегии игрока 2. Однако элемент первой матрицы показывает выигрыш игрока 1, а элемент второй матрицы - выигрыш игро­ка 2. Для биматричных игр так же, как и для матричных, разра­ботана теория оптимального поведения игроков.

Если функция выигрышей каждого игрока в зависимости от стратегий является непрерывной, игра считается непрерывной. Если функция выигрышей выпуклая, то и игра - выпуклая.

Если функция выигрышей может быть разделена на сумму произведений функций одного аргумента; то игра относится к сепарабельной.

Количество ходов. Согласно этому критерию игры можно разделить на одношаговые и многошаговые. Одношаго­вые игры заканчиваются после одного хода каждого игрока. Так, в матричной игре после одного хода каждого из игроков проис­ходит распределение выигрышей. Многошаговые игры бывают позиционными, стохастическими, дифференциальными и др. Подробнее см. [3,7,12,13].

Информированность cmoрон. По данному крите­рию различают игры с полной и неполной информацией. Если каждый игрок на каждом ходу игры знает все ранее приме­ненные другими игроками на предыдущих ходах стратегии, такая игра определяется как игра с полной информацией. Если игроку не все стратегии предыдущих ходов других игроков известны, то игра классифицируется как игра с неполной ин­формацией. Мы далее убедимся, что игра с полной информа­цией имеет решение. Решением будет седловая точка при чистых стратегиях.

Степень неполноты и н формации. По этому кри­терию игры подразделяются на статистические (в условиях час­тичной неопределенности) и стратегические (в условиях полной неопределенности, см. разд. 3.2). Игры с природой (см. гл. 3, 6) часто относят к статистическим играм. В статистической игре имеется возможность получения информации на основе статис­тического эксперимента, при котором вычисляется или оценива­ется распределение вероятностей состояний (стратегий) приро­ды. С теорией статистических игр тесно связана теория приня­тия экономических решений.

Получив некоторое представление о существующих под­ходах к классификации игр, можно остановиться на оценках игры.

Рассмотрим матричную игру, представленную матрицей вы­игрышей тхп, где число строк , а число столбцов (см. табл. 2.1). Применим принцип получения максимального га­рантированного результата при наихудших условиях. Игрок 1 стремится принять такую стратегию, которая должна обеспечить максимальный проигрыш игрока 2. Соответственно игрок 2 стре­мится принять стратегию, обеспечивающую минимальный вы­игрыш игрока 1. Рассмотрим оба этих подхода.

Подход игрока 1.Он должен получить максимальный гарантированный результат при наихудших условиях. Значит, при выборе отвечающей этим условиям своей чистой страте­гии он должен выбрать гарантированный результат в наихудших условиях, т.е. наименьшее значение своего выигрыша а,., которое обозначим



Чтобы этот гарантированный эффект в наихудших условиях был максимальным, нужно из всех а, выбрать наибольшее зна­чение. Обозначим его а и назовем чистой нижней ценой игры («максимин»):



Таким образом, максиминной стратегии отвечает строка мат­рицы, которой соответствует элемент i. Какие бы стратегии ни применял игрок 2, игрок 1 максиминной чистой стратегией га­рантировал себе выигрыш, не меньший, чем . Таково оптималь­ное поведение игрока 1.

Подход игрока 2. Своими оптимальными стратегиями он стремится уменьшить выигрыш игрока 1, поэтому при каж­дой j-й чистой стратегии он отыскивает величину своего макси­мального проигрыша



в каждом j-м столбце, т.е. определяет максимальный выигрыш игрока 1, если игрок 2 применит j-ю чистую стратегию. Из всех своих n j-х чистых стратегий он отыскивает такую, при которой игрок 1 получит минимальный выигрыш, т.е. определяет чистую верхнюю цену игры («минимакс»):



Чистая верхняя цена игры показывает, какой максимальный выигрыш может гарантировать игрок 1, применяя свои чистые стратегии, - выигрыш, не меньший, чем . Игрок 2 за счет ука­занного выше выбора своих чистых стратегий не допустит, что­бы игрок 1 мог получить выигрыш, больший, чем . Таким об­разом, минимаксная стратегия отображается столбцом платеж­ной матрицы, в котором находится элемент (см. табл. 2.1). Она является оптимальной чистой гарантирующей стратегией игро­ка 2, если он ничего не знает о действиях игрока 1.

Чистая цена игры v - цена данной игры, если нижняя и вер­хняя ее цены совпадают:



В этом случае игра называется игрой с седловой точкой.

Пример 2.1. Определить верхнюю и нижнюю цены при за­данной матрице игры и указать максиминную и минимаксную стратегии. Представим матрицу игры с обозначениями страте­гий j, .j, (табл. 2.2).

Т а б л и ц а 2.2



Решение. Определим нижнюю цену игры:

; ; (см. столбец ).

Определим верхнюю цену игры:

; ; ; (см. строку j).

Таким образом, , т.е.



Значит, – чистая цена игры при стратегиях А2 и B1. Следовательно, имеем игру с седловой точкой.

Пример 2.2. Определим максиминную и минимаксную стра­тегии при заданной матрице эффективности (табл. 2.3).

Решение. Определим максиминную стратегию:

; ;

Максиминная стратегия - строка А2.

Таблица 2.3



Определим минимаксную стратегию:



Минимаксная стратегия - столбец В2. Здесь , следова­тельно, седловой точки нет.

Если матрица игры содержит элемент, минимальный в сво­ей строке и максимальный в своем столбце, то он, как уже сказано выше, является седловой точкой. В этом случае мы имеем игру с седловой точкой.

Пусть в игре с седловой точкой один игрок придерживается седловой точки, тогда другой получит лучший результат, если также будет придерживаться этой точки. Лучшее поведение иг­рока не должно повлечь уменьшение его выигрыша. Зато худшее поведение может привести к этому. В данном случае решением игры являются:

• чистая стратегия игрока 1;

• чистая стратегия игрока 2;

• седловой элемент.

Оптимальные чистые стратегии — это чистые стратегии, об­разующие седловую точку.

В игре без седловой точки, если игрок 1 информирован о стратегии, принятой игроком 2, он сможет принять оптималь­ную стратегию, которая не совпадает с максиминной.

Пример 2.3. Дана матрица игры



Допустим, игроку 1 стало известно, что игрок 2 принял минимаксную стратегию. Игрок 1 должен выбрать оптимальную стратегию при условии, что B2 стратегия игрока 2 ( = 5).

Решение. Определим максиминную стратегию игрока 1:



Стратегия игрока 1 – А2 - максиминная.

Выберем оптимальную стратегию для игрока 1. Ею будет не максиминная А2, дающая игроку 1 выигрыш = 4, а та страте­гия, которая соответствует . В этом случае его максималь­ный гарантированный выигрыш будет равен верхней цене игры , поэтому он выберет свою оптимальную стратегию А1, зная, что игрок 2 выбрал свою стратегию В2. Таким образом, рас­смотренный пример дает результат, отличный от результата при игре с седловой точкой.

Стратегия является оптимальной, если ее применение обес­печит игроку наибольший гарантированный выигрыш при лю­бых возможных стратегиях другого игрока.

На примере 2.3 показано, что бывают ситуации, когда игрок 1 может получить выигрыш, превосходящий максиминный, если ему известны намерения игрока 2.

При многократном повторении игры в сходных условиях можно добиться гарантированного среднего выигрыша, превос­ходящего для игрока 1 максиминный.
1   2   3   4   5   6   7   8   9   ...   29

Похожие:

Рецензенты: кафедра математического моделирования экономических процессов iconМатематическое моделирование экономических систем
«Основы математического моделирования экономических систем» должно способствовать развитию у студентов более глубокого понимания...
Рецензенты: кафедра математического моделирования экономических процессов iconРефератов Метод математического моделирования экономических процессов и явлений
Сравнительная характеристика двух исторических этапов развития экономико-математических исследований — математической школы в политэкономии...
Рецензенты: кафедра математического моделирования экономических процессов iconУчебно-методический комплекс дисциплины
Рецензенты: доктор экономических наук, профессор Лоскутов Владислав Иванович; кандидат физико-математических наук, зав кафедрой Математического...
Рецензенты: кафедра математического моделирования экономических процессов iconУчебно-методический комплекс дисциплины «Методы математического моделирования»
Контрольный экземпляр находится на кафедре информатики, математического и компьютерного моделирования шен двфу
Рецензенты: кафедра математического моделирования экономических процессов iconФедеральное государственное бюджетное образовательное учреждение...
«Математические методы и модели в экономике» – освоение студентами поиска оптимальных решений задач оптимизации, методов математического...
Рецензенты: кафедра математического моделирования экономических процессов iconЭконометрика
Кафедра математического моделирования Башкирского государственного университета, заведующий кафедрой доктор физико-математических...
Рецензенты: кафедра математического моделирования экономических процессов iconПрограмма вступительных испытаний по направлению подготовки научно-педагогических...
«Информационные системы и процессы» разработана профессорско-преподавательским составом кафедры компьютерного и математического моделирования,...
Рецензенты: кафедра математического моделирования экономических процессов iconУрока по теме: «Применение производной»
...
Рецензенты: кафедра математического моделирования экономических процессов iconРабочая программа по дисциплине «Электромагнитные приводы мехатронных систем»
Методы исследования и моделирования процессов в электромеханических преобразователях энергии (кафедра эм)
Рецензенты: кафедра математического моделирования экономических процессов iconРеферат №1 На тему: «История развития экономико-математического моделирования»
Однако методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая...
Рецензенты: кафедра математического моделирования экономических процессов iconРабочая программа по дисциплине «Техническая диагностика электромеханических устройств и систем»
Методы исследования и моделирования процессов в электромеханических преобразователях энергии (кафедра эм)
Рецензенты: кафедра математического моделирования экономических процессов iconКафедра прикладной социологии
Количественные и качественные методы в прогнозировании социально-экономических процессов
Рецензенты: кафедра математического моделирования экономических процессов icon«Исследование операций и методы оптимизации»
Теоретическая и практическая подготовка в области общенаучных исследований количественной стороны массовых социально-экономических...
Рецензенты: кафедра математического моделирования экономических процессов iconДокладе описаны ключевые моменты математического моделирования устройств...
В докладе описаны ключевые моменты математического моделирования устройств компенсации реактивной мощности на базе igbt-ключей с...
Рецензенты: кафедра математического моделирования экономических процессов iconОвместное использование функционального и имитационного моделирования...
Ого моделирования, обеспечивающая повышение результативности разработки различных этапов жизненного цикла сложной технической системы....
Рецензенты: кафедра математического моделирования экономических процессов iconИсследование социально-экономических и политических процессов для...
Тема I: Методологический характер дисциплины «Исследование социально-экономических и политических процессов»


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск